# Solving Equations with One Variable

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Grade 8 Mathematics, Quarter 1, Unit 1.1 Solving Equations with One Variable Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Solve linear equations in one variable with one solution, infinitely many solutions, or no solution. Solve linear equations in one variable including use of the distributive property. Solve linear equations in one variable including rational number coefficients (whole numbers, decimals, fractions, and their opposites). Solve linear equations in one variable combining like terms (on one or both sides of the equal sign). Essential Questions What steps would you use to solve any linear equation in one variable? What are the possible types of solutions to any linear equation in one variable? How would you write an equation that demonstrates each of the following: one solution, no solution, or infinitely many solutions? Mathematical Practices to Be Integrated Make sense of problems and persevere in solving them. Understand steps and their order before beginning the problem. Check solutions and ask if they make sense. Understand different approaches to the same problem. Reason abstractly and quantitatively. Use the distributive property to combine like terms. Know and use properties to solve linear equations. Look for and express regularity in repeated reasoning. Justify the steps for solving an equation in one variable. Understand patterns in problems to gain efficiency in solving them. When would you use the distributive property to simplify a linear equation in one variable? How can you combine like terms to simplify a linear equation? 1

2 Grade 8 Mathematics, Quarter 1, Unit 1.1 Solving Equations with One Variable (15 days) Written Curriculum Common Core State Standards for Mathematical Content Expressions and Equations 8.EE Analyze and solve linear equations and pairs of simultaneous linear equations. 8.EE.7 Solve linear equations in one variable. a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers). b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms. Common Core Standards for Mathematical Practice 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. 2 Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects. 2

3 Grade 8 Mathematics, Quarter 1, Unit 1.1 Solving Equations with One Variable (15 days) 8 Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (y 2)/(x 1) = 3. Noticing the regularity in the way terms cancel when expanding (x 1)(x + 1), (x 1)(x 2 + x + 1), and (x 1)(x 3 + x 2 + x + 1) might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results. Clarifying the Standards Prior Learning In sixth grade, students were exposed to applying the distributive property and simplifying algebraic expressions by combining like terms. In seventh grade, students were fluent in working with rational numbers and multistep equations with one variable on one side of the equation. Students applied the distributive property and they have knowledge of combining like terms with rational number coefficients. Current Learning Students solve linear equations with one variable resulting in one solution, infinitely many solutions, or no solution. They also solve linear equations with rational number coefficients, requiring the distributive property and combining like terms. This is a major cluster (PARCC) and a critical area of CCSS. Later this year, students will use their knowledge from this unit for the following units: Linear Functions, Slope, and Systems of Equations. Future Learning In high school algebra, students will create, solve, and graph linear inequalities in one variable. Students will solve linear equations in one variable with variable coefficients. Students will solve quadratic equations in one variable. Additional Findings According to Principles and Standards for School Mathematics, in grades 6 8, all students should recognize and generate equivalent forms for simple algebraic expressions and solve linear equations (p. 222). According to Curriculum Focal Points, Students in eighth grade will use linear functions, linear equations, and systems of linear equations to represent, analyze, and solve a variety of problems (p. 20). According to the PARCC Model Content Frameworks, One-variable linear equations culminate in grade 8 with the solution of general one-variable linear equations, including cases with infinitely many solutions or no solutions as well as cases requiring algebraic manipulation using properties of operations. Coefficients and constants in these equations may be any rational number. (p. 35) 3

