Globe and Map Comparison Lab

Size: px
Start display at page:

Download "Globe and Map Comparison Lab"

Transcription

1 Globe and Map Comparison Lab Your name: Period: Your lab partner(s) Purpose: The goal of this lab is to familiarize you with the grid system of latitude and longitude, determining distances on a globe, plotting simple routes, and to demonstrate some of the limitations/distortions inherent in a map projection. Procedure: Follow the directions below, and answer the questions in the spaces provided. You will also be drawing on the maps you have been given. Please treat the globes with respect, and do not damage them in any way. Latitude, longitude, and distances using the globe 1. Using the globe, locate the prime meridian (0 o longitude). From north to south, list in order the countries that the prime meridian passes through. Does the prime meridian pass through any countries or continents in the southern hemisphere besides Antarctica? 2. Locate the position where the equator and the prime meridian intersect (0 o latitude, 0 o longitude). Starting from this position, what is the first country you hit if you go directly eastbound along the equator? What is the first country that you hit if you travel directly westbound from 0 o latitude, 0 o longitude? 3. What island (or island group) is located at each of the four positions below? Write the name immediately to the right of each set of coordinates. 15 o N, 23 o W 64 o N, 18 o W 22.5 o N, 121 o E 45 o S, 168 o E 4. What are the latitudes and longitudes of the locations below? Write these in the spaces to the right of the names. Don t forget to include N or S for latitude, E or W for longitude. Moscow, Russia Rio de Janeiro, Brazil Miami, Florida Anchorage, Alaska

2 5. Using a piece of string, measure the distance from 0 o latitude, 0 o longitude to a position 15 o due north along the prime meridian (15 o N latitude, 0 o longitude). Remove the string from the globe, and stretch the string alongside a ruler to obtain the distance in millimeters. How many millimeters was it? Next, using the same technique, measure and record the distance in millimeters between 60 o N latitude, 0 o longitude and 75 o N latitude, 0 o longitude. Is the physical distance in millimeters of 15 o of latitude the same everywhere on the globe (i.e., were the distances in millimeters the same)? Length in millimeters of 15 o of latitude on globe = mm 6. Using a piece of string in a similar manner as you did in step 5 above, measure and record the distance in millimeters from 0 o latitude, 0 o longitude to a position 15 o due west (0 o latitude, 15 o W longitude). Now measure and record the distance in millimeters between positions 60 o N latitude, 0 o longitude and 60 o N latitude, 15 o W longitude. Compare the two measurements - is the physical distance in millimeters of 15 o of longitude the same everywhere on the globe (i.e., were the distances in millimeters the same)? Why do you think the definition of the nautical mile is specifically 1 minute of latitude, rather than 1 minute of longitude? Answer: 7. Assuming that the earth is a perfect sphere (it isn t, but this assumption is acceptable for this calculation), what is it s circumference in nautical miles? Show your work. Remember that 1 o of latitude = 60 nautical miles, and there are 360 o in a circle. 8. You can determine a conversion factor for converting millimeters on your globe to nautical miles by using the information you gathered in step 5 above. Specifically, divide the distance in nautical miles of 15 o of latitude (this is 900 nautical miles, see below) by the number of millimeters of 15 o of latitude on your globe (your answer for step 5 above). Calculate this conversion factor for your globe (please see formula below). 15 o latitude x 60 nautical miles = 900 nautical miles 1 o of latitude 900 nautical miles (= nautical miles in 15 o of latitude) = Nautical miles per mm of string Length of string in millimeters between two points (this is your conversion factor) on the globe separated by 15 o latitude (your answer for question 5 above)

