Thermal Estimation of 300 MW IGCC Processing System

Size: px
Start display at page:

Download "Thermal Estimation of 300 MW IGCC Processing System"

Transcription

1 Thermal Estimation of 300 MW IGCC Processing System Su-Yong Jung, Hyung-Taek Kim Division of Energy System, Graduate School, Ajou University, Suwon , Korea ABSTRACT: A computer simulation model in ASPEN PLUS has been developed to simulate the performance of IGCC (Integrated Gasification Combined Cycle) power plants, which is imminent to be founded in Korea. The simulative model was used to study the effects of design and thermal parameters on the efficiency and emissions from IGCC. In the model, entrained-flow gasification process was adapted. Some typical coals, such as Illinois No. 6 (USA), Shenhua and Zhongmei(China), and Roto (Indonesia), were fed into the gasifier respectively. Performance of the thermal process estimation was compared simultaneously, which specially included in heating values of raw gas and the efficiency of gasifier and whole IGCC power plant. Furthermore, the operational data of IGCC power plant were employed to verify the simulation results. From the comparison results, it can be concluded that the simulation model using ASPEN PLUS is valid and accurate. From heating values of raw gas and gasifier efficiency point of view, Shenhua coal was the best choice. Based on the plant efficiency, Zhongmei coal was favorite to Korea. Keywords: IGCC, ASPEN PLUS, Gasification, Efficiency INTRODUCTION IGCC is a technology that generates electric power using coal gasification and gasified fuel. Carbon conversion value of IGCC is higher and the influence on the environment is lower than the conventional pulverized coal power plant. Especially, in some nations like in Korea, where the weight of fossil fuel for power generation is remarkably high ( about 50%), IGCC stands out as an alternative plan to cope with sudden limitation for the emissions. Accordingly, IGCC plant is constructing in Korea currently. IGCC power plant system was composed by gasification process, desulfurization process, combined generation process. Figure 1 shows a simplified IGCC plant flow diagram. A design for IGCC plant was complex for many specifications, such as what's the type of gasifier and gas turbine, what's the fuel, is there CO 2 capture, is necessary to adapt the Air Separate Unit (ASU), etc. In this presented paper, it focused on heating value of the coal gas, gasifier and plant efficiency for each coal type, which may be used to trace system thermal performance and provide insights into components with the IGCC cycles, and act as pointers to system optimization trade-offs. Raw gas Figure 1 Simplified IGCC power plant flow diagram without CO 2 capture To whom all correspondence should be addressed ( htkim@ajou.ac.kr)

2 From Fig.1, it can be seen that analysis of IGCC power plants is complicated due to the large number of units involved, interaction between the units and presence of streams of diverse compositions and properties. The efforts needed to evaluate the performance and economic implication resulting for various options and a wide range of design and operating conditions for each piece of equipment require extensive computation of material and energy to conduct fast, simply and with accuracy, and optimization of these systems. Owing to the complexity of these systems and possibility of different equipment types and configurations thereof, a modular approach which allows independent development and testing of different sub-systems before integration is more suitable to model these systems. In this paper IGCC model developed within the ASPEN PLUS and simulation results from these models are presented. The model includes realistic representation of the various units used in commercial power plants reflecting pressure drops and characteristic temperature differences in heat transfer components. Mass and energy balances are constructed in ASPEN PLUS for each component using current practices and constraints. SIMULATION IN ASPEN PLUS ASPEN PLUS environment provides a flexible input language for describing IGCC plant components, connectivity, and computational sequences. Use of ASPEN PLUS leads to an easier way of model creation, maintenance and updating since small sections of complex and integrated systems can be created and tested as separate modules before they are integrated. It has an extensive physical property data base where the diverse stream properties required to model the material streams in an IGCC plant are all available with an allowance for addition of inhouse property data. Additionally, ASPEN PLUS has many built-in model blocks (such as heaters, pumps, stream mixers, stream splitters, compressors etc.), some of which can directly be used in power plant simulation. Where more sophisticated block ability is required, additional information may be added to the block in the form of FORTRAN subroutines, or entirely new user blocks may be created. In this work, a number of new blocks (e.g. turbine, compressor, combustor, etc.) were developed as the built-in blocks were found not to be sufficiently detailed to conduct accurate simulations. Thus, ASPEN PLUS was mainly used to model the stream connectivity and to provide the material property data. For these purposes, ASPEN PLUS is an excellent modeling tool which is versatile and relatively easy to use in modelling of advanced power cycles. ASPEN PLUS also incorporates an integrated costing and economic evaluation system. Using this feature, equipment size and cost, as well as plant cost and profitability analyses can be made. Inclusive are the tools to help the user to override the default base cost of major process equipment and the ability to estimate certain important factors from historical cost data. The next sections briefly discuss how ASPEN PLUS and the model blocks developed to simulate the performance of various key power plant components are used to simulate IGCC cycles. SIMULATION INPUT As a gasifier fuel, coal vary in many properties, such as its heating values, proximate analyses (Fixed carbon, volatile materials, ash content and moisture content), ultimate analyses (amounts of carbon, hydrogen, oxygen, sulfur, nitrogen, chloride and other impurities) and sulfur anlyses (type of sulfur present). It should be noted that, the type of coals imported to Korea are so complex, rangeing from lignite with approximate volatile matter of 24% to anthracite with an average of 5%. Majority of coals are belonged to subbituminous, the compositions of four typical coals were compiled in Table 1. Table 1 Four kinds of subbituminous coals composition Ultimate analysis(wt% db) Proximate analysis(wt% db) HHV C H O N S A FC VM Ash Mo MJ/kg Shenhua Zhongmei Illinois No Roto Feed (kg/hr) Table 2 Feeding amounts for the case of coals Coal (as received) Coal (dry) Oxidant (95% O 2 ) Nitrogen