4 Grade 8 Mathematics, Quarter 1, Unit 1.1 Solving Equations with One Variable (15 days) 4

5 Grade 8 Mathematics, Quarter 1, Unit 1.2 Introduction to Linear Functions Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Definition of a function (for each input there is exactly one output). Use a function rule to generate ordered pairs. Graph a function using ordered pairs. Determine rate of change of one function represented in multiple ways (table, graph, description, ordered pairs). Describe and compare the rate of change of two functions. Compare the properties of two functions in different representations (graphs, tables, and verbal descriptions). Construct a function to model a linear relationship between two quantities. Given a graph or a table, interpret what rate of change and initial value mean in the context of the linear function. Given a real-world situation, describe what the rate of change and initial value means. Essential Questions What is a function? What are the different ways to represent a function? How can you determine the rate of change of a function given different representations? Mathematical Practices to Be Integrated Make sense of problems and persevere in solving them. Explain correspondences between multiple representations. Continuously ask, Does this make sense? Check and evaluate progress. Reason abstractly and quantitatively. Represent a situation with a function. Identify how functions relate to real-world situations. Write a verbal description of a given function. Make sense of quantities and their relationships in problem situations. Model with mathematics. Identify important quantities in a function rule. Apply functions to everyday situations. Use mathematical tools to show relationships and draw conclusions. How could you use a function to model a realworld situation? Given two different functions, how can you tell which function has a greater rate of change? What is the relationship between an input/output table and a graph? 5

6 Grade 8 Mathematics, Quarter 1, Unit 1.2 Introduction to Linear Functions (15 days) Written Curriculum Common Core State Standards for Mathematical Content Functions 8.F Define, evaluate, and compare functions. 8.F.1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. 1 1 Function notation is not required in Grade 8. 8.F.2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change. Use functions to model relationships between quantities. 8.F.4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values. Common Core Standards for Mathematical Practice 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. 2 Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize to abstract a given situation and represent it symbolically and manipulate the 6

7 Grade 8 Mathematics, Quarter 1, Unit 1.2 Introduction to Linear Functions (15 days) representing symbols as if they have a life of their own, without necessarily attending to their referents and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects. 4 Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose. Clarifying the Standards Prior Learning In sixth grade, students learned about independent and dependent variables and analyzed the relationship between them using graphs, tables, and equations. In seventh grade, students identified the unit rate in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. Students explained what a point (x, y) means in terms of a problem situation. Students represented proportional relationships with equations. Current Learning These concepts are a critical area and major cluster of the grade 8 CCSS standards and should be taught at the developmental and reinforcement level. Students define a function (they do not need to use function notation). They make a function table to generate ordered pairs as a means of graphing a function. Students determine the rate of change of a function represented in multiple ways and are able to describe and compare two functions represented in multiple ways. Students construct a function to model a linear relationship between two quantities. They interpret what rate of change and initial value mean in the context of the function. Students will use their knowledge of functions later in the school year while studying slope. They need to be fluent with using and interpreting linear functions by the end of grade 8. Future Learning In high school algebra, students will be deepening their knowledge of functions to expand their studies of nonlinear functions. 7

8 Grade 8 Mathematics, Quarter 1, Unit 1.2 Introduction to Linear Functions (15 days) Additional Findings According to Principles and Standards for School Mathematics, in grades 6 8, All students should identify functions as linear or nonlinear and contrast their properties from tables, graphs, or equations. (p. 222). According to Curriculum Focal Points, Students use linear functions to represent, analyze, and solve a variety of problems (p. 39). According to the PARCC Model Content Framework, students also formalize their previous work with linear relationships by working with functions rules that assign to each input exactly one output (p. 35). 8

9 Grade 8 Mathematics, Quarter 1, Unit 1.3 Slope Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Graph proportional relationships on a coordinate plane. Understand that rate of change is slope. Compare proportional relationships represented in different ways. Derive the formula y = mx + b (understand m is slope and b is y-intercept) by visual representations of similar triangles. See Progressions: Expressions and Equations p. 12; commoncoretools.wordpress.com. Understand that any two points on a line can be used to find the slope. Distinguish between linear and nonlinear functions. Mathematical Practices to Be Integrated Make sense of problems and persevere in solving them. Explain correspondences between multiple representations. Continuously ask, Does this make sense? Check and evaluate progress. Use appropriate tools strategically. Decide when tools (i.e., graphing calculators) are appropriate. While graphing, know to use graphing paper, pencil, and rulers. Attend to precision. Use appropriate scales. Use proper definitions and symbols. Look for and express regularity in repeated reasoning. Pay attention to the calculation of slope while repeatedly checking to see if points are on the line. Know that the slope represents a pattern of constant change. Essential Questions What is the relationship between rate of change and slope? How do you know what the y-intercept is? What makes a function nonlinear? Using a graph and an equation in the form y = mx + b, how do you compare the slope? How can you find the slope? What does the equation y = mx + b look like on a graph? 9

