# Digital Logic Design

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Digital Logic Design ENGG st Semester, 2010 Dr. Kenneth Wong Dr. Hayden So Department of Electrical and Electronic Engineering

2 Determining output level from a diagram

3 Implementing Circuits From Boolean Expressions When the operation of a circuit is defined by a Boolean expression, we can draw a logic-circuit diagram directly from that expression. Example: draw the circuit for Done in two steps y = AC + BC + ABC

4 Example: Draw the circuit diagram to implement the expression x = ( A + B)( B + C) Example: Draw the circuit diagram that implements the expression x = ABC( A + D) using gates having no more than three inputs.

5 Laws of Boolean Algebra Commutative Laws A + B = B + A A B = B A Associative Laws A + (B + C) = (A + B) + C A (B C) = (A B) C

6 Distributive Law A (B + C) = A B + A C A (B + C) = A B + A C Rules of Boolean Algebra

7 Rule 1 Rule 2 OR Truth Table Rule 3 AND Truth Table Rule 4

8 Rule 5 Rule 6 OR Truth Table Rule 7 AND Truth Table Rule 8

9 Rule 9 Rule 10: A + AB = A Proof: A+AB = A(1+B) by distributive law = A 1 by rule 2 Or prove by truth table = A by rule 4

10 Rule 11: A + AB = A + B This rule can only be proved by constructing the truth table Rule 12: (A + B)(A + C) = A + BC This rule can only be proved by constructing the truth table 10

11 Examples: Simplify y = ABD + ABD y = AB( D + D) by distributive law = AB 1 by rule 6 = AB by rule 4 Simplify ( A + B)( A B) z = + z = AA + AB + BA + BB by distributive law = 0 + AB + BA + B by rule 8 and rule 7 = AB + BA + B by rule 1 = B( A + A + 1) by distributive law = B 1 by rule 6 and rule 2 = B by rule 4 Simplify x = ACD + ABCD x = CD( A + AB) by distributive law = CD( A + B) by rule 11 = ACD + BCD by distributive law

12 Review Questions Simplify y = AC + y = AC ABC Simplify y = ABCD + ABCD Simplify y = ABD y = AD + ABD y = AD + BD

13 Theorem 1 x + y = x y Theorem 2 DeMorgan s Theorems x y = x + y Remember: Break the bar, change the operator The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. DeMorgan's theorem is very useful in digital circuit design It allows ANDs to be exchanged with ORs by using invertors DeMorgan's Theorem can be extended to any number of variables. E.g, for three variables x, y and z x + y + z = x y z x y z = x + y + z

14 Examples: a) ( AB + C) = AB C = ( A + B) C = AC + BC b) ( A + C) ( B + D) = ( A + C) + ( B + D) = A C + B D = AC + BD c) A+ B C = A ( B C) = A ( B + C) = A( B + C) d) ( A + BC) ( D + EF) = ( A + BC) + ( D + EF) = ( A BC) + ( D EF) = A ( B + C) + D ( E + F) = AB + AC + DE + DF e) AB CD EF = AB + CD + EF = AB + CD + EF f ) Determine the output expression for the below circuit and simplify it using DeMorgan s Theorem

15 Review Questions Using DeMorgan s Theorems to convert the expressions to one that has only single-variable inversions. y = RST + Q y = ( R + S + T ) Q z = ( A + B) C z = AB + C y = A + B + CD y = AB( C + D)

16 Implications of DeMorgan s Theorems x + y = x y i.e., The AND gate with INVERTERs on each of its inputs is equivalent to a NOR gate Usually redrawn in this way x y = x + y i.e., The OR gate with INVERTERs on each of its inputs is equivalent to a NAND gate Usually redrawn in this way

17 Universality of NAND gates Any expression can be implemented using combinations of OR gates, AND gates and INVERTERs However, it is also possible to implement any logic expression using only NAND gates and no other type of gate This is because NAND gates, in proper combination, can perform Boolean operations OR, AND, and INVERTER

18 Example: Suppose we want to implement x=ab+cd. -- If we directly implement the expression, we need 2 AND gates and 1 OR gate => we need two ICs -- If we transform the circuit into one having only NAND gates, we need only one IC IC in Dual-in-line package (DIP) Pin diagrams for the ICs containing NAND, AND, and OR gates

19 Universality of NOR gate In a similar manner, it can be shown that NOR gates can be arranged to implement any of the Boolean operations

20 Alternate Logic-Gate Representations Apart from standard logic gate symbols we have seen so far, there are alternate symbols for the commonly used gates The alternate symbols are obtained by performing the following two steps: 1. Invert each input and output of the standard symbol. This is done by adding bubbles (small circles) on input and output lines that do not have bubbles and by removing bubbles that are already there. 2. Change the operation symbol from AND to OR, or from OR to AND. (In the special case of the INVERTER, the operation symbol is not changed.)

