Map Projections and Map Coordinate Systems

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Map Projections and Map Coordinate Systems Jamie Wolfe CITE Marshall University Huntington, WV IS 645 Introduction to GIS Lecture 03, May 23, 2000

2 Today s class topics Map Projections Cylindrical Conical Azimuthal Map Distortions Map Coordinate Systems Latitude, Longitude, height Earth Centered, Earth Fixed XYZ Universal Transverse Mercator (UTM) Military Grid Reference System (MGRS) World Geographic Reference System (GEOREF) State Plane Coordinate Systems (SPCS) IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 2

3 Map Projections Map projections are attempts to portray the surface of the earth or a portion of the earth on a flat surface The map projection can be onto a flat surface or a surface that can be made flat by cutting, such as a cylinder or a cone If the globe, after scaling, cuts the surface, the projection is called secant. Lines where the cuts take place or where the surface touches the globe have no projection distortion IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 3

4 Map Projections Some distortions of conformality (shape), distance, direction, scale, and area always result from this process. Some projections minimize distortions in some of these properties at the expense of maximizing errors in others. Some projection are attempts to only moderately distort all of these properties IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 4

5 Map Projections Three common types of projections are: Cylindrical Conical Azimuthal (Planar) IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 5

6 Map projections: Cylindrical A cylindrical projection can be imagined in its simplest form as a cylinder that has been wrapped around a globe at the equator. If the graticule of latitude and longitude are projected onto the cylinder and the cylinder unwrapped, then a grid-like pattern of straight lines of latitude and longitude would result. The meridians of longitude would be equally spaced and the parallels of latitude would remain parallel but may not appear equally spaced anymore Cylindricals are true at the equator and distortion increases toward the poles IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 6

7 Map projections: Cylindrical Regular and Secant IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 7

8 Map projections: Cylindrical Oblique Tangent or secant to another point on the globe is called oblique IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 8

9 Map projections: Cylindrical Transverse Tangent or secant to a meridian is the transverse aspect IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 9

10 Map projections: Conical In the Conical Projection the graticule is projected onto a cone tangent, or secant, to the globe along any small circle (usually a mid-latitude parallel) In the normal aspect (which is oblique for conic projections), parallels are projected as concentric arcs of circles, and meridians are projected as straight lines radiating at uniform angular intervals from the apex of the flattened cone. Conic projections are not widely used in mapping because of their relatively small zone of reasonable accuracy IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 10

11 Map projections: Conical The secant case, which produces two standard parallels, is more frequently used with conics. Even then, the scale of the map rapidly becomes distorted as distance from the correctly represented standard parallel increases. Because of this problem, conic projections are best suited for maps of mid-latitude regions, especially those elongated in an east- west direction. The United States meets these qualifications and therefore is frequently mapped on conic projections IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 11

12 Map projections: Conical Conics are true along some parallel somewhere between the equator and a pole and distortion increases away from this standard IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 12

13 Map projections: Planar or Azimuthal Imagine a plane being placed against (tangent to) a globe. If a light source inside the globe projects the graticule onto the plane the result would be a planar, or azimuthal, map projection. If the imaginary light is inside the globe it is called Gnomonic If the light is antipodal (diametrically opposite) it is called Sterographic If light source is at infinity, it is called Orthographic Azimuthals are true only at their center point, but generally distortion is worst at the edge of the map IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 13

14 Map projections: Azimuthal or Planar IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 14

15 Map Projections: Distortions Projections can be based on axes parallel to the earth's rotation axis (equatorial), at 90 degrees to it (transverse), or at any other angle (oblique) A projection that preserves the shape of features across the map is called conformal A projection that preserves the area of a feature across the map is called equal area or equivalent No flat map can be both equivalent and conformal. Most fall between the two as compromises To compare or edge-match maps in a GIS, both maps MUST be in the same projection IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 15

16 Map Projections Distortions Conformality When the scale of a map at any point on the map is the same in any direction, the projection is conformal. Meridians (lines of longitude) and parallels (lines of latitude) intersect at right angles. Shape is preserved locally on conformal maps Area When a map portrays areas over the entire map so that all mapped areas have the same proportional relationship to the areas on the Earth that they represent, the map is an equal-area or equivalent map Distance A map is equidistant when it portrays distances from the center of the projection to any other place on the map IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 16

17 Map Projections Distortions Direction A map preserves direction when azimuths (angles from a point on a line to another point) are portrayed correctly in all directions Scale Scale is the relationship between a distance portrayed on a map and the same distance on the Earth Different map projections result in different spatial relationships between regions IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 17

18 Map projections: Cylindrical (Normal) Characteristics Lines of latitude and longitude are parallel intersecting at 90 degrees Meridians are equidistant Forms a rectangular map Scale along the equator or standard parallels is true Simple construction Can have the properites of equidistance, conformality or equal area IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 18

19 Map Projections: Cylindrical Equal Area: Behrmann Uses 30 degree North as parallel of no distortion IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 19

20 Map Projections: Cylindrical Conformal: Mercator Straight lines are lines of constant azimuth IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 20