10 Grade 8 Mathematics, Quarter 1, Unit 1.3 Slope (15 days) Written Curriculum Common Core State Standards for Mathematical Content Expressions and Equations 8.EE Understand the connections between proportional relationships, lines, and linear equations. 8.EE.5 8.EE.6 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed. Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b. Functions 8.F Define, evaluate, and compare functions. 8.F.3 Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function A = s 2 giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line. Common Core Standards for Mathematical Practice 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. 10

11 Grade 8 Mathematics, Quarter 1, Unit 1.3 Slope (15 days) 5 Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. 6 Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions. 8 Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (y 2)/(x 1) = 3. Noticing the regularity in the way terms cancel when expanding (x 1)(x + 1), (x 1)(x 2 + x + 1), and (x 1)(x 3 + x 2 + x + 1) might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results. Clarifying the Standards Prior Learning In sixth grade, students grow their ability to analyze proportional relationships. In seventh grade, students were able to analyze proportional relationships and they solved problems involving unit rates. They have also worked with solving problems involving scale drawings and geometric figures. Students have reproduced images at a different scale. 11

12 Grade 8 Mathematics, Quarter 1, Unit 1.3 Slope (15 days) Current Learning In eighth grade, all components of this unit are critical areas and major clusters. Students build on previous knowledge with unit rate, proportional relationships, and graphing to connect these ideas and understand that points (x, y) on a non-vertical line are the solutions of the equation y = mx + b, where m is the slope of the line as well as the unit rate. In eighth grade, students interpret unit rate as the slope of the graph. They interpret and compare different slopes. Students use similar triangles on a graph to explain why the slope of a line is the same between any two points (for example, 4/8 = 1/2). They then extend that graph to find the y-intercept. Students understand that y = mx + b defines a linear function and what a nonlinear function looks like. Future Learning In high school algebra, students will use graphing to interpret multiple functions. They will construct linear functions. Additional Findings According to Principles and Standards for School Mathematics, Students will explore relationships between symbolic expressions and graphs of lines, paying particular attention to the meaning of intercept and slope (p. 222). According to the PARCC Model Content Framework, Students build on previous work with proportion relationships, unit rates, and graphing to connect these ideas and understand that points (x, y) on a nonvertical line are the solutions of the equation y = mx + b, where m is the slope of the line as well as the unit rate of a proportional relationship (in the case b = 0) (p. 35). According to Common Core Progressions 6-8, Expressions and Equations, the connection between the unit rate in a proportional relationship and the slope of its graph depends on a connection with the geometry of similar triangles (p. 12). 12

### Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

### PA Common Core Standards Standards for Mathematical Practice Grade Level Emphasis*

Habits of Mind of a Productive Thinker Make sense of problems and persevere in solving them. Attend to precision. PA Common Core Standards The Pennsylvania Common Core Standards cannot be viewed and addressed

### For example, estimate the population of the United States as 3 times 10⁸ and the

CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

### Measurement with Ratios

Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical

### Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions

Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.

### Standards for Mathematical Practice: Commentary and Elaborations for 6 8

Standards for Mathematical Practice: Commentary and Elaborations for 6 8 c Illustrative Mathematics 6 May 2014 Suggested citation: Illustrative Mathematics. (2014, May 6). Standards for Mathematical Practice:

### Unit 1: Place value and operations with whole numbers and decimals

Unit 1: Place value and operations with whole numbers and decimals Content Area: Mathematics Course(s): Generic Course Time Period: 1st Marking Period Length: 10 Weeks Status: Published Unit Overview Students

### Problem of the Month: Perfect Pair

Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

### Division with Whole Numbers and Decimals

Grade 5 Mathematics, Quarter 2, Unit 2.1 Division with Whole Numbers and Decimals Overview Number of Instructional Days: 15 (1 day = 45 60 minutes) Content to be Learned Divide multidigit whole numbers

### Polynomial Operations and Factoring

Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.

