Digital Logic Design 1. Truth Tables. Truth Tables. OR Operation With OR Gates

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Digital Logic Design 1. Truth Tables. Truth Tables. OR Operation With OR Gates"

Transcription

1 2007 oolean Constants and Variables K TP.HCM Tran Ngoc Thinh HCMC University of Technology oolean algebra is an important tool in describing, analyzing, designing, and implementing digital circuits. oolean algebra allows only two values; 0 and 1. Logic 0 can be: false, off, low, no, open switch. Logic 1 can be: true, on, high, yes, closed switch. Three basic logic operations: OR, ND, and NOT. Truth Tables truth table describes the relationship between the input and output of a logic circuit. The number of entries corresponds to the number of inputs. For eample a 2 input table would have 2 2 = 4 entries. 3 input table would have 2 3 = 8 entries. Truth Tables Eamples of truth tables with 2, 3, and 4 inputs. OR Operation With OR Gates The oolean epression for the OR operation is X = + This is read as equals or. X = 1 when = 1 or = 1. Truth table, circuit symbol and timing diagram for a two input OR gate: OR Operation With OR Gates The OR operation is similar to addition but when = 1 and = 1, the OR operation produces = 1. In the oolean epression =1+1+1=1 We could say that is true (1) when is true (1) OR is true (1) OR C is true (1). In general, the output of an OR gate is HIGH whenever one or more inputs are HIGH C D

2 OR Operation With OR Gates There are many eamples of applications where an output function is desired when one of multiple inputs is activated. ND Operations with ND gates The oolean epression for the ND operation is X = This is read as equals and. = 1 when = 1 and = 1. Truth table and circuit symbol for a two input ND gate are shown. Notice the difference between OR and ND gates. ND Operation With ND Gates The ND operation is similar to multiplication. In the oolean epression X = C X = 1 only when = 1, = 1, and C = 1. The output of an ND gate is HIGH only when all inputs are HIGH. NOT Operation The oolean epression for the NOT operation is X = This is read as: equals NOT, or equals the inverse of, or equals the complement of Truth table, symbol, and sample waveform for the NOT circuit. C Describing Logic Circuits lgebraically The three basic oolean operations (OR, ND, NOT) can describe any logic circuit. Eamples of oolean epressions for logic circuits: Describing Logic Circuits lgebraically The output of an inverter is equivalent to the input with a bar over it. Input through an inverter equals. Eamples using inverters.

3 Evaluating Logic Circuit Outputs Rules for evaluating a oolean epression: Perform all inversions of single terms. Perform all operations within parenthesis. Perform ND operation before an OR operation unless parenthesis indicate otherwise. If an epression has a bar over it, perform the operations inside the epression and then invert the result. Evaluating Logic Circuit Outputs Evaluate oolean epressions by substituting values and performing the indicated operations: = 0, = 1, C = 1, and D = 1 = C( + D) = (0 + 1) = (0 + 1) = (1) = = 0 Evaluating Logic Circuit Outputs Output logic levels can be determined directly from a circuit diagram. Technicians frequently use this method. The output of each gate is noted until a final output is found. Implementing Circuits From oolean Epressions It is important to be able to draw a logic circuit from a oolean epression. The epression = C could be drawn as a three input ND gate. more comple eample such as y = C + C + C could be drawn as two 2-input ND gates and one 3-input ND gate feeding into a 3-input OR gate. Two of the ND gates have inverted inputs. NOR Gates and NND Gates Combine basic ND, OR, and NOT operations. The NOR gate is an inverted OR gate. n inversion bubble is placed at the output of the OR gate. The oolean epression is = + NOR Gates and NND Gates The NND gate is an inverted ND gate. n inversion bubble is placed at the output of the ND gate. The oolean epression is =

4 oolean Theorems The theorems or laws below may represent an epression containing more than one variable. 0 = 0 = + 1 = 1 + = 1 1 = 1 = 0 + = Laws of oolean lgebra Commutative Laws ssociative Laws Distributive Law Commutative Laws of oolean lgebra + = + ssociative Laws of oolean lgebra + ( + C) = ( + ) + C = ( C) = ( ) C Distributive Laws of oolean lgebra ( + C) = + C ( + C) = + C Rules of oolean lgebra ( + C) = + C ( + C) = + C ( C) = ( ) C