3 9. Using the string, ruler, and the conversion factor from number 8 above, measure and record the distance in nautical miles of the shortest route between San Francisco and Tokyo. To do this, stretch the string between San Francisco and Tokyo over the curved surface of the globe so that the string between the cities is as short as possible. Mark/note the positions of the two cities on the string with your fingers, remove the string from the globe, stretch the string out straight on the desk, and measure the distance between the cities in millimeters using a ruler. Multiply this distance by the conversion factor determined above; you now have the shortest distance between San Francisco and Tokyo in nautical miles. This shortest route between two points on the earth s surface is called a great circle route. Shortest distance in mm between Shortest distance between San Francisco and Tokyo X Conversion Factor = San Francisco and Tokyo in determined from globe (great (number 8 above) nautical miles circle route) Map distortion 10. Look at the cylindrical projection map you have been given. Notice the relative sizes and shapes of Greenland, Alaska, and the continental United States. Now compare the relative sizes and shapes on this map with the relative sizes and shapes on the globe. Where is the distortion on the map greatest? What is the nature of this distortion (e.g., are things appearing bigger or smaller than they should as you go poleward on the map)? 11. Take a look at the homolosine projection map on the last page ( Figure 1-1 ) this is the same map you used in a previous lab. Notice the relative sizes and shapes of Greenland, Alaska, and the United States. Compare this to the globe and the cylindrical projection map which map (homolosine or cylindrical projection) does a better job of depicting the relative sizes/surface areas of major features (i.e., which matches the globe most closely)? 12. Using your cylindrical projection map, measure and record the distance in millimeters from 0 o latitude, 0 o longitude to a position 15 o due north along the prime meridian (15 o N latitude, 0 o longitude). Next, using the same technique on your map, measure and record the distance in millimeters between 60 o N latitude, 0 o longitude and 75 o N latitude, 0 o longitude. Is the physical distance in millimeters of 15 o of latitude the same everywhere on the cylindrical projection map (i.e., were the distances in millimeters the same)?

4 13. Look again at the cylindrical projection world map you have been given find San Francisco and Tokyo on it. Now, reposition the string on your globe as you did above in number 9 to show the shortest (great circle) route between San Francisco and Tokyo (stretch the string taught between the two cities). As best you can, draw onto your map the actual shortest route between San Francisco and Tokyo shown on your globe. One way to do this is to note some of the coordinates that the string on your globe lies on. Mark some of these same locations on your map, and draw a smooth curve through them from San Francisco to Tokyo. 14. Draw a straight line on your cylindrical projection map connecting San Francisco and Tokyo; you ll notice that this route runs basically east-west. On your globe, position the string to represent this route - it will connect San Francisco and Tokyo, and the string should run directly east-west parallel to the lines of latitude shown on your globe. Use your fingers on the string to note the positions of the two cities. Now remove the string from the globe, stretch it out straight on the desk, and measure the distance between San Francisco and Tokyo in millimeters. Convert this distance to nautical miles using the conversion factor you calculated in number 8, then determine and record the difference in the length of the shortest route on the globe (step 9 above) with the east-west route on the globe (which corresponds to the apparent shortest route on the map). Distance in mm between Distance in nautical miles San Francisco and Tokyo, X Conversion factor = between San Francisco and east-west route on globe (number 8 above) Tokyo, east-west route Distance between San Francisco Shortest distance between and Tokyo in nautical miles, _ San Francisco and Tokyo in = Difference east-west route on globe nautical miles (number 9 above) calculated above (apparent shortest route on map)

5 15. Using the cylindrical projection map, what are the latitudes and longitudes of the locations below? Please write them next to the names, and don t forget the N or S for latitude, E or W for longitude. Los Angeles, California New York, New York Seattle, Washington Putting it all together Please answer these two questions on your own, without consulting your partner 16. Is a cylindrical projection map a great choice for comparing the relative sizes/surface areas of major features of the earth? Why or why not? 17. If you draw a straight line on a cylindrical projection map between two locations (a departure point and a destination), have you plotted a route that will take you from one place on the earth s surface to another with certainty? Is there a limitation or caveat associated with this route? If so, what is it?

6

7

Basic Coordinates & Seasons Student Guide

Basic Coordinates & Seasons Student Guide Name: Basic Coordinates & Seasons Student Guide There are three main sections to this module: terrestrial coordinates, celestial equatorial coordinates, and understanding how the ecliptic is related to

More information

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF SECOND GRADE UNIVERSE WEEK 1. PRE: Discovering stars. LAB: Analyzing the geometric pattern of constellations. POST: Exploring

More information

World Map Lesson 4 - The Global Grid System - Grade 6+

World Map Lesson 4 - The Global Grid System - Grade 6+ World Map Lesson 4 - The Global Grid System - Grade 6+ Activity Goal To use the global grid system of latitude and longitude to find specific locations on a world map. Materials Needed: A pencil, a ruler,

More information

The Globe Latitudes and Longitudes

The Globe Latitudes and Longitudes INDIAN SCHOOL MUSCAT MIDDLE SECTION DEPARTMENT OF SOCIAL SCIENCE The Globe Latitudes and Longitudes NAME: CLASS VI SEC: ROLL NO: DATE:.04.2015 I NAME THE FOLLOWING: 1. A small spherical model of the Earth:

More information

4 The Rhumb Line and the Great Circle in Navigation

4 The Rhumb Line and the Great Circle in Navigation 4 The Rhumb Line and the Great Circle in Navigation 4.1 Details on Great Circles In fig. GN 4.1 two Great Circle/Rhumb Line cases are shown, one in each hemisphere. In each case the shorter distance between

More information

Lab Activity on the Causes of the Seasons

Lab Activity on the Causes of the Seasons Lab Activity on the Causes of the Seasons 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab you

More information

Geography I Pre Test #1

Geography I Pre Test #1 Geography I Pre Test #1 1. The sun is a star in the galaxy. a) Orion b) Milky Way c) Proxima Centauri d) Alpha Centauri e) Betelgeuse 2. The response to earth's rotation is a) an equatorial bulge b) polar

More information

Inside Earth Chapter 3

Inside Earth Chapter 3 Name Hour Due Date Inside Earth Chapter Page 1 Volcanoes and Plate Tectonics Page 2 Volcanic Activity Page - Mapping Earthquakes and Volcanoes Page 4 Mapping Earthquakes and Volcanoes table Page 5 - Mapping

More information

UTM: Universal Transverse Mercator Coordinate System

UTM: Universal Transverse Mercator Coordinate System Practical Cartographer s Reference #01 UTM: Universal Transverse Mercator Coordinate System 180 174w 168w 162w 156w 150w 144w 138w 132w 126w 120w 114w 108w 102w 96w 90w 84w 78w 72w 66w 60w 54w 48w 42w

More information

Plotting Earthquake Epicenters an activity for seismic discovery

Plotting Earthquake Epicenters an activity for seismic discovery Plotting Earthquake Epicenters an activity for seismic discovery Tammy K Bravo Anne M Ortiz Plotting Activity adapted from: Larry Braile and Sheryl Braile Department of Earth and Atmospheric Sciences Purdue

More information

OBJECTIVES. Identify the means by which latitude and longitude were created and the science upon which they are based.

OBJECTIVES. Identify the means by which latitude and longitude were created and the science upon which they are based. Name: Key OBJECTIVES Correctly define: isolines, gradient, topographic map, contour interval, hachured lines, profile, latitude, longitude, hydrosphere, lithosphere, atmosphere, elevation, model EARTH

More information

Solar Angles and Latitude

Solar Angles and Latitude Solar Angles and Latitude Objectives The student will understand that the sun is not directly overhead at noon in most latitudes. The student will research and discover the latitude ir classroom and calculate

More information

Geometric Optics Converging Lenses and Mirrors Physics Lab IV

Geometric Optics Converging Lenses and Mirrors Physics Lab IV Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The

More information

The Earth Really is Flat! The Globe and Coordinate Systems. Long History of Mapping. The Earth is Flat. Long History of Mapping

The Earth Really is Flat! The Globe and Coordinate Systems. Long History of Mapping. The Earth is Flat. Long History of Mapping The Earth Really is Flat! The Globe and Coordinate Systems Intro to Mapping & GIS The Earth is Flat Day to day, we live life in a flat world sun rises in east, sets in west sky is above, ground is below

More information

Introduction to Geography

Introduction to Geography High School Unit: 1 Lesson: 1 Suggested Duration: 3 days Introduction to Lesson Synopsis: The purpose of this lesson is to introduce students to geography and geography terminology, to teach students about

More information

Week 1. Week 2. Week 3

Week 1. Week 2. Week 3 Week 1 1. What US city has the largest population? 2. Where is Aachen? 3. What is the capitol of Florida? 4. What is the longest mountain range in Spain? 5. What countries border Equador? Week 2 1. What

More information

Developing Conceptual Understanding of Number. Set J: Perimeter and Area

Developing Conceptual Understanding of Number. Set J: Perimeter and Area Developing Conceptual Understanding of Number Set J: Perimeter and Area Carole Bilyk cbilyk@gov.mb.ca Wayne Watt wwatt@mts.net Perimeter and Area Vocabulary perimeter area centimetres right angle Notes

More information

Exploring Another World of Geometry on the Lénárt Sphere. Why Use the Lénárt Sphere?

Exploring Another World of Geometry on the Lénárt Sphere. Why Use the Lénárt Sphere? Exploring Another World of Geometry on the Lénárt Sphere Until now you may have experienced any form of geometry other than Euclidean only as a footnote, a topological curiosity, or a historical aside.