3 For dry coal feeding system, coal is crushed to small size to feed into the gasifier. The particulate coal is carried and dried by nitrogen, without entering gasifier, the nitrogen is recycled back and then to the reclaim pile. It is the oxidant (95% O 2 ) that combusted with coal in the gasifier. Table 2 shows feeding amounts for the type of coals in the 300MW gasifier injecting system. From Table 2, it can be seen that Roto coal need much amount of nitrogen due to its higher moisture to be dried than others. In fact, the water content of coal, is also affected on the heating value of raw gas, it will be explained infra. The gasification model in ASPEN PLUS is assumed for this study is that of entrained-bed gasifier. The gasifier can operate at high pressure (5.5MPa) and the main factor is, the temperature of gasifier should be above melting temperature of ash. Melting temperature of ash was different according as type of coal. This paper determined gasifier temperature is about 1450 C. In the gasification model, the composition of raw gas calculated by equilibrium equations using Gibb's free energy minimization method. Hot raw gas from gasifier is cooled in radiative and convective heat exchanger. The waste heat from this cooling system is used to generate high-pressure steam. The cooling raw gas was routed into cyclone and filter sequentially. In the cyclone and filter, particulate in the raw gas is removed. Then the raw gas is mainly composed of CO, H 2, CO 2, N 2, CH 4, H 2 S and H 2 O etc. It was absorbed in desulfurization unit. Desulfurization process is working at low temperature. Acid gas from the regenerator, which includes that removed in the concentrator and the tail gas unit, is sent to the Claus plant. Tail gas from the Claus unit contains unreacted sulfur species such as H 2 S, COS, and SO 2 as well as elemental sulfur species of various molecular weight. In order to maintain low sulfur emissions, this stream is processed in a tail gas treating unit to recycle sulfur back to the Claus plant. Sweet gas passed through Claus unit was extinguished in the combustor of gas turbine. The combustion turbine selected for this application is based on the General Electric Model 7FA. This machine is an axial flow, constant speed unit, with variable guide vanes. Hot combustion products are expanded in four stage turbineexpander. Then exhaust gas is injected into HRSG (heat recovery steam generation). The HRSG thermally couples the waste heat rejected by the gas turbine and gasifier island with the steam turbine. The Rankine cycle used in this case is based on a commercially available 12.4 MPa/565.6 C/565.6 C single reheat configuration. The steam turbine is assumed to consist of tandem high-pressure (HP), intermediate-pressure (IP), and double-flow low-pressure (LP) turbine sections connected via a common shaft (along with the combustion turbine) and driving a 3600 rpm hydrogen-cooled generator. SIMULATION RESULTS AND DISCUSSIONS The results of a series of IGCC simulations focusing on effects of coal types and adjustable design parameters are presented and discussed. These analyses are also useful in illustrating the capabilities of the models. Tables 3 shows the composition of raw gas fed with these four type subbituminous coals. Table 3 Raw gas composition from subbituminous coals CO H Composition of CO Raw gas (mol %) N CH H 2 S+COS For the verification of simulation results, they were compared with the operational data for Illinois No. 6. Figure 2 shows comparison of raw gas compositions between simulated results and operational data. From Figure 2, it can be seen that simulation results and operational data are inosculated very well. Therefore, the primary conclusion can be reached that this simulative method using ASPEN PLUS is right and accurate. It can be used to estimate the performance of IGCC power plant. The gasification efficiency are determined for a gasifier as well as a gasification system. Figure 3 shows the gasifier efficiency and heat values (HV) of coals and raw gas. For gasifier, shown in Figure 3, the thermodynamic efficiency is defined as the energy increases of the rawgas divided by the energy decrease of the subbituminous coals. It can be seen from Figure 3, that the gasifier efficiency, three type of coals (Shenhua, Zhongmei, Illinois No. 6) were similar magnitude (about 75%) except Roto coal (68.12%). This phenomenon can be explained that Roto coal has much amount of water content, the water

4 of coal content is reduced to heating value of raw gas fired by Roto. Accordingly, the gasifier efficiency of Roto coal was the lowest CO H2 CO2 N2 CH4 H2S+COS Simulation Results Raw gas compositon (%) Operational Data Figure 2 Comparison of raw gas compositions between simulated results and operational data Heat Value (MJ/kg) Input of Coal Raw gas Gasifier Efficiency Gasifier Efficiency (%) 15 Shenhua 65 Zhongmei Illinois NO.6 Roto Figure 3 Comparison of Gasifier efficiency and Heat values of Coal and Raw gas with four types of subbituminou coals It is interesting to find that, simplex considering the gasifier efficiency (see Figure 3), shenhua coal has obtained the highest level. The second feedstock to favorite gasifier is Zhongmei and Illionis No.6 coals respectively. To maintain high efficiency of gasification, Roto coal is an unadvisable to be imported in Korea. The clean gas passed through desulfurization process is routed into the combustor of gas turbine, the fuel gas is combusted in 12 parallel combustors. NOx formation is limited by geometry and fuel gas dilution. The combustors are can-annular in configuration, where individual combustion cans are placed side-by-side in an annular chamber. Hot combustion products are expanded in the four-stage turbineexpander. It is assumed that the first two expander stages are steam cooled and that the third stage is air cooled. No cooling is expected in the fourth expander stage. The expander exhaust temperature is estimated as 568 C, which is 26 C lower than the ISO assumed value of 594 C for a natural gas-fired simple cycle gas turbine, is due to variations in firing temperature, flow rate, and flue gas specific heats. The exhaust gas compositions of four type coals are given in Table 4. Table 4 Compositions comparison of Exhaust gas out of the gas turbine with four type coals N O CO Composition of Flue H Coal (mol %) 2 O AR SO ppm NO Mass Flow rate of Flue Gas (kg/hr)