5 Rules of oolean lgebra ( + C) = + C ( + C) = + C Rules of oolean lgebra ( + C) = + C ( + C) = + C Rules of oolean lgebra Rules of oolean lgebra Rule 11: + = + Rule 10: + = Rule 12: ( + )( + C) = + C DeMorgan s Theorems Theorem 1: When the OR sum of two variables is inverted, it is equivalent to inverting each variable individually and NDing them. + =. Theorem 2: When the ND product of two variables is inverted, it is equivalent to inverting each variable individually and ORing them.. = + DeMorgan s Theorems NOR gate is equivalent to an ND gate with inverted inputs. NND gate is equivalent to an OR gate with inverted inputs. For N variables, DeMorgan s theorem is epressed as: and

6 Universality of NND and NOR Gates Universality of NND and NOR Gates NND or NOR gates can be used to create the three basic logic epressions (OR, ND, and INVERT) lternate Logic-Gate Representations To convert a standard symbol to an alternate: Invert each input and output (add an inversion bubble where there are none on the standard symbol, and remove bubbles where they eist on the standard symbol. Change a standard OR gate to and ND gate, or an ND gate to an OR gate. lternate Logic-Gate Representations Standard and alternate symbols for various logic gates and inverter lternate Logic-Gate Representations lternate Logic-Gate Representations The equivalence can be applied to gates with any number of inputs. No standard symbols have bubbles on their inputs. ll of the alternate symbols do. The standard and alternate symbols represent the same physical circuitry. ctive high an input or output has no inversion bubble. ctive low an input or output has an inversion bubble. n ND gate will produce an active output when all inputs are in their active states. n OR gate will produce an active output when any input is in an active state.

7 lternate Logic-Gate Representations Interpretation of the two NND gate symbols. lternate Logic-Gate Representations Interpretation of the two OR gate symbols. Which Gate Representation to Use Which Gate Representation to Use Using alternate and standard logic gate symbols together can make circuit operation clearer. When possible choose gate symbols so that bubble outputs are connected to bubble input and nonbubble outputs are connected to nonbubble inputs. When a logic signal is in the active state (high or low) it is said to be asserted. When a logic signal is in the inactive state (high or low) it is said to be unasserted. bar over a signal means asserted (active) low. The absence of a bar over a signal means asserted (active) high. IEEE/NSI Standard Logic Symbols (a) Original circuit using standard NND symbols; (b) equivalent representation where output Z is active- HIGH; (c) equivalent representation where output Z is active- LOW; (d) truth table. Rectangular symbols represent logic gates and circuits. Dependency notation inside symbols show how output depends on inputs. small triangle replaces the inversion bubble.

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd hapter 5 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. ll Rights Reserved Summary ombinational Logic ircuits In Sum-of-Products (SOP)

More information

Points Addressed in this Lecture

Points Addressed in this Lecture Points Addressed in this Lecture Lecture 3: Basic Logic Gates & Boolean Expressions Professor Peter Cheung Department of EEE, Imperial College London (Floyd 3.1-3.5, 4.1) (Tocci 3.1-3.9) What are the basic

More information

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one

More information

Elementary Logic Gates

Elementary Logic Gates Elementary Logic Gates Name Symbol Inverter (NOT Gate) ND Gate OR Gate Truth Table Logic Equation = = = = = + C. E. Stroud Combinational Logic Design (/6) Other Elementary Logic Gates NND Gate NOR Gate

More information

6. BOOLEAN LOGIC DESIGN

6. BOOLEAN LOGIC DESIGN 6. OOLEN LOGI DESIGN 89 Topics: oolean algebra onverting between oolean algebra and logic gates and ladder logic Logic examples Objectives: e able to simplify designs with oolean algebra 6. INTRODUTION

More information

Logic gates. Chapter. 9.1 Logic gates. MIL symbols. Learning Summary. In this chapter you will learn about: Logic gates