More information

An Introduction to Coordinate Systems in South Africa

An Introduction to Coordinate Systems in South Africa An Introduction to Coordinate Systems in South Africa Centuries ago people believed that the earth was flat and notwithstanding that if this had been true it would have produced serious problems for mariners

More information

Unit 1 - Radian and Degree Measure Classwork

Unit 1 - Radian and Degree Measure Classwork Unit 1 - Radian and Degree Measure Classwork Definitions to know: Trigonometry triangle measurement Initial side, terminal side - starting and ending Position of the ray Standard position origin if the

More information

Earth Coordinates & Grid Coordinate Systems

Earth Coordinates & Grid Coordinate Systems Earth Coordinates & Grid Coordinate Systems How do we model the earth? Datums Datums mathematically describe the surface of the Earth. Accounts for mean sea level, topography, and gravity models. Projections

More information

Lecture 2. Map Projections and GIS Coordinate Systems. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University

Lecture 2. Map Projections and GIS Coordinate Systems. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Lecture 2 Map Projections and GIS Coordinate Systems Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Map Projections Map projections are mathematical formulas

More information

Lenses and Telescopes

Lenses and Telescopes A. Using single lenses to form images Lenses and Telescopes The simplest variety of telescope uses a single lens. The image is formed at the focus of the telescope, which is simply the focal plane of the

More information

6. The greatest atmospheric pressure occurs in the 1) troposphere 3) mesosphere 2) stratosphere 4) thermosphere

6. The greatest atmospheric pressure occurs in the 1) troposphere 3) mesosphere 2) stratosphere 4) thermosphere 1. The best evidence of the Earth's nearly spherical shape is obtained through telescopic observations of other planets photographs of the Earth from an orbiting satellite observations of the Sun's altitude

More information

Measuring the Earth Using a GPS M. Scott Wilkerson & M. Beth Wilkerson, DePauw University, May 10, 2007

Measuring the Earth Using a GPS M. Scott Wilkerson & M. Beth Wilkerson, DePauw University, May 10, 2007 Measuring the Earth Using a GPS M. Scott Wilkerson & M. Beth Wilkerson, DePauw University, May 10, 2007 Modified from: Kerski, J.J., 2007, Measuring the Earth s Circumference with GPS, Copyright ESRI,

More information

SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS

SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS KEY CONCEPTS: In this session we will look at: Geographic information systems and Map projections. Content that needs to be covered for examination

More information

CALCULATING THE SIZE OF AN ATOM

CALCULATING THE SIZE OF AN ATOM Ch 100: Fundamentals of Chemistry 1 CALCULATING THE SIZE OF AN ATOM Introduction: The atom is so very small that only highly sophisticated instruments are able to measure its dimensions. In this experiment

More information

16 Circles and Cylinders

16 Circles and Cylinders 16 Circles and Cylinders 16.1 Introduction to Circles In this section we consider the circle, looking at drawing circles and at the lines that split circles into different parts. A chord joins any two

More information

Locating the Epicenter and Determining the Magnitude of an Earthquake

Locating the Epicenter and Determining the Magnitude of an Earthquake Locating the and Determining the Magnitude of an Earthquake Locating the Measuring the S-P time interval There are hundreds of seismic data recording stations throughout the United States and the rest

More information

Imperial Length Measurements

Imperial Length Measurements Unit I Measuring Length 1 Section 2.1 Imperial Length Measurements Goals Reading Fractions Reading Halves on a Measuring Tape Reading Quarters on a Measuring Tape Reading Eights on a Measuring Tape Reading

More information

Pre and post-visit activities - Navigating by the stars

Pre and post-visit activities - Navigating by the stars Pre and post-visit activities - Navigating by the stars Vocabulary List Adult Education at Scienceworks Pre-visit Activity 1: What is longitude and latitude? Activity 2: Using the Southern Cross to find

More information

Motion & The Global Positioning System (GPS)

Motion & The Global Positioning System (GPS) Grade Level: K - 8 Subject: Motion Prep Time: < 10 minutes Duration: 30 minutes Objective: To learn how to analyze GPS data in order to track an object and derive its velocity from positions and times.