21 Map Projections: Cylindrical Stereographic: Gall s Secant intersection at 45 N and 45 S Moderately distorts area, direction, distance, shape IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 21

22 Map projections: Conical Characteristics In the normal aspect (which is oblique for conic projections), parallels are projected as concentric arcs of circles, and meridians are projected as straight lines radiating at uniform angular intervals from the apex of the flattened cone. Conic projections are not widely used in mapping because of their relatively small zone of reasonable accuracy. IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 22

23 Map projections: Conical Characteristics The secant case, which produces two standard parallels, is more frequently used with conics. Even then, the scale of the map rapidly becomes distorted as distance from the correctly represented standard parallel increases. Because of this problem, conic projections are best suited for maps of mid-latitude regions, especially those elongated in an east- west direction. The United States meets these qualifications and therefore is frequently mapped on conic projections. IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 23

24 Map projections: Conical Equal Area Distorts scale and distance except along standard parallels Areas are proportional and directions are true in limited areas Used in the United States and other large countries with a larger east-west than north-south extent IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 24

25 Map projections: Conical Equal Area IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 25

26 Map projections: Conical Equidistant Equally Spaced Parallels. Equidistant Meridians converging at a common point Direction, area, and shape are distorted away from standard parallels. Used for portrayals of areas near to, but on one side of, the equator IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 26

27 Map projections: Conical Equidistant IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 27

28 Map projections: Conical Conformal Area, and shape are distorted away from standard parallels. Directions are true in limited areas. Used for maps of North America IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 28

29 Map projections: Conical Conformal. USA IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 29

30 Map projections: Azimuthal (Planar) Imagine a plane being placed against (tangent to) a globe. If a light source inside the globe projects the graticule onto the plane the result would be a planar, or azimuthal, map projection If the imaginary light is inside the globe it is called Gnomonic If the light is antipodal (diametrically opposite) it is called Sterographic If light source is at infinity, it is called Orthographic Azimuthals are true only at their center point, but generally distortion is worst at the edge of the map IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 30

31 Map projections: Azimuthal Lambert Equal Area Used to map large ocean areas. The central meridian is a straight line, others are curved. A straight line drawn through the center point is on a great circle. IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 31

32 Map projections: Azimuthal Equidistant Used to show air-route distances. Distances measured from the center are true. Distortion of other properties increases away from the center point. IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 32

33 Map projections: Azimuthal Conformal (Stereographic) Used for navigation in polar regions. Directions are true from the center point and scale increases away from the center point as does distortion in area and shape. IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 33

34 Map projections: Azimuthal Orthographic Used for perspective views of hemispheres. Area and shape are distorted. Distances are true along the equator and other parallels. IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 34

35 Map projections: Azimuthal Gnomonic Neither conformal nor equal area. Is used by navigators and aviators because greatcircle paths (shortest distances) are shown as straight lines. Less than one hemisphere can be viewed from a given origin. Scale is true only where the central parallel and meridian cross. IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 35

36 Map projections: Azimuthal Gnomonic IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 36

37 Coordinates basics IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 37

38 Polar to cartesian coordinates IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 38

39 Coordinate Systems A coordinate system is a standardized method for assigning codes to locations so that locations can be found using the codes alone Standardized coordinate systems use absolute locations A map captured in the units of the paper sheet on which it is printed is based on relative locations or map millimeters IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 39

40 Coordinate Systems Some standard coordinate systems used are: geographic coordinates Lat-long, geodetic lat long, Earth Centered Earth Fixed XYZ Universal Transverse Mercator (UTM) system military grid state plane coordinate system To compare or edge-match maps in a GIS, both maps MUST be in the same coordinate system. IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 40

41 Latitude, Longitude, Height The most commonly used coordinate system today is the latitude, longitude, and height system The Prime Meridian and the Equator are the reference planes used to define latitude and longitude Geographic coordinates are the earth's latitude and longitude system, ranging from 90 degrees south to 90 degrees north in latitude and 180 degrees west to 180 degrees east in longitude IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 41

42 Latitude, Longitude, Height A line with a constant latitude running east to west is called a parallel A line with constant longitude running from the north pole to the south pole is called a meridian The zero-longitude meridian is called the prime meridian and passes through Greenwich, England A grid of parallels and meridians shown as lines on a map is called a graticule IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 42

43 Latitude, Longitude, Height IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 43

44 Distances on the great circle IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 44

45 Geodetic Latitude, Longitude, Height The geodetic latitude of a point is the angle from the equatorial plane to the vertical direction of a line normal to the reference ellipsoid. The geodetic longitude of a point is the angle between a reference plane and a plane passing through the point, both planes being perpendicular to the equatorial plane. IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 45

46 Geodetic Latitude, Longitude, Height The geodetic height at a point is the distance from the reference ellipsoid to the point in a direction normal to the ellipsoid. IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 46

47 Earth Centered Earth Fixed XYZ Cartesian coordinates (XYZ) define three dimensional positions with respect to the center of mass of the reference ellipsoid. The Z-axis points toward the North Pole The X-axis is defined by the intersection of the plane defined by the prime meridian and the equatorial plane The Y-axis completes a right handed orthogonal system by a plane 90 degrees east of the X-axis and its intersection with the equator IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 47