5 From Table 4, it can be seen that all the four type of coals, they have similar composition of exhaust gas from gas turbine. N 2 is the most important contributor in the component. It can be explained that, as inertia gas, the role of N 2 is to enhance the power output of gas turbine and avoid reacting with other chemical component. Attention should be paid on the CO2, CO2 emissions are high as would be expected from a coal plant of this IGCC power output. Also, the inclusion of CO2 removal system will be peremptorily employed in IGCC system. Table 5 shows evaluations output of oxygen-blown entrained-bed IGCC plant. Focused on the plant efficiency, all type of coal (Shenhua, Zhongmei, Illinois No. 6, Roto) are obtained more than 40%. It can be testified the advantage of IGCC power plant than conventional power plant. Table 5 Evaluations of oxygen-blown entrained-bed IGCC plant for coals Coal Energy Input (HHV, MW) Gas Turbine Power (MW) Steam Turbine Power (MW) Auxiliary Power Needs (MW) Net Power Output (MW) Plant Efficiency (%) Table 5 shows that relationship between the thermal efficiency of the IGCC increasing with the bottoming Rankine cycle and energy input from four types of subbituminous coals. Based on the quantity of IGCC power plant efficiency, Zhongmei is slightly better than others subbituminous coals. CONCLUSION Shenhua, Zhoumei, Illinois No.6 and Roto, four types of subbituminous coals were introduced in 300MW IGCC simulation model. Based on the comparative results of heating value of raw gas, efficiency of gasifier and plant, some conclusion have been reached: (1) Being as an commercial software, ASPEN PLUS is aptitude to be used to estimate the thermal performance of IGCC power plant. (2) Based on the gasifier efficiency, the gap of efficiency between Shenhua and Roto coals was more than 9%. The difference is caused by the water of coal content. It also affect on the heating value of raw gas, corresponding values of the two types of coals was more than MJ/hr. Therefore, Shenhua coal is reasonable choice to be imported to Korea. (3) Concerning about the IGCC plant efficiency, it is hard to distinguish which one of the four types of coals plays an significant role. But talking about small different, IGCC plant efficiency fed with Zhongmei coal obtains a higher value due to its carbon portion was higher than other coals. REFERENCES 1. Chris Higman and Maartem van der Burgt: "Gasification", (2003) 2. U.S. Department of Energy/NETL: "Evaluatin of innovative fossil fuel power plants with CO 2 removal", Yun-Kyoung Lee: "A study on the thermal designs of 300MW-class IGCC plant", Korea Electric Power Research Institute (2002) 4. Seung-Jong Lee: "Performance Evaluation of IGCC plants with variation in coal rank and coal feeding system", Institute for Advanced Engineering and Department of Systems Engineering (1997) 5. Ph. D. chae: "Combustion Engineering", (1994)

Impact of coal quality and gasifier technology on IGCC performance

Impact of coal quality and gasifier technology on IGCC performance Impact of coal quality and gasifier technology on IGCC performance Ola Maurstad 1 *, Howard Herzog**, Olav Bolland*, János Beér** *The Norwegian University of Science and Technology (NTNU), N-7491 Trondheim,

More information

Overview of Integrated Coal Gasification Combined-cycle Technology Using Low-rank Coal

Overview of Integrated Coal Gasification Combined-cycle Technology Using Low-rank Coal 19 Overview of Integrated Coal Gasification Combined-cycle Technology Using Low-rank Coal TAKAO HASHIMOTO *1 KOICHI SAKAMOTO *2 YOSHIKI YAMAGUCHI *3 KOJI OURA *4 KENICHI ARIMA *5 TAKESHI SUZUKI *6 Mitsubishi

More information

Simulation of a base case for future IGCC concepts with CO 2 capture

Simulation of a base case for future IGCC concepts with CO 2 capture Simulation of a base case for future IGCC concepts with CO 2 capture Christian Kunze, Hartmut Spliethoff Institute for Energy Systems TU München for 4 th Clean Coal Technology Conference 2009 18 20 May,

More information

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems DFC Technology Used as Electrochemical Membrane for CO 2 Purification and Capture during Power Generation FCE s Direct

More information

Development of Coal Gasification System for Producing Chemical Synthesis Source Gas

Development of Coal Gasification System for Producing Chemical Synthesis Source Gas 27 Development of Coal Gasification System for Producing Chemical Synthesis Source Gas TAKAO HASHIMOTO *1 KOICHI SAKAMOTO *1 KATSUHIRO OTA *2 TAKASHI IWAHASHI *3 YUUICHIROU KITAGAWA *4 KATSUHIKO YOKOHAMA

More information

Hybrid Power Generations Systems, LLC

Hybrid Power Generations Systems, LLC Coal Integrated Gasification Fuel Cell System Study Pre-Baseline Topical Report April 2003 to July 2003 Gregory Wotzak, Chellappa Balan, Faress Rahman, Nguyen Minh August 2003 Performed under DOE/NETL