Logic gates. Chapter. 9.1 Logic gates. MIL symbols. Learning Summary. In this chapter you will learn about: Logic gates Chapter 9 Logic gates Learning Summary In this chapter you will learn about: Logic gates Truth tables Logic circuits/networks In this chapter we will look at how logic gates are used and how truth tables

More information

Basic Logic Gates Richard E. Haskell

Basic Logic Gates Richard E. Haskell BASIC LOGIC GATES 1 E Basic Logic Gates Richard E. Haskell All digital systems are made from a few basic digital circuits that we call logic gates. These circuits perform the basic logic functions that

More information

Gates, Circuits, and Boolean Algebra

Gates, Circuits, and Boolean Algebra Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks

More information

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering ENGIN 112 Intro to Electrical and omputer Engineering Lecture 11 NND and XOR Implementations Overview Developing NND circuits from K-maps Two-level implementations onvert from ND/OR to NND (again!) Multi-level

More information

Gates & Boolean Algebra. Boolean Operators. Combinational Logic. Introduction

Gates & Boolean Algebra. Boolean Operators. Combinational Logic. Introduction Introduction Gates & Boolean lgebra Boolean algebra: named after mathematician George Boole (85 864). 2-valued algebra. digital circuit can have one of 2 values. Signal between and volt =, between 4 and

More information

ENGI 241 Experiment 5 Basic Logic Gates

ENGI 241 Experiment 5 Basic Logic Gates ENGI 24 Experiment 5 Basic Logic Gates OBJECTIVE This experiment will examine the operation of the AND, NAND, OR, and NOR logic gates and compare the expected outputs to the truth tables for these devices.

More information

Logic Design 2013/9/5. Introduction. Logic circuits operate on digital signals

Logic Design 2013/9/5. Introduction. Logic circuits operate on digital signals Introduction Logic Design Chapter 2: Introduction to Logic Circuits Logic circuits operate on digital signals Unlike continuous analog signals that have an infinite number of possible values, digital signals

More information

Understanding Logic Design

Understanding Logic Design Understanding Logic Design ppendix of your Textbook does not have the needed background information. This document supplements it. When you write add DD R0, R1, R2, you imagine something like this: R1

More information

Digital Logic Elements, Clock, and Memory Elements

Digital Logic Elements, Clock, and Memory Elements Physics 333 Experiment #9 Fall 999 Digital Logic Elements, Clock, and Memory Elements Purpose This experiment introduces the fundamental circuit elements of digital electronics. These include a basic set

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CHAPTER3 QUESTIONS MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) If one input of an AND gate is LOW while the other is a clock signal, the output

More information

Ladder and Functional Block Programming

Ladder and Functional Block Programming CHPTER 11 Ladder and Functional lock Programming W. olton This (and the following) chapter comes from the book Programmable Logic Controllers by W. olton, ISN: 9780750681124. The first edition of the book

More information

Karnaugh Maps (K-map) Alternate representation of a truth table

Karnaugh Maps (K-map) Alternate representation of a truth table Karnaugh Maps (K-map) lternate representation of a truth table Red decimal = minterm value Note that is the MS for this minterm numbering djacent squares have distance = 1 Valuable tool for logic minimization

More information

Logic in Computer Science: Logic Gates

Logic in Computer Science: Logic Gates Logic in Computer Science: Logic Gates Lila Kari The University of Western Ontario Logic in Computer Science: Logic Gates CS2209, Applied Logic for Computer Science 1 / 49 Logic and bit operations Computers

More information

BOOLEAN ALGEBRA & LOGIC GATES

BOOLEAN ALGEBRA & LOGIC GATES BOOLEAN ALGEBRA & LOGIC GATES Logic gates are electronic circuits that can be used to implement the most elementary logic expressions, also known as Boolean expressions. The logic gate is the most basic

More information

Chapter 4. Gates and Circuits. Chapter Goals. Chapter Goals. Computers and Electricity. Computers and Electricity. Gates

Chapter 4. Gates and Circuits. Chapter Goals. Chapter Goals. Computers and Electricity. Computers and Electricity. Gates Chapter Goals Chapter 4 Gates and Circuits Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the

More information

2 1 Implementation using NAND gates: We can write the XOR logical expression A B + A B using double negation as