48 Earth Centered Earth Fixed XYZ, Example IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 48

49 Eastings and Northings Traditionally, rectangular coordinates are used when reading maps, with the X value first and the Y value second When map is oriented with north on top, X value is called easting because it measures distances east of the origin and the Y value is called northing because it measures distances north of the origin Origin is placed so that all references are positive False origins may have to be placed at several places to ensure more accurate measurements. Easting and Northings from the false origin are called false eastings and false northings IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 49

50 Universal Transverse Mercator (UTM) Universal Transverse Mercator (UTM) is the most prevalent system used for mapping and other work UTM zone numbers designate 6 degree longitudinal strips (60 vertical zones) extending from 80 degrees South latitude to 84 degrees North latitude. Zone numbers start from the 180th meridian in an eastward direction IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 50

51 Universal Transverse Mercator Grid IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 51

52 Universal Transverse Mercator (UTM) For eastings, a false origin (easting value 500,000 meters) is established at the center of each zone UTM zone characters designate 8 degree zones extending north and south from the equator For northings, it has two primary ordinate points, one at the equator and the other at 80 degrees south For small scale maps, the last digit may be dropped to decrease resolution to 10 meters. Decimal may be used for more accuracy on large scale maps IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 52

53 UTM zones in the lower 48 IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 53

54 UTM Zone 14 Each zone has a central meridian. Zone 14, for example, has a central meridian of 99 degrees west longitude. The zone extends from 96 to 102 degrees west longitude. Eastings are measured from the central meridian (with a 500km false easting to insure positive coordinates). Northings are measured from the equator (with a 10,000km false northing for positions south of the equator). IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 54

55 Reading a UTM measurement IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 55

56 Military Grid Reference System (MGRS) MGRS is an extension of the UTM system. UTM zone number and zone character are used to identify an area 6 degrees in east-west extent and 8 degrees in north-south extent. UTM zone number and designator are followed by 100 km square easting and northing identifiers. The system uses a set of alphabetic characters for the 100 km grid squares. Starting at the 180 degree meridian the characters A to Z (omitting I and O) are used for 18 degrees before starting over. From the equator north the characters A to V (omitting I and O) are used for 100 km squares, repeating every 2,000 km. The reverse sequence IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 56 (from V to A) is used for southern hemisphere

57 Military Grid Reference System (MGRS) IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 57

58 Military Grid Reference System (MGRS) IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 58

59 Military Grid Reference System (MGRS) UTM zone number, UTM zone, and the two 100 km square characters are followed by an even number of numeric characters representing easting and northing values. If 10 numeric characters are used, a precision of 1 meter is assumed. 2 characters imply a precision of 10 km. From 2 to 10 numeric characters the precision changes from 10 km, 1 km, 100 m 10 m, to 1 m. IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 59

60 Military Grid Reference System (MGRS) Example IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 60

61 World Geographic Reference System (GEOREF) The World Geographic Reference System is used for aircraft navigation. GEOREF is based on latitude and longitude. The globe is divided into twelve bands of latitude and twenty-four zones of longitude, each 15 degrees in extent. IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 61

62 World Geographic Reference System (GEOREF) IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 62

63 World Geographic Reference System (GEOREF) These 15 degree areas are further divided into one degree units identified by 15 characters. IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 63

64 State Plane Coordinate System (SPCS) In the United States, the State Plane System was developed in the 1930s and was based on the North American Datum 1927 (NAD27). NAD 27 coordinates are based on the foot While the NAD-27 State Plane System has been superseded by the NAD-83 System, maps in NAD- 27 coordinates (in feet) are still in use. The State Plane System 1983 is based on the North American Datum 1983 (NAD83) NAD 83 coordinates are based on the meter. State plane systems were developed in order to provide local reference systems that were tied to a national datum IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 64

65 State Plane Coordinate System (SPCS) Some smaller states use a single state plane zone. Larger states are divided into several zones. State plane zone boundaries often follow county boundaries. Lambert Conformal Conic projections are used for rectangular zones with a larger east-west than north- south extent. Transverse Mercator projections are used to define zones with a larger north-south extent. IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 65

66 State Plane Coordinate System (SPCS) IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 66

67 State Plane Coordinate System (SPCS) IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 67

68 State Plane Coordinate System (SPCS) IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 68

69 WV SPCS Has two zones: North and South Uses the Lambert Conformal Conic projection IS 645: Geographic Information Systems, Summer 2000, J. Wolfe 69

Map Projection, Datum and Plane Coordinate Systems

Map Projection, Datum and Plane Coordinate Systems Geodetic Control Network Horizontal Control Network Datum A datum is a set of parameters defining a coordinate system, and a set of control points whose

Map Projections & Coordinates. M. Helper 09-01-15 GEO327G/386G, UT Austin 1

Map Projections & Coordinates 09-01-15 GEO327G/386G, UT Austin 1 Laying the earth flat Why? Need convenient means of measuring and comparing distances, directions, areas, shapes. Traditional surveying

Ellipsoid and Datum, Projection, Coordinate system, and Map Scale

Ellipsoid and Datum, Projection, Coordinate system, and Map Scale Lectures 4 Sept 14, 2006 Why we need it? Earth Shape Models Flat earth models are still used for plane surveying, over distances short

GIS for Educators. Coordinate Reference System. Understanding of Coordinate Reference Systems.