21 Several points to note The equivalences can be extended to gates with any number of inputs. None of the standard symbols have bubbles on their inputs, and all the alternate symbols do. The standard and alternate symbols for each gate represent the same physical circuit; there is no difference in the circuits represented by the two symbols. NAND and NOR gates are inverting gates, and so both the standard and the alternate symbols for each will have a bubble on either the input or the output, AND and OR gates are non-inverting gates, and so the alternate symbols for each will have bubbles on both inputs and output.

22 Why we need alternate representation? Proper use of the alternate gate symbols in the circuit diagram can make the circuit operation much more easy to understand E.g., the two circuits on the right are equivalent However, circuit (a) does not facilitate an understanding of how the circuit function Circuit (b) is easy to understand: Z will go HIGH whenever either A=B=1 or C=D=1 (or both)

23 Canonical Form Boolean expression can be expressed in many different ways (A + D)(B + C) " AB + AC + BD + CD Two standard ways: Sum of Product Product of Sum Canonical SOP Canonical POS

24 Canonical SOP Boolean expression expressed as a sum of product of basic inputs Basic input may optionally negated AB C + BD + AD Product NOT canonical: No parenthesis Most natural for human Sum A + B(C + D)

25 Canonical POS Boolean expression expressed as a product of sum of basic inputs Basic input my optionally negated (A + B + C)(B + D )(A + D) Product Sum NOT canonical: Many parenthesis A + B(C + D) Not too natural for human, but equally good for computers.

### 4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.

### 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.

File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one

### Boolean Algebra Part 1

Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems

### United States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1

United States Naval Academy Electrical and Computer Engineering Department EC262 Exam 29 September 2. Do a page check now. You should have pages (cover & questions). 2. Read all problems in their entirety.

### Unit 3 Boolean Algebra (Continued)

Unit 3 Boolean Algebra (Continued) 1. Exclusive-OR Operation 2. Consensus Theorem Department of Communication Engineering, NCTU 1 3.1 Multiplying Out and Factoring Expressions Department of Communication

### Boolean Algebra (cont d) UNIT 3 BOOLEAN ALGEBRA (CONT D) Guidelines for Multiplying Out and Factoring. Objectives. Iris Hui-Ru Jiang Spring 2010

Boolean Algebra (cont d) 2 Contents Multiplying out and factoring expressions Exclusive-OR and Exclusive-NOR operations The consensus theorem Summary of algebraic simplification Proving validity of an

### Points Addressed in this Lecture. Standard form of Boolean Expressions. Lecture 5: Logic Simplication & Karnaugh Map

Points Addressed in this Lecture Lecture 5: Logic Simplication & Karnaugh Map Professor Peter Cheung Department of EEE, Imperial College London (Floyd 4.5-4.) (Tocci 4.-4.5) Standard form of Boolean Expressions

### Chapter 2: Boolean Algebra and Logic Gates. Boolean Algebra

The Universit Of Alabama in Huntsville Computer Science Chapter 2: Boolean Algebra and Logic Gates The Universit Of Alabama in Huntsville Computer Science Boolean Algebra The algebraic sstem usuall used

### CH3 Boolean Algebra (cont d)

CH3 Boolean Algebra (cont d) Lecturer: 吳 安 宇 Date:2005/10/7 ACCESS IC LAB v Today, you ll know: Introduction 1. Guidelines for multiplying out/factoring expressions 2. Exclusive-OR and Equivalence operations

### CSE140: Midterm 1 Solution and Rubric

CSE140: Midterm 1 Solution and Rubric April 23, 2014 1 Short Answers 1.1 True or (6pts) 1. A maxterm must include all input variables (1pt) True 2. A canonical product of sums is a product of minterms

### Karnaugh Maps & Combinational Logic Design. ECE 152A Winter 2012

Karnaugh Maps & Combinational Logic Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 4 Optimized Implementation of Logic Functions 4. Karnaugh Map 4.2 Strategy for Minimization 4.2. Terminology

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHAPTER3 QUESTIONS MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) If one input of an AND gate is LOW while the other is a clock signal, the output