More information

What Causes Climate? Use Target Reading Skills

What Causes Climate? Use Target Reading Skills Climate and Climate Change Name Date Class Climate and Climate Change Guided Reading and Study What Causes Climate? This section describes factors that determine climate, or the average weather conditions

More information

Lines on Maps and Globes. Cross Curricular Writing Activity Social Studies Grade 4

Lines on Maps and Globes. Cross Curricular Writing Activity Social Studies Grade 4 Lines on Maps and Globes Cross Curricular Writing Activity Social Studies Grade 4 Fourth Grade Social Studies Standard Map: Chart/Globe The learner will be able to use maps, charts, graphs, and globes

More information

The Map Grid of Australia 1994 A Simplified Computational Manual

The Map Grid of Australia 1994 A Simplified Computational Manual The Map Grid of Australia 1994 A Simplified Computational Manual The Map Grid of Australia 1994 A Simplified Computational Manual 'What's the good of Mercator's North Poles and Equators, Tropics, Zones

More information

Measuring the Diameter of the Sun

Measuring the Diameter of the Sun Chapter 24 Studying the Sun Investigation 24 Measuring the Diameter of the Sun Introduction The sun is approximately 150,000,000 km from Earth. To understand how far away this is, consider the fact that

More information

A Summary Map to explain your itinerary is absolutely necessary!! Here are some examples of ways to execute it; and some maps are obviously better

A Summary Map to explain your itinerary is absolutely necessary!! Here are some examples of ways to execute it; and some maps are obviously better A Summary Map to explain your itinerary is absolutely necessary!! Here are some examples of ways to execute it; and some maps are obviously better than others; some are very difficult to follow the order

More information

Lesson 26: Reflection & Mirror Diagrams

Lesson 26: Reflection & Mirror Diagrams Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect

More information

Lesson 1: Phases of the Moon

Lesson 1: Phases of the Moon Lesson 1: Phases of the Moon The moon takes 29.5 days to revolve around the earth. During this time, the moon you see in the sky appears to change shape. These apparent changes, which are called phases,

More information

Fantasy flight. Investigation 7. Understanding the Investigation

Fantasy flight. Investigation 7. Understanding the Investigation Investigation 7 Fantasy flight You have won a dre trip around the world, providing you with 50 000 km of free air travel to four major cities. Unfortunately, there is a catch! You have to pay for your

More information

Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface

Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface Topographic maps represent the complex curves of earth s surface with contour lines that represent the intersection

More information

APES Math Review. For each problem show every step of your work, and indicate the cancellation of all units No Calculators!!

APES Math Review. For each problem show every step of your work, and indicate the cancellation of all units No Calculators!! APES Math Review For each problem show every step of your work, and indicate the cancellation of all units No Calculators!! Scientific Notation All APES students should be able to work comfortably with

More information

The Reasons for the Seasons

The Reasons for the Seasons The Reasons for the Seasons (The Active Learning Approach) Materials: 4 Globes, One light on stand with soft white bulb, 4 flashlights, Four sets of "Seasons" Cards, Four laminated black cards with 1 inch

More information

USING MAPS AND GLOBES

USING MAPS AND GLOBES USING MAPS AND GLOBES Grade Level or Special Area: 4 th Grade Written by: Krystal Kroeker, Colorado Springs Charter Academy, Colorado Springs, CO Length of Unit: Five lessons (approximately one week (five

More information

Celestial Observations

Celestial Observations Celestial Observations Earth experiences two basic motions: Rotation West-to-East spinning of Earth on its axis (v rot = 1770 km/hr) (v rot Revolution orbit of Earth around the Sun (v orb = 108,000 km/hr)

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

Lines of Latitude and Longitude

Lines of Latitude and Longitude ED 5661 Mathematics & Navigation Teacher Institute Keith Johnson Lesson Plan Lines of Latitude and Longitude Lesson Overview: This lesson plan will introduce students to latitude and longitude along with

More information

EARTHQUAKES. Compressional Tensional Slip-strike

EARTHQUAKES. Compressional Tensional Slip-strike Earthquakes-page 1 EARTHQUAKES Earthquakes occur along faults, planes of weakness in the crustal rocks. Although earthquakes can occur anywhere, they are most likely along crustal plate boundaries, such

More information

How Do Oceans Affect Weather and Climate?

How Do Oceans Affect Weather and Climate? How Do Oceans Affect Weather and Climate? In Learning Set 2, you explored how water heats up more slowly than land and also cools off more slowly than land. Weather is caused by events in the atmosphere.