GIS for Educators Topic 7: Coordinate Reference Systems Objectives: Understanding of Coordinate Reference Systems. Keywords: Coordinate Reference System (CRS), Map Projection, On the Fly Projection, Latitude,

Geographic Coordinates. Measurement: Just use GPS. Geographic Coordinates 1/17/2013

Geographic Coordinates Analytical and Computer Cartography Lecture 3: Review: Coordinate Systems Geographic Coordinates Geographic coordinates are the earth's latitude and longitude system, ranging from

GEOGRAPHIC INFORMATION SYSTEMS Lecture 11: Projected Coordinate Systems

UTM Coordinate System GEOGRAPHIC INFORMATION SYSTEMS Lecture 11: Projected Coordinate Systems Why do we need the UTM coordinate system? - in a rectangular (Cartesian) coordinate system, with linear x and

Appendix B: Geographic Coordinates Systems & Map Projections. B.1 Approximating the Earth's Shape

The following is an appendix from: Strindberg, S. In prep. Optimized Automated Survey Design in Wildlife Population Assessment. Unpublished PhD Thesis. University of St. Andrews. Appendix B: Geographic

It is a little challenging suppose you are to describe a point on the surface of a basketball.

Coordinate Systems 1. Geographic coordinate system To locate a point on a piece of white paper, we usually use the distances of the point to the left/right edge (x) and top/bottom edge (y). Therefore the

Welcome to Lesson 3. It is important for a GIS analyst to have a thorough understanding of map projections and coordinate systems.

Welcome to Lesson 3. It is important for a GIS analyst to have a thorough understanding of map projections and coordinate systems. A GIS without coordinates would simply be a database like Microsoft Excel

Earth Coordinates & Grid Coordinate Systems

Earth Coordinates & Grid Coordinate Systems How do we model the earth? Datums Datums mathematically describe the surface of the Earth. Accounts for mean sea level, topography, and gravity models. Projections

Lecture 2. Map Projections and GIS Coordinate Systems. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University

Lecture 2 Map Projections and GIS Coordinate Systems Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Map Projections Map projections are mathematical formulas

GIS s s Roots in Cartography

Following up on the last lecture GIS s s Roots in Cartography Getting Started With GIS Chapter 2 Information ordering: Lists and indexes Organizing data and information Information can be organized as

Projections. Shape (angles) Distance Direction Area. Only a sphere can retain all four properties

Projections Projections Map projections are attempts to portray the surface of the earth (or a portion of the earth) on a flat surface. Four spatial relationships (or properties) between locations can

Lecture 4. Map Projections & Coordinate System in GIS

Lecture 4 Map Projections & Coordinate System in GIS GIS in Water Resources Spring 2015 Geodesy, Map Projections and Coordinate Systems Geodesy - the shape of the earth and definition of earth datums Map

SPATIAL REFERENCE SYSTEMS

SPATIAL REFERENCE SYSTEMS We will begin today with the first of two classes on aspects of cartography. Cartography is both an art and a science, but we will focus on the scientific aspects. Geographical

GEOGRAPHIC INFORMATION SYSTEMS Lecture 09: Map Projections

GEOGRAPHIC INFORMATION SYSTEMS Lecture 09: Map Projections Earth Ellipsoid and Horizontal Datums (cont d) Components of a Geographic Coordinate System Recognize that there are three components to a geographic

Massachusetts Institute of Technology Department of Urban Studies and Planning

Massachusetts Institute of Technology Department of Urban Studies and Planning 11.520: A Workshop on Geographic Information Systems 11.188: Urban Planning and Social Science Laboratory Lecture 3: More

Registered map layers

Registered map layers Coordinate map systems Coordinate map systems 1. The Earth's Graticule Latitude and Longitude The graticule is the imaginary grid of lines running east-west lines of latitude (parallels)

WGS AGD GDA: Selecting the correct datum, coordinate system and projection for north Australian applications

internal report WGS AGD GDA: Selecting the correct datum, coordinate system and projection for north Australian applications JBC Lowry Hydrological and Ecological Processes Program Environmental Research

State Plane Coordinate Systems & GIS

State Plane Coordinate Systems & GIS An overview of SPCS with emphasis on Grid vs. Ground coordinates. New Jersey Geospatial Forum Meeting Friday, March 18 th 2005 Jesse Kozlowski NJ PLS History of SPCS

Map Coordinates, GIS, and GPS for Enhanced 9-1-1

Map Coordinates, GIS, and GPS for Enhanced 9-1-1 Keith W. Cunningham, Ph.D. 14 East Eighth Street Lawrence, KS 66044 800/238-1911 Maps and coordinates are used to describe features and their locations

Geographic Datums & Coordinates

Geographic Datums & Coordinates What is the shape of the earth? Why is it relevant for GIS? 9-04-2012 GEO327G/386G, UT Austin 2-1 From Conceptual to Pragmatic Dividing a sphere into a stack of pancakes