2 1 Implementation using NAND gates: We can write the XOR logical expression A B + A B using double negation as Chapter 2 Digital Logic asics 2 Implementation using NND gates: We can write the XOR logical expression + using double negation as + = + = From this logical expression, we can derive the following NND

More information

Chapter 2: Boolean Algebra and Logic Gates. Boolean Algebra

Chapter 2: Boolean Algebra and Logic Gates. Boolean Algebra The Universit Of Alabama in Huntsville Computer Science Chapter 2: Boolean Algebra and Logic Gates The Universit Of Alabama in Huntsville Computer Science Boolean Algebra The algebraic sstem usuall used

More information

Introduction. Logic. Most Difficult Reading Topics. Basic Logic Gates Truth Tables Logical Functions. COMP370 Introduction to Computer Architecture

Introduction. Logic. Most Difficult Reading Topics. Basic Logic Gates Truth Tables Logical Functions. COMP370 Introduction to Computer Architecture Introduction LOGIC GATES COMP370 Introduction to Computer Architecture Basic Logic Gates Truth Tables Logical Functions Truth Tables Logical Expression Graphical l Form Most Difficult Reading Topics Logic

More information

Mixed Logic A B A B. 1. Ignore all bubbles on logic gates and inverters. This means

Mixed Logic A B A B. 1. Ignore all bubbles on logic gates and inverters. This means Mixed Logic Introduction Mixed logic is a gate-level design methodology used in industry. It allows a digital logic circuit designer to separate the functional description of the circuit from its physical

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 3 Additional Gates and Circuits Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. Overview Part 1 Gate Circuits

More information

L2: Combinational Logic Design (Construction and Boolean Algebra)

L2: Combinational Logic Design (Construction and Boolean Algebra) L2: Combinational Logic Design (Construction and oolean lgebra) cknowledgements: Materials in this lecture are courtesy of the following sources and are used with permission. Prof. Randy Katz (Unified

More information

ECE3281 Electronics Laboratory

ECE3281 Electronics Laboratory ECE328 Electronics Laboratory Experiment #4 TITLE: EXCLUSIVE-OR FUNCTIONS and INRY RITHMETIC OJECTIVE: Synthesize exclusive-or and the basic logic functions necessary for execution of binary arithmetic.

More information

4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION 4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.

More information

Binary Adders: Half Adders and Full Adders

Binary Adders: Half Adders and Full Adders Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order

More information

Mixed Logic A B A B. 1. Ignore all bubbles on logic gates and inverters. This means

Mixed Logic A B A B. 1. Ignore all bubbles on logic gates and inverters. This means Mixed Logic Introduction Mixed logic is a gate-level design methodology used in industry. It allows a digital logic circuit designer the functional description of the circuit from its physical implementation.

More information

Boolean Algebra Part 1

Boolean Algebra Part 1 Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems

More information

United States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1

United States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1 United States Naval Academy Electrical and Computer Engineering Department EC262 Exam 29 September 2. Do a page check now. You should have pages (cover & questions). 2. Read all problems in their entirety.

More information

Figure 2.1(a) Bistable element circuit.

Figure 2.1(a) Bistable element circuit. 3.1 Bistable Element Let us look at the inverter. If you provide the inverter input with a 1, the inverter will output a 0. If you do not provide the inverter with an input (that is neither a 0 nor a 1),

More information

Sum-of-Products and Product-of-Sums expressions

Sum-of-Products and Product-of-Sums expressions Sum-of-Products and Product-of-Sums expressions This worksheet and all related files are licensed under the reative ommons ttribution License, version.. To view a copy of this license, visit http://creativecommons.org/licenses/by/./,

More information

2011, The McGraw-Hill Companies, Inc. Chapter 4

2011, The McGraw-Hill Companies, Inc. Chapter 4 Chapter 4 4.1 The Binary Concept Binary refers to the idea that many things can be thought of as existing in only one of two states. The binary states are 1 and 0 The 1 and 0 can represent: ON or OFF Open

More information

NAND and NOR Implementation

NAND and NOR Implementation University of Wisconsin - Madison EE/omp ci 352 Digital ystems Fundamentals harles R. Kime ection 2 Fall 200 hapter 2 ombinational Logic ircuits Part 7 harles Kime & Thomas Kaminski NND and NOR Implementation