More information

Exercise 5.0 LUNAR MOTION, ELONGATION, AND PHASES

Exercise 5.0 LUNAR MOTION, ELONGATION, AND PHASES Exercise 5.0 LUNAR MOTION, ELONGATION, AND PHASES I. Introduction The Moon's revolution in orbit around the center of gravity (barycenter) of the Earth- Moon System results in an apparent motion of the

More information

The small increase in x is. and the corresponding increase in y is. Therefore

The small increase in x is. and the corresponding increase in y is. Therefore Differentials For a while now, we have been using the notation dy to mean the derivative of y with respect to. Here is any variable, and y is a variable whose value depends on. One of the reasons that

More information

Location and Distance on Earth (Chapter 22 part 1)

Location and Distance on Earth (Chapter 22 part 1) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Location and Distance on Earth (Chapter 22 part 1) For this assignment you will require: a calculator, protractor, and a metric ruler, and an

More information

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 )

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 ) SECTION 1. The Circle 1. OBJECTIVES The second conic section we look at is the circle. The circle can be described b using the standard form for a conic section, 1. Identif the graph of an equation as

More information

Measuring Your Latitude from the Angle of the Sun at Noon

Measuring Your Latitude from the Angle of the Sun at Noon Measuring Your Latitude from the Angle of the Sun at Noon Background: You can measure your latitude in earth's northern hemisphere by finding out the altitude of the celestial equator from the southern

More information

Satellite Pursuit: Tracking Marine Mammals

Satellite Pursuit: Tracking Marine Mammals : Tracking Marine Mammals Material adapted from: Monterey Bay Research Institute, EARTH: Satellite Tracking OPB NOVA Teachers: Ocean Animal Emergency Teach Engineering: Marine Animal Tracking Introduction:

More information

WGS AGD GDA: Selecting the correct datum, coordinate system and projection for north Australian applications

WGS AGD GDA: Selecting the correct datum, coordinate system and projection for north Australian applications internal report WGS AGD GDA: Selecting the correct datum, coordinate system and projection for north Australian applications JBC Lowry Hydrological and Ecological Processes Program Environmental Research

More information

Topographic Maps Practice Questions and Answers Revised October 2007

Topographic Maps Practice Questions and Answers Revised October 2007 Topographic Maps Practice Questions and Answers Revised October 2007 1. In the illustration shown below what navigational features are represented by A, B, and C? Note that A is a critical city in defining

More information

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left. The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

More information

Shadows, Angles, and the Seasons

Shadows, Angles, and the Seasons Shadows, Angles, and the Seasons If it's cold in winter, why is Earth closer to the Sun? This activity shows the relationship between Earth-Sun positions and the seasons. From The WSU Fairmount Center

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A0 of challenge: D A0 Mathematical goals Starting points Materials required Time needed Connecting perpendicular lines To help learners to: identify perpendicular gradients; identify, from their

More information

The Sphere of the Earth Description and Technical Manual

The Sphere of the Earth Description and Technical Manual The Sphere of the Earth Description and Technical Manual December 20, 2012 Daniel Ramos MMACA (Museu de Matemàtiques de Catalunya) 1 The exhibit The exhibit we are presenting explores the science of cartography

More information

Chapter 4: The Concept of Area

Chapter 4: The Concept of Area Chapter 4: The Concept of Area Defining Area The area of a shape or object can be defined in everyday words as the amount of stuff needed to cover the shape. Common uses of the concept of area are finding

More information

Grades 3-5. Benchmark A: Use map elements or coordinates to locate physical and human features of North America.

Grades 3-5. Benchmark A: Use map elements or coordinates to locate physical and human features of North America. Grades 3-5 Students use knowledge of geographic locations, patterns and processes to show the interrelationship between the physical environment and human activity, and to explain the interactions that

More information

Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013

Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013 Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is

More information

Activity 10 - Universal Time

Activity 10 - Universal Time Activity 10 - Universal Time Teacher s Guide Scientists use the Universal Time reference to talk about data that is taken around the globe. Universal Time is the time kept in the time zone centered on

More information

MAPS AND GLOBES: WHERE IN THE WORLD ARE WE?

MAPS AND GLOBES: WHERE IN THE WORLD ARE WE? MAPS AND GLOBES: WHERE IN THE WORLD ARE WE? Grade Level: Kindergarten Presented by: Karen Davis and Tamara Young, Tate Elementary, Van Buren, AR Length of unit:5 lessons I. ABSTRACT A. This unit focuses

More information

The Distance Formula and the Circle

The Distance Formula and the Circle 10.2 The Distance Formula and the Circle 10.2 OBJECTIVES 1. Given a center and radius, find the equation of a circle 2. Given an equation for a circle, find the center and radius 3. Given an equation,

More information

Number Sense and Operations

Number Sense and Operations Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

More information

ES 106 Laboratory # 3 INTRODUCTION TO OCEANOGRAPHY. Introduction The global ocean covers nearly 75% of Earth s surface and plays a vital role in