GEOGRAPHIC INFORMNATION SYSTEMS Lecture 10: State Plane Coordinate System

State Plane Coordinate System GEOGRAPHIC INFORMNATION SYSTEMS Lecture 10: State Plane Coordinate System Why do we need the State Plane Coordinate System? - the SPCS was designed as a state by state rectangular

Earth Coordinates & Grid Coordinate Systems

Earth Coordinates & Grid Coordinate Systems You will always find parallels and meridians on largescale maps This is done to make the map a very close approximation to the size and shape of the piece of

NGA GRID GUIDE HOW TO USE ArcGIS 8.x ANS 9.x TO GENERATE MGRS AND OTHER MAP GRIDS

GEOSPATIAL SCIENCES DIVISION COORDINATE SYSTEMS ANALYSIS TEAM (CSAT) SEPTEMBER 2005 Minor Revisions March 2006 POC Kurt Schulz NGA GRID GUIDE HOW TO USE ArcGIS 8.x ANS 9.x TO GENERATE MGRS AND OTHER MAP

EPSG. Coordinate Reference System Definition - Recommended Practice. Guidance Note Number 5

European Petroleum Survey Group EPSG Guidance Note Number 5 Coordinate Reference System Definition - Recommended Practice Revision history: Version Date Amendments 1.0 April 1997 First release. 1.1 June

Projections & GIS Data Collection: An Overview

Projections & GIS Data Collection: An Overview Projections Primary data capture Secondary data capture Data transfer Capturing attribute data Managing a data capture project Geodesy Basics for Geospatial

An Introduction to Coordinate Systems in South Africa

An Introduction to Coordinate Systems in South Africa Centuries ago people believed that the earth was flat and notwithstanding that if this had been true it would have produced serious problems for mariners

The World Geographic Reference System is used for aircraft navigation. GEOREF is based on latitude and longitude. The globe is divided into twelve

The World Geographic Reference System is used for aircraft navigation. GEOREF is based on latitude and longitude. The globe is divided into twelve bands of latitude and twenty-four zones of longitude,

The Map Grid of Australia 1994 A Simplified Computational Manual

The Map Grid of Australia 1994 A Simplified Computational Manual The Map Grid of Australia 1994 A Simplified Computational Manual 'What's the good of Mercator's North Poles and Equators, Tropics, Zones

SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS

SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS KEY CONCEPTS: In this session we will look at: Geographic information systems and Map projections. Content that needs to be covered for examination

THE UNIVERSAL GRID SYSTEM

NGA Office of GEOINT Sciences Coordinate Systems Analysis (CSAT) Phone: 314-676-9124 Unclassified Email: coordsys@nga.mil March 2007 THE UNIVERSAL GRID SYSTEM Universal Transverse Mercator (UTM) Military

What are map projections?

Page 1 of 155 What are map projections? ArcGIS 10 Within ArcGIS, every dataset has a coordinate system, which is used to integrate it with other geographic data layers within a common coordinate framework

Surveying & Positioning Guidance note 5

Surveying & Positioning Guidance note 5 Coordinate reference system definition recommended practice Revision history Version Date Amendments 2.1 January 2009 In example c corrected value for inverse flattening

World Geography Unit 1 - Test Introduction to World of Geography

Name World Geography Unit 1 - Test Introduction to World of Geography Term Identification Directions: Pick a word from the box that best completes the sentences below. distortion longitude Equator geography

Latitude and Longitudes in Geodesy James R. Clynch February 2006

Latitude and Longitudes in Geodesy James R. Clynch February 2006 I. Latitude and Longitude on Spherical Earth Latitude and longitude are the grid lines you see on globes. For a spherical earth these are

An Introduction to GIS using ArcGIS Spring Lab Workshop 5 March S.P.Harish PhD Candidate Department of Politics New York University

An Introduction to GIS using ArcGIS Spring Lab Workshop 5 March 2013 S.P.Harish PhD Candidate Department of Politics New York University Agenda What is GIS? Basic GIS Concepts Introduction to ArcGIS Coordinates

NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) STANDARDIZATION DOCUMENT

NGA.STND.0037_2.0.0_GRIDS NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) STANDARDIZATION DOCUMENT UNIVERSAL GRIDS AND GRID REFERENCE SYSTEMS 2014-02-28 Version 2.0.0 OFFICE OF GEOMATICS CONTENTS LIST OF

量 說 Explanatory Notes on Geodetic Datums in Hong Kong

量 說 Explanatory Notes on Geodetic Datums in Hong Kong Survey & Mapping Office Lands Department 1995 All Right Reserved by Hong Kong Government 留 CONTENTS INTRODUCTION............... A1 HISTORICAL BACKGROUND............

Understanding Map Projections

Understanding Map Projections Melita Kennedy ArcInfo 8 Copyright 1994, 1997, 1999, 2000 Environmental Systems Research Institute, Inc. All Rights Reserved. Printed in the United States of America. The

Coordinate Systems. Orbits and Rotation

Coordinate Systems Orbits and Rotation Earth orbit. The earth s orbit around the sun is nearly circular but not quite. It s actually an ellipse whose average distance from the sun is one AU (150 million

Engineering Geometry

Engineering Geometry Objectives Describe the importance of engineering geometry in design process. Describe coordinate geometry and coordinate systems and apply them to CAD. Review the right-hand rule.