More information

How To Run A Power Plant

How To Run A Power Plant CO 2 Capture at the Kemper County IGCC Project 2011 NETL CO 2 Capture Technology Meeting Kemper County IGCC Overview 2x1 Integrated Gasification Combined Cycle (IGCC) 2 TRansport Integrated Gasifiers (TRIG

More information

The Future of Coal-Based Power Generation With CCS UN CCS Summit James Katzer MIT Energy Initiative web.mit.edu/coal/

The Future of Coal-Based Power Generation With CCS UN CCS Summit James Katzer MIT Energy Initiative web.mit.edu/coal/ The Future of Coal-Based Power Generation With CCS UN CCS Summit James Katzer MIT Energy Initiative web.mit.edu/coal/ 1 Times Are Changing As Yogi Berra said: The Future Ain t What It Used to Be 2 Overview

More information

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS ASME ORC 2015 3rd International Seminar on ORC Power Systems 12-14 October 2015, Brussels, Belgium PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS Vittorio

More information

B0401 Abstract 029 Oral Presentation Session B04 Innovative Applications and Designs - Tuesday, July 1, 2008 16:00 h

B0401 Abstract 029 Oral Presentation Session B04 Innovative Applications and Designs - Tuesday, July 1, 2008 16:00 h Reference System for a Power Plant Based on Biomass Gasification and SOFC Richard Toonssen, Nico Woudstra, Adrian H.M. Verkooijen Delft University of Technology Energy Technology, Process & Energy department

More information

Outlook on Integrated Gasification Combined Cycle (IGCC) Technology

Outlook on Integrated Gasification Combined Cycle (IGCC) Technology The IGCC Process: From Coal To Clean Electric Power Outlook on Integrated Gasification Combined Cycle (IGCC) Technology Testimony of Edward Lowe Gas Turbine-Combined Cycle Product Line Manager General

More information

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Boiler Calculations Sebastian

More information

1.3 Properties of Coal

1.3 Properties of Coal 1.3 Properties of Classification is classified into three major types namely anthracite, bituminous, and lignite. However there is no clear demarcation between them and coal is also further classified

More information

Design and Test Operation Performance of 1,500 C Class Gas Turbine Combined-Cycle Power Plant:

Design and Test Operation Performance of 1,500 C Class Gas Turbine Combined-Cycle Power Plant: 31 Design and Test Operation Performance of 1,500 C Class Gas Turbine Combined-Cycle Power Plant: Construction of Group 1 of the Tokyo Electric Power Company s Kawasaki Thermal Power Station KIYOSHI KAWAKAMI

More information

A Review on Power Generation in Thermal Power Plant for Maximum Efficiency

A Review on Power Generation in Thermal Power Plant for Maximum Efficiency International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 4, Number 1 (2014), pp. 1-8 Research India Publications http://www.ripublication.com/ijame.htm A Review on Power Generation

More information

Power Generation through Surface Coal Gasification

Power Generation through Surface Coal Gasification Paper ID : 20100412 Power Generation through Surface Coal Gasification Sri Tapas Maiti, Sri S. Mustafi IEOT, ONGC, MUMBAI, INDIA Email : maiti.tapas@gmail.com Abstract Introduction India s oil reserve

More information

Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling

Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 8, Issue 6 (Sep. - Oct. 2013), PP 25-29 Performance of the Boiler and To Improving the Boiler Efficiency

More information

Tampa Electric Company. Biomass Test Burn Report Polk Power Station Unit 1

Tampa Electric Company. Biomass Test Burn Report Polk Power Station Unit 1 Tampa Electric Company Biomass Test Burn Report Polk Power Station Unit 1 April 2002 1.0 INTRODUCTION...2 2.0 BACKGROUND...2 2.1 BIOMASS FUEL HANDLING...2 2.2 PROCESS DATA COLLECTION...3 2.3 EMISSIONS

More information

A pound of coal supplies enough electricity to power ten 100-watt light bulbs for about an hour.

A pound of coal supplies enough electricity to power ten 100-watt light bulbs for about an hour. Did You Know? A pound of coal supplies enough electricity to power ten 100-watt light bulbs for about an hour. Nonrenewable Coal Coal Basics Coal Takes Millions of Years To Create Coal is a combustible

More information

Continuous flow direct water heating for potable hot water

Continuous flow direct water heating for potable hot water Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial

More information

Enhanced power and heat generation from biomass and municipal waste. Torsten Strand. Siemens Power Generation Industrial Applications

Enhanced power and heat generation from biomass and municipal waste. Torsten Strand. Siemens Power Generation Industrial Applications Enhanced power and heat generation from biomass and municipal waste Torsten Strand Siemens Power Generation Industrial Applications Enhanced power and heat generation from biomass and municipal waste Torsten

More information

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2 WASTE HEAT BOILERS CONTENTS 1 INTRODUCTION... 3 2 CONCEPTION OF WASTE HEAT BOILERS... 4 2.1 Complex Solution...4 2.2 Kind of Heat Exchange...5 2.3 Heat Recovery Units and Their Usage...5 2.4 Materials

More information

How To Power A Coal Plant With Electricity From A Gasifier

How To Power A Coal Plant With Electricity From A Gasifier 1 Hybrid Power for Cracking Power Plant CO 2 Sequestration (pumping enormous volumes of CO 2 underground and hoping it won't leak out) is impractical for several technical and political reasons. The clear

More information

(205) 670-5088 (205) 670-5863

(205) 670-5088 (205) 670-5863 Ruth Ann Yongue Roxann Laird Senior Engineer Assistant Project Director rayongue@southernco.com rfleonar@southernco.com (205) 670-5088 (205) 670-5863 Southern Company Services Power Systems Development