ES 106 Laboratory # 3 INTRODUCTION TO OCEANOGRAPHY. Introduction The global ocean covers nearly 75% of Earth s surface and plays a vital role in ES 106 Laboratory # 3 INTRODUCTION TO OCEANOGRAPHY 3-1 Introduction The global ocean covers nearly 75% of Earth s surface and plays a vital role in the physical environment of Earth. For these reasons,

More information

Lecture on Solid Angle

Lecture on Solid Angle Lecture on Solid Angle Ben Kravitz 1 Introduction The idea of a solid angle comes up a lot in remote sensing applications, so it s important that you know what it is. As such, I ve made this lecture for

More information

Acceleration of Gravity Lab Basic Version

Acceleration of Gravity Lab Basic Version Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration

More information

Objectives. Materials

Objectives. Materials Activity 4 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the ways

More information

FORCE ON A CURRENT IN A MAGNETIC FIELD

FORCE ON A CURRENT IN A MAGNETIC FIELD 7/16 Force current 1/8 FORCE ON A CURRENT IN A MAGNETIC FIELD PURPOSE: To study the force exerted on an electric current by a magnetic field. BACKGROUND: When an electric charge moves with a velocity v

More information

The following words and their definitions should be addressed before completion of the reading:

The following words and their definitions should be addressed before completion of the reading: Seasons Vocabulary: The following words and their definitions should be addressed before completion of the reading: sphere any round object that has a surface that is the same distance from its center

More information

Grade 7 Circumference

Grade 7 Circumference Grade 7 Circumference 7.SS.1 Demonstrate an understanding of circles by describing the relationships among radius, diameter, and circumference of circles relating circumference to PI determining the sum

More information

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.

More information

Conservation of Energy Physics Lab VI

Conservation of Energy Physics Lab VI Conservation of Energy Physics Lab VI Objective This lab experiment explores the principle of energy conservation. You will analyze the final speed of an air track glider pulled along an air track by a

More information

Estimating Differences. Finding Distances on a Map

Estimating Differences. Finding Distances on a Map Estimating Differences Problem Solving: Finding Distances on a Map Estimating Differences How do we use rounding to estimate differences? Sometimes subtraction is like addition. There are times when we

More information

Coordinate Systems. Orbits and Rotation

Coordinate Systems. Orbits and Rotation Coordinate Systems Orbits and Rotation Earth orbit. The earth s orbit around the sun is nearly circular but not quite. It s actually an ellipse whose average distance from the sun is one AU (150 million

More information

First published in 2013 by the University of Utah in association with the Utah State Office of Education.

First published in 2013 by the University of Utah in association with the Utah State Office of Education. First published in 201 by the University of Utah in association with the Utah State Office of Education. Copyright 201, Utah State Office of Education. Some rights reserved. This work is published under

More information

Prentice Hall Mathematics: Course 1 2008 Correlated to: Arizona Academic Standards for Mathematics (Grades 6)

Prentice Hall Mathematics: Course 1 2008 Correlated to: Arizona Academic Standards for Mathematics (Grades 6) PO 1. Express fractions as ratios, comparing two whole numbers (e.g., ¾ is equivalent to 3:4 and 3 to 4). Strand 1: Number Sense and Operations Every student should understand and use all concepts and

More information

Latitude, Longitude, and Time Zones

Latitude, Longitude, and Time Zones Latitude, Longitude, and Time Zones Typical Graph This is an example of a typical graph. It is made up of points that are connected by a line. Y axis Typical Graph Each point has two values: (4,7) An X

More information

Factoring Whole Numbers

Factoring Whole Numbers 2.2 Factoring Whole Numbers 2.2 OBJECTIVES 1. Find the factors of a whole number 2. Find the prime factorization for any number 3. Find the greatest common factor (GCF) of two numbers 4. Find the GCF for

More information

ME 111: Engineering Drawing

ME 111: Engineering Drawing ME 111: Engineering Drawing Lecture # 14 (10/10/2011) Development of Surfaces http://www.iitg.ernet.in/arindam.dey/me111.htm http://www.iitg.ernet.in/rkbc/me111.htm http://shilloi.iitg.ernet.in/~psr/ Indian

More information

Factorizations: Searching for Factor Strings

Factorizations: Searching for Factor Strings " 1 Factorizations: Searching for Factor Strings Some numbers can be written as the product of several different pairs of factors. For example, can be written as 1, 0,, 0, and. It is also possible to write