### Evaluation Tool for Assessment Instrument Quality

REPRODUCIBLE Figure 4.4: Evaluation Tool for Assessment Instrument Quality Assessment indicators Description of Level 1 of the Indicator Are Not Present Limited of This Indicator Are Present Substantially

### Problem of the Month: Double Down

Problem of the Month: Double Down The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core

### Problem of the Month: William s Polygons

Problem of the Month: William s Polygons The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common

### Grades K-6. Correlated to the Common Core State Standards

Grades K-6 Correlated to the Common Core State Standards Kindergarten Standards for Mathematical Practice Common Core State Standards Standards for Mathematical Practice Kindergarten The Standards for

### Modeling in Geometry

Modeling in Geometry Overview Number of instruction days: 8-10 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be Integrated Use geometric shapes and their components to represent

### Overview. Essential Questions. Grade 4 Mathematics, Quarter 4, Unit 4.1 Dividing Whole Numbers With Remainders

Dividing Whole Numbers With Remainders Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Solve for whole-number quotients with remainders of up to four-digit dividends

### Pearson Algebra 1 Common Core 2015

A Correlation of Pearson Algebra 1 Common Core 2015 To the Common Core State Standards for Mathematics Traditional Pathways, Algebra 1 High School Copyright 2015 Pearson Education, Inc. or its affiliate(s).

### Overview. Essential Questions. Precalculus, Quarter 2, Unit 2.4 Interpret, Solve, and Graph Inverse Trigonometric Functions

Trigonometric Functions Overview Number of instruction days: 3 5 (1 day = 53 minutes) Content to Be Learned Use restricted domains in order to construct inverse Use inverse trigonometric functions to solve

### Performance Assessment Task Gym Grade 6. Common Core State Standards Math - Content Standards

Performance Assessment Task Gym Grade 6 This task challenges a student to use rules to calculate and compare the costs of memberships. Students must be able to work with the idea of break-even point to

### Problem of the Month: On Balance

Problem of the Month: On Balance The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core

### CORE Assessment Module Module Overview

CORE Assessment Module Module Overview Content Area Mathematics Title Speedy Texting Grade Level Grade 7 Problem Type Performance Task Learning Goal Students will solve real-life and mathematical problems

### with functions, expressions and equations which follow in units 3 and 4.

Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

### Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them

### Problem of the Month Through the Grapevine

The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems

### Students will understand 1. use numerical bases and the laws of exponents

Grade 8 Expressions and Equations Essential Questions: 1. How do you use patterns to understand mathematics and model situations? 2. What is algebra? 3. How are the horizontal and vertical axes related?

### Describing and Solving for Area and Perimeter

Grade 3 Mathematics, Quarter 2,Unit 2.2 Describing and Solving for Area and Perimeter Overview Number of instruction days: 8-10 (1 day = 90 minutes) Content to Be Learned Distinguish between linear and

### Overview. Essential Questions. Precalculus, Quarter 3, Unit 3.4 Arithmetic Operations With Matrices

Arithmetic Operations With Matrices Overview Number of instruction days: 6 8 (1 day = 53 minutes) Content to Be Learned Use matrices to represent and manipulate data. Perform arithmetic operations with

### Problem of the Month Diminishing Return

The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems

### Performance Assessment Task Bikes and Trikes Grade 4. Common Core State Standards Math - Content Standards

Performance Assessment Task Bikes and Trikes Grade 4 The task challenges a student to demonstrate understanding of concepts involved in multiplication. A student must make sense of equal sized groups of

### Grade Level Year Total Points Core Points % At Standard 9 2003 10 5 7 %

Performance Assessment Task Number Towers Grade 9 The task challenges a student to demonstrate understanding of the concepts of algebraic properties and representations. A student must make sense of the

### N Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

Performance Assessment Task Swimming Pool Grade 9 The task challenges a student to demonstrate understanding of the concept of quantities. A student must understand the attributes of trapezoids, how to