### Points Addressed in this Lecture

Points Addressed in this Lecture Lecture 3: Basic Logic Gates & Boolean Expressions Professor Peter Cheung Department of EEE, Imperial College London (Floyd 3.1-3.5, 4.1) (Tocci 3.1-3.9) What are the basic

### Chapter 4. Gates and Circuits. Chapter Goals. Chapter Goals. Computers and Electricity. Computers and Electricity. Gates

Chapter Goals Chapter 4 Gates and Circuits Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the

### ENGI 241 Experiment 5 Basic Logic Gates

ENGI 24 Experiment 5 Basic Logic Gates OBJECTIVE This experiment will examine the operation of the AND, NAND, OR, and NOR logic gates and compare the expected outputs to the truth tables for these devices.

### BOOLEAN ALGEBRA & LOGIC GATES

BOOLEAN ALGEBRA & LOGIC GATES Logic gates are electronic circuits that can be used to implement the most elementary logic expressions, also known as Boolean expressions. The logic gate is the most basic

### Gates, Circuits, and Boolean Algebra

Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks

### Digital circuits make up all computers and computer systems. The operation of digital circuits is based on

Digital Logic Circuits Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Boolean algebra, the mathematics of binary numbers. Boolean algebra is

### Basic Logic Gates Richard E. Haskell

BASIC LOGIC GATES 1 E Basic Logic Gates Richard E. Haskell All digital systems are made from a few basic digital circuits that we call logic gates. These circuits perform the basic logic functions that

### The equation for the 3-input XOR gate is derived as follows

The equation for the 3-input XOR gate is derived as follows The last four product terms in the above derivation are the four 1-minterms in the 3-input XOR truth table. For 3 or more inputs, the XOR gate

### 2.0 Chapter Overview. 2.1 Boolean Algebra

Thi d t t d ith F M k 4 0 2 Boolean Algebra Chapter Two Logic circuits are the basis for modern digital computer systems. To appreciate how computer systems operate you will need to understand digital

### Introduction. Logic. Most Difficult Reading Topics. Basic Logic Gates Truth Tables Logical Functions. COMP370 Introduction to Computer Architecture

Introduction LOGIC GATES COMP370 Introduction to Computer Architecture Basic Logic Gates Truth Tables Logical Functions Truth Tables Logical Expression Graphical l Form Most Difficult Reading Topics Logic

### ENEE 244 (01**). Spring 2006. Homework 4. Due back in class on Friday, April 7.

ENEE 244 (**). Spring 26 Homework 4 Due back in class on Friday, April 7.. Implement the following Boolean expression with exclusive-or and AND gates only: F = AB'CD' + A'BCD' + AB'C'D + A'BC'D. F = AB

### COMPRESSION SPRINGS: STANDARD SERIES (INCH)

: STANDARD SERIES (INCH) LC 014A 01 0.250 6.35 11.25 0.200 0.088 2.24 F F M LC 014A 02 0.313 7.94 8.90 0.159 0.105 2.67 F F M LC 014A 03 0.375 9.52 7.10 0.126 0.122 3.10 F F M LC 014A 04 0.438 11.11 6.00

### Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.

Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage

### ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits

Objectives ELEC - EXPERIMENT Basic Digital Logic Circuits The experiments in this laboratory exercise will provide an introduction to digital electronic circuits. You will learn how to use the IDL-00 Bit

### Chapter 2 Combinational Logic Circuits

Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 3 Additional Gates and Circuits Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. Overview Part 1 Gate Circuits

### Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits J.J. Shann Chapter Overview 2-1 Binary Logic and Gates 2-2 Boolean Algebra 2-3 Standard Forms 2-4 Two-Level Circuit Optimization 2-5 Map Manipulation 補 充 資 料 :Quine-McCluskey

### Digital Logic: Boolean Algebra and Gates

Digital Logic: Boolean Algebra and Gates Textbook Chapter 3 CMPE2 Summer 28 Basic Logic Gates CMPE2 Summer 28 Slides by ADB 2 Truth Table The most basic representation of a logic function Lists the output

### Programmable Logic Devices (PLDs)

Programmable Logic Devices (PLDs) Lesson Objectives: In this lesson you will be introduced to some types of Programmable Logic Devices (PLDs): PROM, PAL, PLA, CPLDs, FPGAs, etc. How to implement digital

### Digital Fundamentals

Digital Fundamentals Tenth Edition Floyd hapter 5 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. ll Rights Reserved Summary ombinational Logic ircuits In Sum-of-Products (SOP)