Understanding Map Projections

Understanding Map Projections GIS by ESRI Copyright 1994 2001, 2003 2004 ESRI All rights reserved. Printed in the United States of America. The information contained in this document is the exclusive property

Implementation Practice Web Mercator Map Projection

NGA.SIG.0011_1.0.0_WEBMERC NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY (NGA) STANDARDIZATION DOCUMENT Implementation Practice Web Mercator Map Projection 2014-02-18 Version 1.0.0 OFFICE OF GEOMATICS NGA.SIG.0011_1.0.0_WEBMERC

WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS

WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS N & E State Plane Coordinates for Control Points AZIMUTHS - True, Geodetic, or Grid - Conversion from Astronomic to Geodetic (LaPlace Correction)

UTM Zones for the US UTM UTM. Uniform strips Scalable coordinates

UTM UTM Uniform strips Scalable coordinates Globally consistent, most popular projection/coordinate system for regional to global scale geospatial data (i.e. satellite images global scale datasets USGS/EDC)

Map Projections And State Plane Coordinate Systems. Thomas Maxell Beer, PLS

Map Projections And State Plane Coordinate Systems By Thomas Maxell Beer, PLS Introduction The origin for the modern State Plane Coordinate System in the United States began with two highway engineers

Surveying on NAD83 State Plane Coordinate System

Surveying on NAD83 State Plane Coordinate System By Dr. Joshua Greenfeld Surveying Program Coordinator NJ Institute of Technology Objective Modern surveying operations which involves working with GIS/LIS

An ArcGIS Tutorial Concerning Transformations of Geographic Coordinate Systems, with a Concentration on the Systems Used in Lao PDR.

An ArcGIS Tutorial Concerning Transformations of Geographic Coordinate Systems, with a Concentration on the Systems Used in Lao PDR. Introduction...3 PART 1, A Theoretical Background about Coordinate Systems...3

INTRODUCTION: BASIC GEOGRAPHIC CONCEPTS. Eric Jessup Associate Professor School of Economic Sciences

INTRODUCTION: BASIC GEOGRAPHIC CONCEPTS Eric Jessup Associate Professor School of Economic Sciences September 13, 2010 Outline What is geographical / spatial analysis and why do we care? Different types

Geography I Pre Test #1

Geography I Pre Test #1 1. The sun is a star in the galaxy. a) Orion b) Milky Way c) Proxima Centauri d) Alpha Centauri e) Betelgeuse 2. The response to earth's rotation is a) an equatorial bulge b) polar

Section 3 Mapping Earth s Surface

Section 3 Mapping Earth s Surface Key Concept Maps are tools that are used to display data about a given area of a physical body. What You Will Learn Maps can be used to find locations on Earth and to

Keywords: coordinate systems, latitude, longitude, georeferencing, global positioning system, GPS, geodetic datum, ellipsoid, geocoding, postal code

Core Curriculum-Geographic Information Science (1997-2000) UCSB Peer Reviewed Title: Units 012-017 - Position on the Earth Book Title: Core Curriculum in Geographic Information Science Author: 012-017,

The Earth Really is Flat! The Globe and Coordinate Systems. Long History of Mapping. The Earth is Flat. Long History of Mapping

The Earth Really is Flat! The Globe and Coordinate Systems Intro to Mapping & GIS The Earth is Flat Day to day, we live life in a flat world sun rises in east, sets in west sky is above, ground is below

Sun Earth Relationships

1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere tilts away from sun) 23.5 2 Solar radiation

DRAFTING MANUAL. Dimensioning and Tolerancing Symbols GENIUM PUBLISHING. Section 6.1 Page 1 February 1997* Update by: Bruce 56A. Wilson.

Update 56 Update by: Bruce 56A. Wilson Symbols Section 6.1 Page 1 SYMBOLS 1.0 GENERAL 1 2.1 Diameter - A diameter symbol is placed in front of any dimension value that is a diameter. See Figure 2. This

2 GIS concepts. 2.1 General GIS principles

2 GIS concepts To use GIS effectively, it is important to understand the basic GIS terminology and functionality. While each GIS software has slightly different naming conventions, there are certain principles

Project 1: Plotting Coordinates and Projections

1 of 6 8/3/2007 1:54 PM Project 1: Plotting Coordinates and Projections Dan Uhrhan dfu101@psu.edu 2 of 6 8/3/2007 1:54 PM 3 of 6 8/3/2007 1:54 PM 4 of 6 8/3/2007 1:54 PM 5 of 6 8/3/2007 1:54 PM [Replace

The Globe Latitudes and Longitudes

INDIAN SCHOOL MUSCAT MIDDLE SECTION DEPARTMENT OF SOCIAL SCIENCE The Globe Latitudes and Longitudes NAME: CLASS VI SEC: ROLL NO: DATE:.04.2015 I NAME THE FOLLOWING: 1. A small spherical model of the Earth:

GIS IN ECOLOGY: SPATIAL REFERENCING

GIS IN ECOLOGY: SPATIAL REFERENCING Contents Introduction... 2 Coordinate Systems... 2 Map Projections... 3 Georeferencing... 5 Data Sources... 7 Tasks... 7 Undefined versus Unprojected Data... 7 Setting

P-153. NICA D.C. Al. I. Cuza University, IASI, ROMANIA

P-153 CONVERSION OF COORDINATES BETWEEN THE GAUSS-KRÜGER AND UTM CARTOGRAPHIC PROJECTION SYSTEMS ON TOPOGRAPHIC MAPS IN ROMANIA AND REPUBLIC OF MOLDAVIA FOR GIS USE NICA D.C. Al. I. Cuza University, IASI,

Solar Angles and Latitude

Solar Angles and Latitude Objectives The student will understand that the sun is not directly overhead at noon in most latitudes. The student will research and discover the latitude ir classroom and calculate

4 The Rhumb Line and the Great Circle in Navigation

4 The Rhumb Line and the Great Circle in Navigation 4.1 Details on Great Circles In fig. GN 4.1 two Great Circle/Rhumb Line cases are shown, one in each hemisphere. In each case the shorter distance between

Module 1 : A Crash Course in Vectors Lecture 2 : Coordinate Systems

Module 1 : A Crash Course in Vectors Lecture 2 : Coordinate Systems Objectives In this lecture you will learn the following Define different coordinate systems like spherical polar and cylindrical coordinates

Oregon Geographic Information Council (OGIC) GIS Program Leaders Cartographic Elements Best Practices Version 1.0.7

Oregon Geographic Information Council (OGIC) GIS Program Leaders Cartographic Elements Best Practices Version 1.0.7 Introduction The purpose of this document is to serve as a set of Oregon best practices

Measuring the Earth Using a GPS M. Scott Wilkerson & M. Beth Wilkerson, DePauw University, May 10, 2007

Measuring the Earth Using a GPS M. Scott Wilkerson & M. Beth Wilkerson, DePauw University, May 10, 2007 Modified from: Kerski, J.J., 2007, Measuring the Earth s Circumference with GPS, Copyright ESRI,

Geodesy and Datums. Ellipsoid and Geoid Geographic Coordinate system

Geodesy and Datums Ellipsoid and Geoid Geographic Coordinate system Defining the Ellipsoid The Earth is not perfectly round Fatter around the waist (equator) Flattened at the Poles To define this unique

PEOPLE & SITES PEOPLE BIOGRAPHIES

16 PEOPLE & SITES The People & Sites sections contain fields to help you provide contextual information for your collections. Artifacts, archival materials, photographs, and publications reveal something

MAP PROJECTIONS AND VISUALIZATION OF NAVIGATIONAL PATHS IN ELECTRONIC CHART SYSTEMS

MAP PROJECTIONS AND VISUALIZATION OF NAVIGATIONAL PATHS IN ELECTRONIC CHART SYSTEMS Athanasios PALLIKARIS [1] and Lysandros TSOULOS [2] [1] Associate Professor. Hellenic Naval Academy, Sea Sciences and

UTM: Universal Transverse Mercator Coordinate System

Practical Cartographer s Reference #01 UTM: Universal Transverse Mercator Coordinate System 180 174w 168w 162w 156w 150w 144w 138w 132w 126w 120w 114w 108w 102w 96w 90w 84w 78w 72w 66w 60w 54w 48w 42w

A COMPARISON OF EQUAL-AREA MAP PROJECTIONS FOR REGIONAL AND GLOBAL RASTER DATA

A COMPARISON OF EQUAL-AREA MAP PROJECTIONS FOR REGIONAL AND GLOBAL RASTER DATA E. Lynn Usery, Research Geographer U.S. Geological Survey 1400 Independence Road Rolla, Missouri, USA 65401 (usery@usgs.gov)

Coordinate Conversions and Transformations including Formulas

Geomatics Guidance Note Number 7, part 2 Coordinate Conversions and Transformations including Formulas Revised - April 2015 Page 1 of 145 Index Preface 4 Revision history 5 1 MAP PROJECTIONS AND THEIR

CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS

CHAPTER 9 SURVEYING TERMS AND ABBREVIATIONS Surveying Terms 9-2 Standard Abbreviations 9-6 9-1 A) SURVEYING TERMS Accuracy - The degree of conformity with a standard, or the degree of perfection attained

EECS467: Autonomous Robotics Laboratory Prof. Edwin Olson. Map Projections and GPS

EECS467: Autonomous Robotics Laboratory Prof. Edwin Olson Map Projections and GPS Cartography Several purposes of maps Geographic Information Systems (GIS) - Where is stuff? Measure distances, etc. Navigation

Map Projection Using ArcGIS

Map Projection Using ArcGIS Francisco Olivera, Ph.D., P.E. Srikanth Koka Lauren Walker Aishwarya Vijaykumar Department of Civil Engineering December 5, 2011 Contents Brief Overview of Map Projection Using