More information

The equation for the 3-input XOR gate is derived as follows

The equation for the 3-input XOR gate is derived as follows The equation for the 3-input XOR gate is derived as follows The last four product terms in the above derivation are the four 1-minterms in the 3-input XOR truth table. For 3 or more inputs, the XOR gate

More information

Part 2: Operational Amplifiers

Part 2: Operational Amplifiers Part 2: Operational Amplifiers An operational amplifier is a very high gain amplifier. Op amps can be used in many different ways. Two of the most common uses are a) as comparators b) as amplifiers (either

More information

CHAPTER 11 LATCHES AND FLIP-FLOPS

CHAPTER 11 LATCHES AND FLIP-FLOPS CHAPTER 11 LATCHES AND FLIP-FLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 Set-Reset Latch 11.3 Gated D Latch 11.4 Edge-Triggered D Flip-Flop 11.5 S-R Flip-Flop

More information

Combinational circuits

Combinational circuits Combinational circuits Combinational circuits are stateless The outputs are functions only of the inputs Inputs Combinational circuit Outputs 3 Thursday, September 2, 3 Enabler Circuit (High-level view)

More information

Digital circuits make up all computers and computer systems. The operation of digital circuits is based on

Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Digital Logic Circuits Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Boolean algebra, the mathematics of binary numbers. Boolean algebra is

More information

SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram

SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram SEQUENTIAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/sequential_circuits.htm Copyright tutorialspoint.com The combinational circuit does not use any memory. Hence the previous

More information

Module-3 SEQUENTIAL LOGIC CIRCUITS

Module-3 SEQUENTIAL LOGIC CIRCUITS Module-3 SEQUENTIAL LOGIC CIRCUITS Till now we studied the logic circuits whose outputs at any instant of time depend only on the input signals present at that time are known as combinational circuits.

More information

Counters and Decoders

Counters and Decoders Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

More information

Likewise, we have contradictions: formulas that can only be false, e.g. (p p).

Likewise, we have contradictions: formulas that can only be false, e.g. (p p). CHAPTER 4. STATEMENT LOGIC 59 The rightmost column of this truth table contains instances of T and instances of F. Notice that there are no degrees of contingency. If both values are possible, the formula

More information

Upon completion of unit 1.1, students will be able to

Upon completion of unit 1.1, students will be able to Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal

More information

ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits

ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits Objectives ELEC - EXPERIMENT Basic Digital Logic Circuits The experiments in this laboratory exercise will provide an introduction to digital electronic circuits. You will learn how to use the IDL-00 Bit

More information

Lecture 9: Flip-flops

Lecture 9: Flip-flops Points Addressed in this Lecture Properties of synchronous and asynchronous sequential circuits Overview of flip-flops and latches Lecture 9: Flip-flops Professor Peter Cheung Department of EEE, Imperial

More information

Math 2443, Section 16.3

Math 2443, Section 16.3 Math 44, Section 6. Review These notes will supplement not replace) the lectures based on Section 6. Section 6. i) ouble integrals over general regions: We defined double integrals over rectangles in the

More information

SECTION 1-4 Absolute Value in Equations and Inequalities

SECTION 1-4 Absolute Value in Equations and Inequalities 1-4 Absolute Value in Equations and Inequalities 37 SECTION 1-4 Absolute Value in Equations and Inequalities Absolute Value and Distance Absolute Value in Equations and Inequalities Absolute Value and

More information

l What have discussed up until now & why: l C Programming language l More low-level then Java. l Better idea about what s really going on.

l What have discussed up until now & why: l C Programming language l More low-level then Java. l Better idea about what s really going on. CS211 Computer Architecture l Topics Digital Logic l Transistors (Design & Types) l Logic Gates l Combinational Circuits l K-Maps Class Checkpoint l What have discussed up until now & why: l C Programming

More information

CSE140: Components and Design Techniques for Digital Systems

CSE140: Components and Design Techniques for Digital Systems CSE4: Components and Design Techniques for Digital Systems Tajana Simunic Rosing What we covered thus far: Number representations Logic gates Boolean algebra Introduction to CMOS HW#2 due, HW#3 assigned