More information

Integrated Modeling of Carbon Management Technologies for Electric Power Systems. Some Questions to be Addressed

Integrated Modeling of Carbon Management Technologies for Electric Power Systems. Some Questions to be Addressed Integrated Modeling of Carbon Management Technologies for Electric Power Systems Edward S. Rubin and Anand B. Rao Department of Engineering & Public Policy Carnegie Mellon University July 20, 2000 Some

More information

Drying of Woody Biomass. Process Engineering / GEA Barr-Rosin

Drying of Woody Biomass. Process Engineering / GEA Barr-Rosin Drying of Woody Biomass BioPro Expo & Marketplace / Atlanta, GA / March 14-16, 2011 Drying of Woody Biomass Conventional Direct Fired Dryer Technology Proprietary work of the Copyright Owner Issues with

More information

Vogt Power Emission Control Solutions

Vogt Power Emission Control Solutions ONE SOURCE ONE PURPOSE MANY SOLUTIONS Vogt Power Emission Control Solutions Kelly Flannery Kristen Cooper Andrew Heid Chief Thermal Engineer Simple Cycle Design Lead Emission Catalyst Design Lead Presented

More information

Performance and costs of power plants with capture and storage of CO 2

Performance and costs of power plants with capture and storage of CO 2 ARTICLE IN PRESS Energy 32 (2007) 1163 1176 www.elsevier.com/locate/energy Performance and costs of power plants with capture and storage of CO 2 John Davison IEA Greenhouse Gas R&D Programme, Orchard

More information

Thermodynamical aspects of the passage to hybrid nuclear power plants

Thermodynamical aspects of the passage to hybrid nuclear power plants Energy Production and Management in the 21st Century, Vol. 1 273 Thermodynamical aspects of the passage to hybrid nuclear power plants A. Zaryankin, A. Rogalev & I. Komarov Moscow Power Engineering Institute,

More information

Assignment 8: Comparison of gasification, pyrolysis and combustion

Assignment 8: Comparison of gasification, pyrolysis and combustion AALTO UNIVERSITY SCHOOL OF CHEMICAL TECHNOLOGY KE-40.4120 Introduction to biorefineries and biofuels Assignment 8: Comparison of gasification, pyrolysis and combustion Aino Siirala 309141 Assignment submitted

More information

Process Technology. Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues

Process Technology. Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues Process Technology Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues The INEOS Bio process technology produces carbon-neutral bioethanol

More information

Siemens Fuel Gasification Technology at a Glance

Siemens Fuel Gasification Technology at a Glance Siemens Fuel Gasification Technology at a Glance Halsbrücker Str. 34 09599 Freiberg Germany Copyright Siemens AG 2008. All rights reserved. SFGT Facilities in Freiberg, Germany 5MW Office 3MW Freiberg

More information

Module 5: Combustion Technology. Lecture 33: Combustion air calculation

Module 5: Combustion Technology. Lecture 33: Combustion air calculation 1 P age Module 5: Combustion Technology Lecture 33: Combustion air calculation 2 P age Keywords: Heat of combustion, stoichiometric air, excess air, natural gas combustion Combustion air calculation The

More information

NITROGEN OXIDES FORMATION in combustion processes COMBUSTION AND FUELS

NITROGEN OXIDES FORMATION in combustion processes COMBUSTION AND FUELS NITROGEN OXIDES FORMATION in combustion processes NITROGEN OXIDES FORMED DURING COMBUSTION N 2 O - nitrous oxide NO - nitric oxide NO 2 - nitrogen dioxide N = 14, O 2 =16, NO = 30, NO 2 = 46 CONTRIBUTION

More information

AN OFFER TECHNOLOGY FOR THE DISPOSAL OF M6 PROPELLANT WASTE. Wrocław, POLAND, 02-2015.

AN OFFER TECHNOLOGY FOR THE DISPOSAL OF M6 PROPELLANT WASTE. Wrocław, POLAND, 02-2015. AN OFFER TECHNOLOGY FOR THE DISPOSAL OF M6 PROPELLANT WASTE Wrocław, POLAND, 02-2015. 002664 AN OFFER The ATON-HT SA co has developed technology to neutralize, and utilize hazardous wastes. This also includes

More information

Stora Enso Fors Ltd Sweden

Stora Enso Fors Ltd Sweden THE ANALYSIS REPORT OF PLANT NO. 3 Cofiring of biomass - evaluation of fuel procurement and handling in selected existing plants and exchange of information (COFIRING) - Part 2 Stora Enso Fors Ltd Sweden

More information

Source: EIA Natural Gas Issues and Trends 1998

Source: EIA Natural Gas Issues and Trends 1998 7.0 System Redesign Analysis 7.1 Emissions Natural gas is a clean burning fossil fuel. It consists of a mixture of hydrocarbon gases, primarily Methane (CH 4 ). In analyzing the combustion process, it

More information

COAL GASIFICATION AND CO 2 CAPTURE

COAL GASIFICATION AND CO 2 CAPTURE COAL GASIFICATION AND CO 2 CAPTURE an overview of some process options and their consequences Use this area for cover image (height 6.5cm, width 8cm) Evert Wesker Shell Global Solutions International B.V.