More information

Module 11: The Cruise Ship Sector. Destination #3

Module 11: The Cruise Ship Sector. Destination #3 Module 11: The Cruise Ship Sector Destination #3 Cruise Destinations Welcome to your third destination. Use the following resource article to learn about the different oceans and time zones. Seen from

More information

7 Scale Model of the Solar System

7 Scale Model of the Solar System Name: Date: 7 Scale Model of the Solar System 7.1 Introduction The Solar System is large, at least when compared to distances we are familiar with on a day-to-day basis. Consider that for those of you

More information

NGA GRID GUIDE HOW TO USE ArcGIS 8.x ANS 9.x TO GENERATE MGRS AND OTHER MAP GRIDS

NGA GRID GUIDE HOW TO USE ArcGIS 8.x ANS 9.x TO GENERATE MGRS AND OTHER MAP GRIDS GEOSPATIAL SCIENCES DIVISION COORDINATE SYSTEMS ANALYSIS TEAM (CSAT) SEPTEMBER 2005 Minor Revisions March 2006 POC Kurt Schulz NGA GRID GUIDE HOW TO USE ArcGIS 8.x ANS 9.x TO GENERATE MGRS AND OTHER MAP

More information

Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth

Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth OBJECTIVES 1. To examine the magnetic field associated with a

More information

The Circumference Function

The Circumference Function 2 Geometry You have permission to make copies of this document for your classroom use only. You may not distribute, copy or otherwise reproduce any part of this document or the lessons contained herein

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

Objective: To distinguish between degree and radian measure, and to solve problems using both.

Objective: To distinguish between degree and radian measure, and to solve problems using both. CHAPTER 3 LESSON 1 Teacher s Guide Radian Measure AW 3.2 MP 4.1 Objective: To distinguish between degree and radian measure, and to solve problems using both. Prerequisites Define the following concepts.

More information

Fourth Grade Math Standards and "I Can Statements"

Fourth Grade Math Standards and I Can Statements Fourth Grade Math Standards and "I Can Statements" Standard - CC.4.OA.1 Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 x 7 as a statement that 35 is 5 times as many as 7 and

More information

MD5-26 Stacking Blocks Pages 115 116

MD5-26 Stacking Blocks Pages 115 116 MD5-26 Stacking Blocks Pages 115 116 STANDARDS 5.MD.C.4 Goals Students will find the number of cubes in a rectangular stack and develop the formula length width height for the number of cubes in a stack.

More information

Paper Reference. Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser. Tracing paper may be used.

Paper Reference. Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser. Tracing paper may be used. Centre No. Candidate No. Paper Reference 1 3 8 0 3 H Paper Reference(s) 1380/3H Edexcel GCSE Mathematics (Linear) 1380 Paper 3 (Non-Calculator) Higher Tier Monday 18 May 2009 Afternoon Time: 1 hour 45

More information

11A Plate Tectonics. What is plate tectonics? Setting up. Materials

11A Plate Tectonics. What is plate tectonics? Setting up. Materials 11A Plate Tectonics What is plate tectonics? Earth s crust plus the upper mantle forms the lithosphere. Earth s lithosphere is broken in a number of different pieces. How these pieces move and interact

More information

Area of Parallelograms (pages 546 549)

Area of Parallelograms (pages 546 549) A Area of Parallelograms (pages 546 549) A parallelogram is a quadrilateral with two pairs of parallel sides. The base is any one of the sides and the height is the shortest distance (the length of a perpendicular

More information

Chapter 5: Working with contours

Chapter 5: Working with contours Introduction Contoured topographic maps contain a vast amount of information about the three-dimensional geometry of the land surface and the purpose of this chapter is to consider some of the ways in

More information

WE VE GOT THE WHOLE WORLD IN OUR HANDS: Geography Spatial Sense

WE VE GOT THE WHOLE WORLD IN OUR HANDS: Geography Spatial Sense WE VE GOT THE WHOLE WORLD IN OUR HANDS: Geography Spatial Sense Grade Level: Written by: Length of Unit: Third Grade Wendy S. Hyndman, The Classical Academy, Colorado Springs, CO Doreen W. Jennings, Lincoln

More information

1. You are about to begin a unit on geology. Can anyone tell me what geology is? The study of the physical earth I.

1. You are about to begin a unit on geology. Can anyone tell me what geology is? The study of the physical earth I. PLATE TECTONICS ACTIVITY The purpose of this lab is to introduce the concept of plate tectonics and the formation of mountains. Students will discuss the properties of the earth s crust and plate tectonics.

More information