More information

Digital Electronics Detailed Outline

Digital Electronics Detailed Outline Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept

More information

UNIT 6 Logic Gates, Flip-Flops, and Counters

UNIT 6 Logic Gates, Flip-Flops, and Counters UNIT 6 Logic Gates, Flip-Flops, and Counters Chemistry 838 Department of Chemistry Michigan State University East Lansing, MI 48824 Name Student Number Date Submitted Table of Contents Table of Contents...1

More information

Digital Logic: Boolean Algebra and Gates

Digital Logic: Boolean Algebra and Gates Digital Logic: Boolean Algebra and Gates Textbook Chapter 3 CMPE2 Summer 28 Basic Logic Gates CMPE2 Summer 28 Slides by ADB 2 Truth Table The most basic representation of a logic function Lists the output

More information

Low Power VLSI Circuits and Systems Prof. Pro. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Low Power VLSI Circuits and Systems Prof. Pro. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Low Power VLSI Circuits and Systems Prof. Pro. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 14 Pass Transistor Logic Circuits - I Hello

More information

Figure 8-1 Four Possible Results of Adding Two Bits

Figure 8-1 Four Possible Results of Adding Two Bits CHPTER EIGHT Combinational Logic pplications Thus far, our discussion has focused on the theoretical design issues of computer systems. We have not yet addressed any of the actual hardware you might find

More information

Points Addressed in this Lecture. Standard form of Boolean Expressions. Lecture 5: Logic Simplication & Karnaugh Map

Points Addressed in this Lecture. Standard form of Boolean Expressions. Lecture 5: Logic Simplication & Karnaugh Map Points Addressed in this Lecture Lecture 5: Logic Simplication & Karnaugh Map Professor Peter Cheung Department of EEE, Imperial College London (Floyd 4.5-4.) (Tocci 4.-4.5) Standard form of Boolean Expressions

More information

Latches and Flip-Flops characterestics & Clock generator circuits

Latches and Flip-Flops characterestics & Clock generator circuits Experiment # 7 Latches and Flip-Flops characterestics & Clock generator circuits OBJECTIVES 1. To be familiarized with D and JK flip-flop ICs and their characteristic tables. 2. Understanding the principles

More information

Lecture 5: Gate Logic Logic Optimization

Lecture 5: Gate Logic Logic Optimization Lecture 5: Gate Logic Logic Optimization MAH, AEN EE271 Lecture 5 1 Overview Reading McCluskey, Logic Design Principles- or any text in boolean algebra Introduction We could design at the level of irsim

More information

Chapter 3 Digital Basics

Chapter 3 Digital Basics Chapter 3 Digital asics We conclude our review of basic concepts with a survey of topics from digital electronics. We confine our attention to aspects that are important in the understanding of simple

More information

Two-level logic using NAND gates

Two-level logic using NAND gates CSE140: Components and Design Techniques for Digital Systems Two and Multilevel logic implementation Tajana Simunic Rosing 1 Two-level logic using NND gates Replace minterm ND gates with NND gates Place

More information

ASYNCHRONOUS COUNTERS

ASYNCHRONOUS COUNTERS LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding

More information

COMBINATIONAL CIRCUITS

COMBINATIONAL CIRCUITS COMBINATIONAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/combinational_circuits.htm Copyright tutorialspoint.com Combinational circuit is a circuit in which we combine the different

More information

CSE140: Midterm 1 Solution and Rubric

CSE140: Midterm 1 Solution and Rubric CSE140: Midterm 1 Solution and Rubric April 23, 2014 1 Short Answers 1.1 True or (6pts) 1. A maxterm must include all input variables (1pt) True 2. A canonical product of sums is a product of minterms

More information

2.0 Chapter Overview. 2.1 Boolean Algebra

2.0 Chapter Overview. 2.1 Boolean Algebra Thi d t t d ith F M k 4 0 2 Boolean Algebra Chapter Two Logic circuits are the basis for modern digital computer systems. To appreciate how computer systems operate you will need to understand digital