More information

Natural Gas Conversions of Existing Coal-Fired Boilers

Natural Gas Conversions of Existing Coal-Fired Boilers White Paper MS-14 Natural Gas Conversions of Existing Coal-Fired s Authors: F.J. Binkiewicz Jr., P.E. R.J. Kleisley B.E. McMahon J.E. Monacelli D.A. Roth D.K. Wong Babcock & Wilcox Power Generation Group,

More information

TODAY S THERMAL OXIDIZER SOLUTIONS TO MEET TOMORROW S CHALLENGES

TODAY S THERMAL OXIDIZER SOLUTIONS TO MEET TOMORROW S CHALLENGES Callidus Oxidizers for Waste Destruction TODAY S THERMAL OXIDIZER SOLUTIONS TO MEET TOMORROW S CHALLENGES Thermal oxidizer systems Catalytic oxidizer systems Callidus, experts in Thermal Oxidizers Wide

More information

COKE PRODUCTION FOR BLAST FURNACE IRONMAKING

COKE PRODUCTION FOR BLAST FURNACE IRONMAKING COKE PRODUCTION FOR BLAST FURNACE IRONMAKING By Hardarshan S. Valia, Scientist, Ispat Inland Inc INTRODUCTION A world class blast furnace operation demands the highest quality of raw materials, operation,

More information

COMPARISON OF PROCESS FLOWS: FLUID BED COMBUSTOR AND GLASSPACK

COMPARISON OF PROCESS FLOWS: FLUID BED COMBUSTOR AND GLASSPACK COMPARISON OF PROCESS FLOWS: FLUID BED COMBUSTOR AND GLASSPACK PURPOSE The purpose of this document is to present the assumptions and calculations used to prepare Minergy Drawing 100-0204-PP00 (attached).

More information

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink COMBUSTION In order to operate a heat engine we need a hot source together with a cold sink Occasionally these occur together in nature eg:- geothermal sites or solar powered engines, but usually the heat

More information

Latest Low-NOx Combustion Technology for Pulverized-coal-fired Boilers

Latest Low-NOx Combustion Technology for Pulverized-coal-fired Boilers Hitachi Review Vol. 58 (29), No.5 187 Latest Low- Combustion Technology for Pulverized-coal-fired Boilers Kenichi Ochi Kenji Kiyama Hidehisa Yoshizako, Dr. Eng. Hirofumi Okazaki Masayuki Taniguchi, Dr.

More information

OPPORTUNITIES FOR HEAT RATE REDUCTIONS IN EXISTING COAL- FIRED POWER PLANTS: A STRATEGY TO REDUCE CARBON CAPTURE COSTS

OPPORTUNITIES FOR HEAT RATE REDUCTIONS IN EXISTING COAL- FIRED POWER PLANTS: A STRATEGY TO REDUCE CARBON CAPTURE COSTS CONFERENCE PROCEEDINGS OPPORTUNITIES FOR HEAT RATE REDUCTIONS IN EXISTING COAL- FIRED POWER PLANTS: A STRATEGY TO REDUCE CARBON CAPTURE COSTS by Edward K. Levy, Nenad Sarunac, and Carlos Romero Energy

More information

Clean Energy Systems, Inc.

Clean Energy Systems, Inc. Clean Energy Systems, Inc. Clean Energy Systems (CES) technology is a zero emission, oxy-fuel combustion power plant. CES approach has been to apply gas generators and high-temperature, high-pressure,

More information

Making Coal Use Compatible with Measures to Counter Global Warming

Making Coal Use Compatible with Measures to Counter Global Warming Making Use Compatible with Measures to Counter Global Warming The J-POWER Group is one of the biggest coal users in Japan, consuming approximately 2 million tons of coal per year at eight coal-fired power

More information

COMBUSTION STUDIES OF NATURAL GAS AND SYN-GAS WITH HUMID AIR

COMBUSTION STUDIES OF NATURAL GAS AND SYN-GAS WITH HUMID AIR COMBUSTION STUDIES OF NATURAL GAS AND SYN-GAS WITH HUMID AIR Abstract Dr. Michael Nakhamkin Eric Swensen Hubert Paprotna Energy Storage and Power Consultants 200 Central Avenue Mountainside, New Jersey

More information

HEAT RECOVERY OPTIONS FOR DRYERS AND OXIDIZERS

HEAT RECOVERY OPTIONS FOR DRYERS AND OXIDIZERS HEAT RECOVERY OPTIONS FOR DRYERS AND OXIDIZERS William K. Scullion, Application Engineering Leader, MEGTEC Systems, De Pere, WI Introduction Competitive pressures continuously motivate us to examine our

More information

COGENERATION. This section briefly describes the main features of the cogeneration system or a Combined Heat & Power (CHP) system. 36 Units.

COGENERATION. This section briefly describes the main features of the cogeneration system or a Combined Heat & Power (CHP) system. 36 Units. COGENERATION 1. INTRODUCTION... 1 2. TYPES OF COGENERATION SYSTEMS... 2 3. ASSESSMENT OF COGENERATION SYSTEMS... 10 4. ENERGY EFFICIENCY OPPORTUNITIES... 14 5. OPTION CHECKLIST... 16 6. WORKSHEETS... 17

More information

Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant

Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant Supercritical CO2 Power Cycle Symposium September 9-10, 2014 Pittsburg, Pennsylvania USA Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant Dr. Leonid Moroz, Dr. Maksym

More information

COMPARISON CONCERNING TO THE COGENERATION SYSTEMS DEVELOPMENT

COMPARISON CONCERNING TO THE COGENERATION SYSTEMS DEVELOPMENT COMPARISON CONCERNING TO THE COGENERATION SYSTEMS DEVELOPMENT Radu-Cristian DINU, Ion MIRCEA, Emilia-Marinela DINU University of Craiova, Faculty of Electrotechnique, Electroputere S.A., Craiova rcdinu@elth.ucv.ro,