### Overview. Essential Questions. Grade 8 Mathematics, Quarter 4, Unit 4.3 Finding Volume of Cones, Cylinders, and Spheres

Cylinders, and Spheres Number of instruction days: 6 8 Overview Content to Be Learned Evaluate the cube root of small perfect cubes. Simplify problems using the formulas for the volumes of cones, cylinders,

### #1 Make sense of problems and persevere in solving them.

#1 Make sense of problems and persevere in solving them. 1. Make sense of problems and persevere in solving them. Interpret and make meaning of the problem looking for starting points. Analyze what is

### Indiana Academic Standards Mathematics: Algebra I

Indiana Academic Standards Mathematics: Algebra I 1 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Algebra I are the result of a process designed to identify,

### High School Functions Interpreting Functions Understand the concept of a function and use function notation.

Performance Assessment Task Printing Tickets Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures using algebra.

### PowerTeaching i3: Algebra I Mathematics

PowerTeaching i3: Algebra I Mathematics Alignment to the Common Core State Standards for Mathematics Standards for Mathematical Practice and Standards for Mathematical Content for Algebra I Key Ideas and

### Problem of the Month: Digging Dinosaurs

: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of

### Performance Assessment Task Baseball Players Grade 6. Common Core State Standards Math - Content Standards

Performance Assessment Task Baseball Players Grade 6 The task challenges a student to demonstrate understanding of the measures of center the mean, median and range. A student must be able to use the measures

### INDIANA ACADEMIC STANDARDS. Mathematics: Grade 6 Draft for release: May 1, 2014

INDIANA ACADEMIC STANDARDS Mathematics: Grade 6 Draft for release: May 1, 2014 I. Introduction The Indiana Academic Standards for Mathematics are the result of a process designed to identify, evaluate,

### 1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH

1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH Calendar The following tables show the CCSS focus of The Meeting activities, which appear at the beginning of each numbered lesson and are taught daily,

### Problem of the Month The Wheel Shop

Problem of the Month The Wheel Shop The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core

### Performance Level Descriptors Grade 6 Mathematics

Performance Level Descriptors Grade 6 Mathematics Multiplying and Dividing with Fractions 6.NS.1-2 Grade 6 Math : Sub-Claim A The student solves problems involving the Major Content for grade/course with

### High School Algebra Reasoning with Equations and Inequalities Solve systems of equations.

Performance Assessment Task Graphs (2006) Grade 9 This task challenges a student to use knowledge of graphs and their significant features to identify the linear equations for various lines. A student

### Georgia Standards of Excellence 2015-2016 Mathematics

Georgia Standards of Excellence 2015-2016 Mathematics Standards GSE Coordinate Algebra K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical

### Georgia Standards of Excellence Mathematics

Georgia Standards of Excellence Mathematics Standards GSE Algebra I K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical understanding

### Problem of the Month: Circular Reasoning

Problem of the Month: Circular Reasoning The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common

### High School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable.

Performance Assessment Task Quadratic (2009) Grade 9 The task challenges a student to demonstrate an understanding of quadratic functions in various forms. A student must make sense of the meaning of relations

### Mathematics Grade-Level Instructional Materials Evaluation Tool

Mathematics Grade-Level Instructional Materials Evaluation Tool Quality Review GRADE 8 Textbooks and their digital counterparts are vital classroom tools but also a major expense, and it is worth taking

### Pennsylvania System of School Assessment

Pennsylvania System of School Assessment The Assessment Anchors, as defined by the Eligible Content, are organized into cohesive blueprints, each structured with a common labeling system that can be read

### Geometry Solve real life and mathematical problems involving angle measure, area, surface area and volume.

Performance Assessment Task Pizza Crusts Grade 7 This task challenges a student to calculate area and perimeters of squares and rectangles and find circumference and area of a circle. Students must find

### Performance Assessment Task Picking Fractions Grade 4. Common Core State Standards Math - Content Standards

Performance Assessment Task Picking Fractions Grade 4 The task challenges a student to demonstrate understanding of the concept of equivalent fractions. A student must understand how the number and size