### 2011, The McGraw-Hill Companies, Inc. Chapter 4

Chapter 4 4.1 The Binary Concept Binary refers to the idea that many things can be thought of as existing in only one of two states. The binary states are 1 and 0 The 1 and 0 can represent: ON or OFF Open

### Math 313 Lecture #10 2.2: The Inverse of a Matrix

Math 1 Lecture #10 2.2: The Inverse of a Matrix Matrix algebra provides tools for creating many useful formulas just like real number algebra does. For example, a real number a is invertible if there is

### Elementary Logic Gates

Elementary Logic Gates Name Symbol Inverter (NOT Gate) ND Gate OR Gate Truth Table Logic Equation = = = = = + C. E. Stroud Combinational Logic Design (/6) Other Elementary Logic Gates NND Gate NOR Gate

### ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and omputer Engineering Lecture 11 NND and XOR Implementations Overview Developing NND circuits from K-maps Two-level implementations onvert from ND/OR to NND (again!) Multi-level

### l What have discussed up until now & why: l C Programming language l More low-level then Java. l Better idea about what s really going on.

CS211 Computer Architecture l Topics Digital Logic l Transistors (Design & Types) l Logic Gates l Combinational Circuits l K-Maps Class Checkpoint l What have discussed up until now & why: l C Programming

### CSEE 3827: Fundamentals of Computer Systems. Standard Forms and Simplification with Karnaugh Maps

CSEE 3827: Fundamentals of Computer Systems Standard Forms and Simplification with Karnaugh Maps Agenda (M&K 2.3-2.5) Standard Forms Product-of-Sums (PoS) Sum-of-Products (SoP) converting between Min-terms

### Logic Design 2013/9/5. Introduction. Logic circuits operate on digital signals

Introduction Logic Design Chapter 2: Introduction to Logic Circuits Logic circuits operate on digital signals Unlike continuous analog signals that have an infinite number of possible values, digital signals

### Algebraic Properties and Proofs

Algebraic Properties and Proofs Name You have solved algebraic equations for a couple years now, but now it is time to justify the steps you have practiced and now take without thinking and acting without

### Twice the Angle. - Circle Theorems 3: Angle at the Centre Theorem -

- Circle Theorems 3: Angle at the Centre Theorem - Definitions An arc of a circle is a contiguous (i.e. no gaps) portion of the circumference. An arc which is half of a circle is called a semi-circle.

### Simplifying Logic Circuits with Karnaugh Maps

Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified

### Online EFFECTIVE AS OF JANUARY 2013

2013 A and C Session Start Dates (A-B Quarter Sequence*) 2013 B and D Session Start Dates (B-A Quarter Sequence*) Quarter 5 2012 1205A&C Begins November 5, 2012 1205A Ends December 9, 2012 Session Break

### CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Multi-Level Gate Circuits NAND and NOR Gates Design of Two-Level Circuits Using NAND and NOR Gates

### Understanding Logic Design

Understanding Logic Design ppendix of your Textbook does not have the needed background information. This document supplements it. When you write add DD R0, R1, R2, you imagine something like this: R1

### Schema Refinement & Normalization Theory

Schema Refinement & Normalization Theory Functional Dependencies Week 11-1 1 What s the Problem Consider relation obtained (call it SNLRHW) Hourly_Emps(ssn, name, lot, rating, hrly_wage, hrs_worked) What

### PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71. Applications. F = mc + b.

PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71 Applications The formula y = mx + b sometimes appears with different symbols. For example, instead of x, we could use the letter C.

### Lecture 5: Gate Logic Logic Optimization

Lecture 5: Gate Logic Logic Optimization MAH, AEN EE271 Lecture 5 1 Overview Reading McCluskey, Logic Design Principles- or any text in boolean algebra Introduction We could design at the level of irsim

### DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

### Logic in Computer Science: Logic Gates

Logic in Computer Science: Logic Gates Lila Kari The University of Western Ontario Logic in Computer Science: Logic Gates CS2209, Applied Logic for Computer Science 1 / 49 Logic and bit operations Computers

### Section IV.21. The Field of Quotients of an Integral Domain

IV.21 Field of Quotients 1 Section IV.21. The Field of Quotients of an Integral Domain Note. This section is a homage to the rational numbers! Just as we can start with the integers Z and then build the

### Geometry CP Lesson 5-1: Bisectors, Medians and Altitudes Page 1 of 3

Geometry CP Lesson 5-1: Bisectors, Medians and Altitudes Page 1 of 3 Main ideas: Identify and use perpendicular bisectors and angle bisectors in triangles. Standard: 12.0 A perpendicular bisector of a

### How to bet using different NairaBet Bet Combinations (Combo)

How to bet using different NairaBet Bet Combinations (Combo) SINGLES Singles consists of single bets. I.e. it will contain just a single selection of any sport. The bet slip of a singles will look like

### Part 2: Operational Amplifiers

Part 2: Operational Amplifiers An operational amplifier is a very high gain amplifier. Op amps can be used in many different ways. Two of the most common uses are a) as comparators b) as amplifiers (either

### Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.

Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that

### FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The Full-Adder

FORDHAM UNIVERSITY CISC 3593 Fordham College Lincoln Center Computer Organization Dept. of Computer and Info. Science Spring, 2011 Lab 2 The Full-Adder 1 Introduction In this lab, the student will construct

### Gates & Boolean Algebra. Boolean Operators. Combinational Logic. Introduction

Introduction Gates & Boolean lgebra Boolean algebra: named after mathematician George Boole (85 864). 2-valued algebra. digital circuit can have one of 2 values. Signal between and volt =, between 4 and

### DIGITAL SYSTEM DESIGN LAB

EXPERIMENT NO: 7 STUDY OF FLIP FLOPS USING GATES AND IC S AIM: To verify various flip-flops like D, T, and JK. APPARATUS REQUIRED: Power supply, Digital Trainer kit, Connecting wires, Patch Chords, IC

### Electronic Troubleshooting. Chapter 10 Digital Circuits

Electronic Troubleshooting Chapter 10 Digital Circuits Digital Circuits Key Aspects Logic Gates Inverters NAND Gates Specialized Test Equipment MOS Circuits Flip-Flops and Counters Logic Gates Characteristics

### The common ratio in (ii) is called the scaled-factor. An example of two similar triangles is shown in Figure 47.1. Figure 47.1

47 Similar Triangles An overhead projector forms an image on the screen which has the same shape as the image on the transparency but with the size altered. Two figures that have the same shape but not

### CIRCLE THEOREMS. Edexcel GCSE Mathematics (Linear) 1MA0

Edexcel GCSE Mathematics (Linear) 1MA0 CIRCLE THEOREMS Materials required for examination Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser. Tracing paper may

### ให p, q, r และ s เป นพห นามใดๆ จะได ว า

เศษส วนของพห นาม ให A และ B เป นพห นาม พห นามใดๆ โดยท B 0 เร ยก B A ว า เศษส วนของพห นาม การดาเน นการของเศษส วนของพห นาม ให p, q, r และ s เป นพห นามใดๆ จะได ว า Q P R Q P Q R Q P R Q P Q R R Q P S P Q

### PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 OUTCOME 3 PART 1

UNIT 22: PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 OUTCOME 3 PART 1 This work covers part of outcome 3 of the Edexcel standard module: Outcome 3 is the most demanding

### RULE 1: Additive Identity Property

RULE 1: Additive Identity Property Additive Identity Property a + 0 = a x + 0 = x If we add 0 to any number, we will end up with the same number. Zero is represented through the the green vortex. When

### Properties of Real Numbers

16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

### Year 10 Term 1 Homework

Yimin Math Centre Year 10 Term 1 Homework Student Name: Grade: Date: Score: Table of contents 10 Year 10 Term 1 Week 10 Homework 1 10.1 Deductive geometry.................................... 1 10.1.1 Basic

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

### Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid

Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid Grade level: 10 Prerequisite knowledge: Students have studied triangle congruences, perpendicular lines,

### COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:

COMMUTATIVE RINGS Definition: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative

### L1-2. Special Matrix Operations: Permutations, Transpose, Inverse, Augmentation 12 Aug 2014

L1-2. Special Matrix Operations: Permutations, Transpose, Inverse, Augmentation 12 Aug 2014 Unfortunately, no one can be told what the Matrix is. You have to see it for yourself. -- Morpheus Primary concepts:

### An Interesting Way to Combine Numbers

An Interesting Way to Combine Numbers Joshua Zucker and Tom Davis November 28, 2007 Abstract This exercise can be used for middle school students and older. The original problem seems almost impossibly

### Visa Smart Debit/Credit Certificate Authority Public Keys

CHIP AND NEW TECHNOLOGIES Visa Smart Debit/Credit Certificate Authority Public Keys Overview The EMV standard calls for the use of Public Key technology for offline authentication, for aspects of online