More information

Improving the Thermal Efficiency of Coal-Fired Power Plants: A Data Mining Approach

Improving the Thermal Efficiency of Coal-Fired Power Plants: A Data Mining Approach Paper 1805-2014 Improving the Thermal Efficiency of Coal-Fired Power Plants: A Data Mining Approach Thanrawee Phurithititanapong and Jongsawas Chongwatpol NIDA Business School, National Institute of Development

More information

The Lodi Energy Center, owned

The Lodi Energy Center, owned Lodi s 300MW Flex 30 plant ushers in a new era for the US By Junior Isles The Siemens Flex Plant 30 at Lodi designed to deliver 200MW of power to the grid within 30 minutes of startup is capable of daily

More information

VALIDATION, MODELING, AND SCALE-UP OF CHEMICAL LOOPING COMBUSTION WITH OXYGEN UNCOUPLING

VALIDATION, MODELING, AND SCALE-UP OF CHEMICAL LOOPING COMBUSTION WITH OXYGEN UNCOUPLING VALIDATION, MODELING, AND SCALE-UP OF CHEMICAL LOOPING COMBUSTION WITH OXYGEN UNCOUPLING A research program funded by the University of Wyoming School of Energy Resources Executive Summary Principal Investigator:

More information

State of the Art (SOTA) Manual for Boilers and Process Heaters

State of the Art (SOTA) Manual for Boilers and Process Heaters State of the Art (SOTA) Manual for Boilers and Process Heaters Original Date: July 1997 Revision Date: February 22, 2004 State of New Jersey Department of Environmental Protection Air Quality Permitting

More information

Alstom Development of Oxyfuel PC and CFB Power Plants

Alstom Development of Oxyfuel PC and CFB Power Plants Alstom Development of Oxyfuel PC and CFB Power Plants Frank Kluger & John Marion 3 rd Oxy-Combustion Workshop Yokohama, Japan March 06, 2008 Improvement Measures for Fossil Power Plants Regarding CO2 Mitigation

More information

Thermo Conversions Gasification (TCG) Technology

Thermo Conversions Gasification (TCG) Technology Biomass Syngas Flame at Sunrise in Colorado Thermo Conversions Gasification (TCG) Technology TCG Global, LLC 8310 S. Valley Hwy Suite 285, Englewood CO 80112 (303) 867-4247 www.tcgenergy.com TCG Global,

More information

THE PRODUCTION OF ELECTRICITY FROM WOOD AND OTHER SOLID BIOMASS

THE PRODUCTION OF ELECTRICITY FROM WOOD AND OTHER SOLID BIOMASS THE PRODUCTION OF ELECTRICITY FROM WOOD AND OTHER SOLID BIOMASS RTP TM /ADVANCED CYCLE VS. COMBUSTION STEAM CYCLES OR WHY NOT SIMPLY COMBUST? For decades, the only commercial option available for the production

More information

LANDFILL GAS TO ENERGY- COMBINED ENGINE AND ORC-PROCESS

LANDFILL GAS TO ENERGY- COMBINED ENGINE AND ORC-PROCESS LANDFILL GAS TO ENERGY- COMBINED ENGINE AND ORC-PROCESS Dr Petri Kouvo Helsinki Region Environmental Services Authority THIRD INTERNATIONAL SYMPOSIUM ON ENERGY FROM BIOMASS AND WASTE Venice, Italy 8-11

More information

Process Integration of Chemical Looping Combustion with Oxygen Uncoupling in a Coal-Fired Power Plant

Process Integration of Chemical Looping Combustion with Oxygen Uncoupling in a Coal-Fired Power Plant Process Integration of Chemical Looping Combustion with Oxygen Uncoupling in a Coal-Fired Power Plant Petteri Peltola 1, Maurizio Spinelli 2, Aldo Bischi 2, Michele Villani 2, Matteo C. Romano 2, Jouni

More information

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

More information

Steam Turbine Concepts for the Future Volatile Power Market

Steam Turbine Concepts for the Future Volatile Power Market Steam Turbine Concepts for the Future Volatile Power Market Power-Gen Europe June 12 14, 2012 Michael Wechsung Thomas Loeper Radim Znajda Siemens AG - Energy Sector Fossil Power Generation Agenda Situation

More information

AMMONIA AND UREA PRODUCTION

AMMONIA AND UREA PRODUCTION AMMONIA AND UREA PRODUCTION Urea (NH 2 CONH 2 ) is of great importance to the agriculture industry as a nitrogen-rich fertiliser. In Kapuni, Petrochem manufacture ammonia and then convert the majority

More information

MHI s Energy Efficient Flue Gas CO 2 Capture Technology and Large Scale CCS Demonstration Test at Coal-fired Power Plants in USA

MHI s Energy Efficient Flue Gas CO 2 Capture Technology and Large Scale CCS Demonstration Test at Coal-fired Power Plants in USA MHI s Energy Efficient Flue Gas CO 2 Capture Technology and Large Scale CCS Demonstration Test at Coal-fired Power Plants in USA 26 MASAKI IIJIMA *1 TATSUTO NAGAYASU *2 TAKASHI KAMIJYO *3 SHINSUKE NAKATANI

More information

Experimental Study on Super-heated Steam Drying of Lignite

Experimental Study on Super-heated Steam Drying of Lignite Advanced Materials Research Vols. 347-353 (2012) pp 3077-3082 Online available since 2011/Oct/07 at www.scientific.net (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.347-353.3077