### South Carolina College- and Career-Ready (SCCCR) Algebra 1

South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR) Mathematical Process

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### Georgia Standards of Excellence Curriculum Map. Mathematics. GSE 8 th Grade

Georgia Standards of Excellence Curriculum Map Mathematics GSE 8 th Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. GSE Eighth Grade

### Overview. Essential Questions. Grade 7 Mathematics, Quarter 3, Unit 3.3 Area and Circumference of Circles. Number of instruction days: 3 5

Area and Circumference of Circles Number of instruction days: 3 5 Overview Content to Be Learned Develop an understanding of the formulas for the area and circumference of a circle. Explore the relationship

### Grade 6 Mathematics Assessment. Eligible Texas Essential Knowledge and Skills

Grade 6 Mathematics Assessment Eligible Texas Essential Knowledge and Skills STAAR Grade 6 Mathematics Assessment Mathematical Process Standards These student expectations will not be listed under a separate

### Mathematics Interim Assessment Blocks Blueprint V

6-7 Blueprint V.5.7.6 The Smarter Balanced Interim Assessment Blocks (IABs) are one of two distinct types of interim assessments being made available by the Consortium; the other type is the Interim Comprehensive

### Problem of the Month: Fair Games

Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

### Common Core State Standards for Mathematics Accelerated 7th Grade

A Correlation of 2013 To the to the Introduction This document demonstrates how Mathematics Accelerated Grade 7, 2013, meets the. Correlation references are to the pages within the Student Edition. Meeting

### a) Three faces? b) Two faces? c) One face? d) No faces? What if it s a 15x15x15 cube? How do you know, without counting?

Painted Cube (Task) Imagine a large 3x3x3 cube made out of unit cubes. The large cube falls into a bucket of paint, so that the faces of the large cube are painted blue. Now suppose you broke the cube

### This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

### D. ( 1 5 )2. Grade 8 Mathematics Item Specifications Florida Standards Assessments. MAFS.8.EE.1 Work with radicals and integer exponents.

MAFS.8.EE.1 Work with radicals and integer exponents. MAFS.8.EE.1.1 Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, 3 2 3 5 = 3 3 = 1 3 2 =

Instructional Material Bureau Summer 2012 Adoption Review Institute Form F: Publisher Alignment Form & Review Scoring Rubric Publisher information and instructions: Corporation or Publisher: Pearson Education,

### Indiana Academic Standards Mathematics: Algebra II

Indiana Academic Standards Mathematics: Algebra II 1 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Algebra II are the result of a process designed to identify,

### Standard 1: Make sense of problems and persevere in solving them

Standards for Mathematical Practice: Standard 1: Make sense of problems and persevere in solving them The Standard: Mathematically proficient students start by explaining to themselves the meaning of a

### Indiana Academic Standards Mathematics: Probability and Statistics

Indiana Academic Standards Mathematics: Probability and Statistics 1 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Probability and Statistics are the result of

### Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

### Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

### Problem of the Month: Cutting a Cube

Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

### Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School

Middle School 111.B. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter B. Middle School Statutory Authority: The provisions of this Subchapter B issued under the Texas Education

### Problem of the Month: Once Upon a Time

Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

### What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

### Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below.

Infinite Algebra 1 Kuta Software LLC Common Core Alignment Software version 2.05 Last revised July 2015 Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below. High School

### Georgia Standards of Excellence Mathematics

Georgia Standards of Excellence Mathematics Standards GSE Geometry K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical understanding

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

### Algebra I. In this technological age, mathematics is more important than ever. When students

In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,

### Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)

New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct

### CCGPS Curriculum Map. Mathematics. 7 th Grade

CCGPS Curriculum Map Mathematics 7 th Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. Unit 1 Operations with Rational Numbers a b

### DRAFT. Algebra 1 EOC Item Specifications

DRAFT Algebra 1 EOC Item Specifications The release of the updated FSA Test Item Specifications is intended to provide greater specificity for item writers in developing items to be field tested in 2016.