INTERNATIONAL INDIAN SCHOOL, RIYADH SA I 2016-17

INTERNATIONAL INDIAN SCHOOL, RIYADH SA I 2016-17 STD V WORKSHEET Page 1 of 7 SOCIAL STUDIES LESSON - 1. KNOW YOUR PLANET Fill in the blanks: 1. A book containing maps is called an. 2. A Flemish map maker,

ME 111: Engineering Drawing

ME 111: Engineering Drawing Lecture # 14 (10/10/2011) Development of Surfaces http://www.iitg.ernet.in/arindam.dey/me111.htm http://www.iitg.ernet.in/rkbc/me111.htm http://shilloi.iitg.ernet.in/~psr/ Indian

ELEMENTS OF SURVEYING FOR CADASTRAL MAPPING

ELEMENTS OF SURVEYING FOR CADASTRAL MAPPING Chapter 4 2015 Cadastral Mapping Manual 4-0 Elements of Surveying and Mapping Utah's system of land surveying is the rectangular survey system as set forth on

Basic Coordinates & Seasons Student Guide

Name: Basic Coordinates & Seasons Student Guide There are three main sections to this module: terrestrial coordinates, celestial equatorial coordinates, and understanding how the ecliptic is related to

Used by New Zealand. Emergency Services. Map Reading Guide 1:50 000. How to use a Topographic map

Used by New Zealand Emergency Services Map Reading Guide How to use a Topographic map 1:50 000 This guide provides information on: datums projections the New Zealand topographic map series Topo50 (and

Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s

Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,

GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION

GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION GIS Syllabus - Version 1.2 January 2007 Copyright AICA-CEPIS 2009 1 Version 1 January 2007 GIS Certification Programme 1. Target The GIS certification is aimed

Map Projection Using ArcGIS

Map Projection Using ArcGIS Prepared by Francisco Olivera, Ph.D., P.E., Srikanth Koka and Lauren Walker Department of Civil Engineering September 25, 2006 Contents: Brief Overview of Map Projection Using

The Chief Directorate: National

Surveying The South African Coordinate Reference System (Part 1) by Aslam Parker, Chief Directorate: National Geo-spatial Information This article will define the various elements of the South African

WILD 3710 Lab 3: GIS Data Exploration Camp W.G. Williams

WILD 3710 Lab 3: GIS Data Exploration Camp W.G. Williams -Laboratory- TAs and Lab Instructors: Chris McGinty chris@gis.usu.edu Office: JQL 146 Office Hours: W 2:30 3:30 or by appt. Alex Hernandez alex@gis.usu.edu

PLOTTING SURVEYING DATA IN GOOGLE EARTH

PLOTTING SURVEYING DATA IN GOOGLE EARTH D M STILLMAN Abstract Detail surveys measured with a total station use local coordinate systems. To make the data obtained from such surveys compatible with Google

Geomatics Guidance Note 3

Geomatics Guidance Note 3 Contract area description Revision history Version Date Amendments 5.1 December 2014 Revised to improve clarity. Heading changed to Geomatics. 4 April 2006 References to EPSG

Structural Geology. Practical 1. Introduction to Stereographic Projection

Structural Geology Practical 1 Introduction to Stereographic Projection Lecture Practical Course Homepage Contact Staff 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 71 8 9 10 STEREONETS 1 INTRODUCTION TO STEREOGRAPHIC

Algebra Geometry Glossary. 90 angle

lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

FUNDAMENTAL CONCEPTS IN GEOGRAPHY. Spring

FUNDAMENTAL CONCEPTS IN GEOGRAPHY Spring 2010 1 FUNDAMENTAL CONCEPTS IN GEOGRAPHY Geog 5 People, place & Environment What is Geography? Geo [earth] graphy [write, describe] The study of earth as our home

Celestial Observations

Celestial Observations Earth experiences two basic motions: Rotation West-to-East spinning of Earth on its axis (v rot = 1770 km/hr) (v rot Revolution orbit of Earth around the Sun (v orb = 108,000 km/hr)

U.K. OFFSHORE OPERATORS ASSOCIATION (SURVEYING AND POSITIONING COMMITTEE) UKOOA DATA EXCHANGE FORMAT P6/98 DEFINITION OF 3D SEISMIC BINNING GRIDS

U.K. OFFSHORE OPERATORS ASSOCIATION (SURVEYING AND POSITIONING COMMITTEE) UKOOA DATA EXCHANGE FORMAT P6/98 DEFINITION OF 3D SEISMIC BINNING GRIDS Revision 3.0 May 2000 SUMMARY The Guidelines For The Definition

1.7 Cylindrical and Spherical Coordinates

56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.7 Cylindrical and Spherical Coordinates 1.7.1 Review: Polar Coordinates The polar coordinate system is a two-dimensional coordinate system in which the

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston

Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...

Introduction to CATIA V5

Introduction to CATIA V5 Release 16 (A Hands-On Tutorial Approach) Kirstie Plantenberg University of Detroit Mercy SDC PUBLICATIONS Schroff Development Corporation www.schroff.com www.schroff-europe.com

The following words and their definitions should be addressed before completion of the reading:

Seasons Vocabulary: The following words and their definitions should be addressed before completion of the reading: sphere any round object that has a surface that is the same distance from its center