### Lecture 2 Matrix Operations

Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or

### The Inverse of a Square Matrix

These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

### Two-level logic using NAND gates

CSE140: Components and Design Techniques for Digital Systems Two and Multilevel logic implementation Tajana Simunic Rosing 1 Two-level logic using NND gates Replace minterm ND gates with NND gates Place

### Introduction. The Quine-McCluskey Method Handout 5 January 21, 2016. CSEE E6861y Prof. Steven Nowick

CSEE E6861y Prof. Steven Nowick The Quine-McCluskey Method Handout 5 January 21, 2016 Introduction The Quine-McCluskey method is an exact algorithm which finds a minimum-cost sum-of-products implementation

### Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

### exclusive-or and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576

exclusive-or and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576 Outline exclusive OR gate (XOR) Definition Properties Examples of Applications Odd Function Parity Generation and Checking

### Foundations of Geometry 1: Points, Lines, Segments, Angles

Chapter 3 Foundations of Geometry 1: Points, Lines, Segments, Angles 3.1 An Introduction to Proof Syllogism: The abstract form is: 1. All A is B. 2. X is A 3. X is B Example: Let s think about an example.

### Digital Electronics Detailed Outline

Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept

### Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng

Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction

### Chapter 1. Computation theory

Chapter 1. Computation theory In this chapter we will describe computation logic for the machines. This topic is a wide interdisciplinary field, so that the students can work in an interdisciplinary context.

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

### Boolean Algebra. Boolean Algebra. Boolean Algebra. Boolean Algebra

2 Ver..4 George Boole was an English mathematician of XIX century can operate on logic (or Boolean) variables that can assume just 2 values: /, true/false, on/off, closed/open Usually value is associated

### Module-3 SEQUENTIAL LOGIC CIRCUITS

Module-3 SEQUENTIAL LOGIC CIRCUITS Till now we studied the logic circuits whose outputs at any instant of time depend only on the input signals present at that time are known as combinational circuits.

### Introduction to Digital Logic with Laboratory Exercises

Introduction to Digital Logic with Laboratory Exercises Introduction to Digital Logic with Laboratory Exercises James Feher Copyright 29 James Feher Editor-In-Chief: James Feher Associate Editor: Marisa

### Counters and Decoders

Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

### Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

### Chapter 6 Digital Arithmetic: Operations & Circuits

Chapter 6 Digital Arithmetic: Operations & Circuits Chapter 6 Objectives Selected areas covered in this chapter: Binary addition, subtraction, multiplication, division. Differences between binary addition

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### Basic Formulas in Excel. Why use cell names in formulas instead of actual numbers?

Understanding formulas Basic Formulas in Excel Formulas are placed into cells whenever you want Excel to add, subtract, multiply, divide or do other mathematical calculations. The formula should be placed

### Intermediate Math Circles October 10, 2012 Geometry I: Angles

Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,

### CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of

### 6. BOOLEAN LOGIC DESIGN

6. OOLEN LOGI DESIGN 89 Topics: oolean algebra onverting between oolean algebra and logic gates and ladder logic Logic examples Objectives: e able to simplify designs with oolean algebra 6. INTRODUTION

### www.mohandesyar.com SOLUTIONS MANUAL DIGITAL DESIGN FOURTH EDITION M. MORRIS MANO California State University, Los Angeles MICHAEL D.

27 Pearson Education, Inc., Upper Saddle River, NJ. ll rights reserved. This publication is protected by opyright and written permission should be obtained or likewise. For information regarding permission(s),

### 198:211 Computer Architecture

198:211 Computer Architecture Topics: Lecture 8 (W5) Fall 2012 Data representation 2.1 and 2.2 of the book Floating point 2.4 of the book 1 Computer Architecture What do computers do? Manipulate stored

### Combinational circuits

Combinational circuits Combinational circuits are stateless The outputs are functions only of the inputs Inputs Combinational circuit Outputs 3 Thursday, September 2, 3 Enabler Circuit (High-level view)

### Arithmetic Operations. The real numbers have the following properties: In particular, putting a 1 in the Distributive Law, we get

Review of Algebra REVIEW OF ALGEBRA Review of Algebra Here we review the basic rules and procedures of algebra that you need to know in order to be successful in calculus. Arithmetic Operations The real

### ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering Lecture 19 Sequential Circuits: Latches Overview Circuits require memory to store intermediate data Sequential circuits use a periodic signal to determine