### Mathematics. Curriculum Content for Elementary School Mathematics. Fulton County Schools Curriculum Guide for Elementary Schools

Mathematics Philosophy Mathematics permeates all sectors of life and occupies a well-established position in curriculum and instruction. Schools must assume responsibility for empowering students with

### Performance Assessment Task Which Shape? Grade 3. Common Core State Standards Math - Content Standards

Performance Assessment Task Which Shape? Grade 3 This task challenges a student to use knowledge of geometrical attributes (such as angle size, number of angles, number of sides, and parallel sides) to

### Prentice Hall Connected Mathematics 2, 7th Grade Units 2009

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Grade 7 C O R R E L A T E D T O from March 2009 Grade 7 Problem Solving Build new mathematical knowledge through problem solving. Solve problems

### G C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

Performance Assessment Task Circle and Squares Grade 10 This task challenges a student to analyze characteristics of 2 dimensional shapes to develop mathematical arguments about geometric relationships.

### Big Ideas in Mathematics

Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards

### Tennessee Mathematics Standards 2009-2010 Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes

Tennessee Mathematics Standards 2009-2010 Implementation Grade Six Mathematics Standard 1 Mathematical Processes GLE 0606.1.1 Use mathematical language, symbols, and definitions while developing mathematical

### Grade 6 Mathematics Performance Level Descriptors

Limited Grade 6 Mathematics Performance Level Descriptors A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Grade 6 Mathematics. A student at this

### Performance Assessment Task Leapfrog Fractions Grade 4 task aligns in part to CCSSM grade 3. Common Core State Standards Math Content Standards

Performance Assessment Task Leapfrog Fractions Grade 4 task aligns in part to CCSSM grade 3 This task challenges a student to use their knowledge and understanding of ways of representing numbers and fractions

### Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

### ModuMath Algebra Lessons

ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations

### Prentice Hall Mathematics: Algebra 1 2007 Correlated to: Michigan Merit Curriculum for Algebra 1

STRAND 1: QUANTITATIVE LITERACY AND LOGIC STANDARD L1: REASONING ABOUT NUMBERS, SYSTEMS, AND QUANTITATIVE SITUATIONS Based on their knowledge of the properties of arithmetic, students understand and reason

### Content Emphases for Grade 7 Major Cluster 70% of time

Critical Area: Geometry Content Emphases for Grade 7 Major Cluster 70% of time Supporting Cluster 20% of Time Additional Cluster 10% of Time 7.RP.A.1,2,3 7.SP.A.1,2 7.G.A.1,2,3 7.NS.A.1,2,3 7.SP.C.5,6,7,8

### Unit 4: Analyze and Graph Linear Equations, Functions, and Relations

Unit 4 Table of Contents Unit 4: Analyze and Graph Linear Equations, Functions and Relations Video Overview Learning Objectives 4.2 Media Run Times 4.3 Instructor Notes 4.4 The Mathematics of Analyzing

### Greater Nanticoke Area School District Math Standards: Grade 6

Greater Nanticoke Area School District Math Standards: Grade 6 Standard 2.1 Numbers, Number Systems and Number Relationships CS2.1.8A. Represent and use numbers in equivalent forms 43. Recognize place

### Overview of Math Standards

Algebra 2 Welcome to math curriculum design maps for Manhattan- Ogden USD 383, striving to produce learners who are: Effective Communicators who clearly express ideas and effectively communicate with diverse

### Investigations. Investigations and the Common Core State Standards GRADE. in Number, Data, and Space. Infinity Prime Donna Casey

Infinity Prime Donna Casey GRADE K This fractal is a classic spiral, which is my favorite, and I m always amazed at the variations and the endlessly repeating patterns that can be created out of such a

### 5 th Grade Common Core State Standards. Flip Book

5 th Grade Common Core State Standards Flip Book This document is intended to show the connections to the Standards of Mathematical Practices for the content standards and to get detailed information at

### Using Algebra Tiles from Polynomials to Factoring

Using Algebra Tiles from Polynomials to Factoring For more information about the materials you find in this packet, contact: Chris Mikles (888) 808-4276 mikles@cpm.org CPM Educational Program 203, all