More information

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

More information

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage

More information

Transparent D Flip-Flop

Transparent D Flip-Flop Transparent Flip-Flop The RS flip-flop forms the basis of a number of 1-bit storage devices in digital electronics. ne such device is shown in the figure, where extra combinational logic converts the input

More information

SECTION 7-4 Algebraic Vectors

SECTION 7-4 Algebraic Vectors 7-4 lgebraic Vectors 531 SECTIN 7-4 lgebraic Vectors From Geometric Vectors to lgebraic Vectors Vector ddition and Scalar Multiplication Unit Vectors lgebraic Properties Static Equilibrium Geometric vectors

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

Lecture 8: Flip-flops

Lecture 8: Flip-flops Points Addressed in this Lecture Properties of synchronous and asynchronous sequential circuits Overview of flip-flops and latches Lecture 8: Flip-flops Professor Peter Cheung Department of EEE, Imperial

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

More information

Gates. J. Robert Jump Department of Electrical And Computer Engineering Rice University Houston, TX 77251

Gates. J. Robert Jump Department of Electrical And Computer Engineering Rice University Houston, TX 77251 Gates J. Robert Jump Department of Electrical And Computer Engineering Rice University Houston, T 77251 1. The Evolution of Electronic Digital Devices...1 2. Logical Operations and the Behavior of Gates...2

More information

7.7 Solving Rational Equations

7.7 Solving Rational Equations Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate

More information

The Language of Mathematics

The Language of Mathematics CHPTER 2 The Language of Mathematics 2.1. Set Theory 2.1.1. Sets. set is a collection of objects, called elements of the set. set can be represented by listing its elements between braces: = {1, 2, 3,

More information

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: ELEMENTARY SEUENTIAL CIRCUITS: FLIP-FLOPS 1st year BSc course 2nd (Spring) term 2012/2013 1

More information

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)

More information

CHAPTER TEN. 10.1 New Truth Table Symbols. 10.1.1 Edges/Transitions. Memory Cells

CHAPTER TEN. 10.1 New Truth Table Symbols. 10.1.1 Edges/Transitions. Memory Cells CHAPTER TEN Memory Cells The previous chapters presented the concepts and tools behind processing binary data. This is only half of the battle though. For example, a logic circuit uses inputs to calculate

More information

Chapter 5: Sequential Circuits (LATCHES)

Chapter 5: Sequential Circuits (LATCHES) Chapter 5: Sequential Circuits (LATCHES) Latches We focuses on sequential circuits, where we add memory to the hardware that we ve already seen Our schedule will be very similar to before: We first show

More information

FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The Full-Adder

FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The Full-Adder FORDHAM UNIVERSITY CISC 3593 Fordham College Lincoln Center Computer Organization Dept. of Computer and Info. Science Spring, 2011 Lab 2 The Full-Adder 1 Introduction In this lab, the student will construct

More information

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse. DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting

More information

Karnaugh Maps. Circuit-wise, this leads to a minimal two-level implementation

Karnaugh Maps. Circuit-wise, this leads to a minimal two-level implementation Karnaugh Maps Applications of Boolean logic to circuit design The basic Boolean operations are AND, OR and NOT These operations can be combined to form complex expressions, which can also be directly translated

More information

Solutions of Linear Equations in One Variable

Solutions of Linear Equations in One Variable 2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

More information

7 Literal Equations and

7 Literal Equations and CHAPTER 7 Literal Equations and Inequalities Chapter Outline 7.1 LITERAL EQUATIONS 7.2 INEQUALITIES 7.3 INEQUALITIES USING MULTIPLICATION AND DIVISION 7.4 MULTI-STEP INEQUALITIES 113 7.1. Literal Equations

More information

Digital-to-Analog Conversion

Digital-to-Analog Conversion Digital-to-Analog Conversion Curtis A. Nelson Engr355 1 Introduction Connecting digital circuitry to sensor devices is simple if the sensor devices are inherently digital themselves. Switches, relays,

More information

VFD Fundamentals. Variable Frequency Drive Fundamentals. AC Motor Speed - The speed of an AC induction motor depends upon two factors:

VFD Fundamentals. Variable Frequency Drive Fundamentals. AC Motor Speed - The speed of an AC induction motor depends upon two factors: VFD1 VFD Fundamentals opyright 2003 Kilowatt lassroom, LL. Drive Fundamentals Motor Speed - The speed of an induction motor depends upon two factors: 1) The number of motor poles 2) The frequency of the

More information

1 Determine whether an. 2 Solve systems of linear. 3 Solve systems of linear. 4 Solve systems of linear. 5 Select the most efficient

1 Determine whether an. 2 Solve systems of linear. 3 Solve systems of linear. 4 Solve systems of linear. 5 Select the most efficient Section 3.1 Systems of Linear Equations in Two Variables 163 SECTION 3.1 SYSTEMS OF LINEAR EQUATIONS IN TWO VARIABLES Objectives 1 Determine whether an ordered pair is a solution of a system of linear

More information

University of Geneva Digital Electronics TPA-Electronique. Digital Electronics

University of Geneva Digital Electronics TPA-Electronique. Digital Electronics University of Geneva Digital Electronics TP-Electronique Contents Digital Electronics 1 nalog vs Digital 1.1 Digital signal representation............................ 1. dvantages of digital signals...........................

More information

Logic Reference Guide

Logic Reference Guide Logic eference Guide Advanced Micro evices INTOUCTION Throughout this data book and design guide we have assumed that you have a good working knowledge of logic. Unfortunately, there always comes a time

More information

Contents. Chapter 5 Implementation Technologies Page 1 of 29

Contents. Chapter 5 Implementation Technologies Page 1 of 29 Chapter 5 Implementation Technologies Page of 29 Contents Implementation Technologies...2 5. Physical bstraction...3 5.2 Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)...4 5.3 CMOS Logic...5

More information

Introduction to Proofs

Introduction to Proofs Chapter 1 Introduction to Proofs 1.1 Preview of Proof This section previews many of the key ideas of proof and cites [in brackets] the sections where they are discussed thoroughly. All of these ideas are

More information

Lecture 4: Binary. CS442: Great Insights in Computer Science Michael L. Littman, Spring 2006. I-Before-E, Continued

Lecture 4: Binary. CS442: Great Insights in Computer Science Michael L. Littman, Spring 2006. I-Before-E, Continued Lecture 4: Binary CS442: Great Insights in Computer Science Michael L. Littman, Spring 26 I-Before-E, Continued There are two ideas from last time that I d like to flesh out a bit more. This time, let

More information

Functions and their Graphs

Functions and their Graphs Functions and their Graphs Functions All of the functions you will see in this course will be real-valued functions in a single variable. A function is real-valued if the input and output are real numbers

More information

Switching Algebra and Logic Gates

Switching Algebra and Logic Gates Chapter 2 Switching Algebra and Logic Gates The word algebra in the title of this chapter should alert you that more mathematics is coming. No doubt, some of you are itching to get on with digital design

More information

Two's Complement Adder/Subtractor Lab L03

Two's Complement Adder/Subtractor Lab L03 Two's Complement Adder/Subtractor Lab L03 Introduction Computers are usually designed to perform indirect subtraction instead of direct subtraction. Adding -B to A is equivalent to subtracting B from A,

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

CSEE 3827: Fundamentals of Computer Systems. Latches and Flip Flops

CSEE 3827: Fundamentals of Computer Systems. Latches and Flip Flops EE 3827: Fundamentals of omputer ystems Latches and Flip Flops ombinational v. sequential logic Inputs ombinational circuit Outputs Inputs ombinational circuit next state Outputs current state torage elements

More information

Lab 1: Full Adder 0.0

Lab 1: Full Adder 0.0 Lab 1: Full Adder 0.0 Introduction In this lab you will design a simple digital circuit called a full adder. You will then use logic gates to draw a schematic for the circuit. Finally, you will verify

More information

[ 4 ] Logic Symbols and Truth Table

[ 4 ] Logic Symbols and Truth Table [ 4 ] Logic s and Truth Table 1. How to Read MIL-Type Logic s Table 1.1 shows the MIL-type logic symbols used for high-speed CMO ICs. This logic chart is based on MIL-TD-806. The clocked inverter and transmission

More information