More information

Sixth Annual Conference on Carbon Capture & Sequestration

Sixth Annual Conference on Carbon Capture & Sequestration Sixth Annual Conference on Carbon Capture & Sequestration Expediting Deployment of Industrial Scale Systems Geologic Storage - EOR An Opportunity for Enhanced Oil Recovery in Texas Using CO 2 from IGCC

More information

THM Gas Turbines Heavy duty gas turbines for industrial applications

THM Gas Turbines Heavy duty gas turbines for industrial applications THM Gas Turbines THM Gas Turbines Heavy duty gas turbines for industrial applications Combined advantages The THM 1304 heavy duty gas turbine family consists of two members with ISO power outputs of 10,500

More information

Process Heater Burners, Flare Systems, Thermal Oxidizers and Catalyst Systems. Combustion Technology

Process Heater Burners, Flare Systems, Thermal Oxidizers and Catalyst Systems. Combustion Technology Combustion Technology INNOVATIVE SOLUTIONS FOR COMBUSTION AND EMISSIONS CHALLENGES Process Heater Burners, Flare Systems, Thermal Oxidizers and Catalyst Systems Callidus Technologies by Honeywell - Experie

More information

Overview of Waste Heat Recovery for Power and Heat

Overview of Waste Heat Recovery for Power and Heat Overview of Waste Heat Recovery for Power and Heat Dave Sjoding Northwest Clean Energy Application Center Washington State University Extension Energy Program Waste Heat Recovery for Power and Heat Workshop

More information

From solid fuels to substitute natural gas (SNG) using TREMP

From solid fuels to substitute natural gas (SNG) using TREMP From solid fuels to substitute natural gas (SNG) using TREMP Topsøe Recycle Energy-efficient Methanation Process Introduction Natural gas is a clean, environmentally friendly energy source and is expected

More information

Sewage sludge treatment with oxygen enrichement and oxyfuel combustion in CFBC - new pilot plant results

Sewage sludge treatment with oxygen enrichement and oxyfuel combustion in CFBC - new pilot plant results Sewage sludge treatment with oxygen enrichement and oxyfuel combustion in CFBC - new pilot plant results 64 TH IEA FLUIDIZED BED CONVERSION MEETING Naples 3 rd of June, 2012 Authors: David Wöß, Gregor

More information

MHI Air-Blown IGCC Technology & Application to Chinese Project

MHI Air-Blown IGCC Technology & Application to Chinese Project MHI -Blown Technology & Application to Chinese Project Mitsubishi Blown in Japan November, 2011 Outline of MHI -blown System Gasification / Gas Clean-up Island Produce clean syngas from coal effectively

More information

WATER WALL BOILER FOR AIR AND OXYGEN FIRED CLAUS SULPHUR RECOVERY UNITS

WATER WALL BOILER FOR AIR AND OXYGEN FIRED CLAUS SULPHUR RECOVERY UNITS WATER WALL BOILER FOR AIR AND OXYGEN FIRED CLAUS SULPHUR RECOVERY UNITS Abstract Mahin RAMESHNI, P.E. Technical Director, Sulphur Technology Mahin.Rameshni@worleyparsons.com WorleyParsons 125 West Huntington

More information

IAPWS Certified Research Need - ICRN

IAPWS Certified Research Need - ICRN IAPWS Certified Research Need - ICRN ICRN 23 Dew Point for Flue Gas of Power-Plant Exhaust The IAPWS Working Group Industrial Requirements and Solutions has examined the published work in the area of dew-point

More information

The Empirical Formula of a Compound

The Empirical Formula of a Compound The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,

More information

Hydrogen from Natural Gas via Steam Methane Reforming (SMR)

Hydrogen from Natural Gas via Steam Methane Reforming (SMR) Hydrogen from Natural Gas via Steam Methane Reforming (SMR) John Jechura jjechura@mines.edu Updated: January 4, 2015 Energy efficiency of hydrogen from natural gas Definition of energy efficiency From

More information

Exergy Analysis and Efficiency Improvement of a Coal Fired Thermal Power Plant in Queensland

Exergy Analysis and Efficiency Improvement of a Coal Fired Thermal Power Plant in Queensland Chapter 1 Exergy Analysis and Efficiency Improvement of a Coal Fired Thermal Power Plant in Queensland R. Mahamud, M.M.K. Khan, M.G. Rasul and M.G. Leinster Additional information is available at the end

More information

Last update: January 2009 Doc.: 08A05203_e

Last update: January 2009 Doc.: 08A05203_e Last update: January 2009 Doc.: 08A05203_e Organic Rankine Cycle (ORC) modules ORC is a commercial technology for distributed production of combined heat and power from various energy sources. TURBODEN

More information

Siemens Power Generation Innovationstrends bei Anlagen und Komponenten in der Energieerzeugung

Siemens Power Generation Innovationstrends bei Anlagen und Komponenten in der Energieerzeugung Siemens Power Generation 2006. All Rights Reserved Siemens Power Generation Innovationstrends bei Anlagen und Komponenten in der Energieerzeugung Nicolas Vortmeyer CTO, Siemens Power Generation Key Drivers

More information

Optimal Power Plant Integration of Post-Combustion CO 2 Capture. Dr. Tobias Jockenhövel Dr. Rüdiger Schneider Michael Sandell Lars Schlüter

Optimal Power Plant Integration of Post-Combustion CO 2 Capture. Dr. Tobias Jockenhövel Dr. Rüdiger Schneider Michael Sandell Lars Schlüter Optimal Power Plant Integration of Post-Combustion CO 2 Capture Dr. Tobias Jockenhövel Dr. Rüdiger Schneider Michael Sandell Lars Schlüter Siemens AG, Energy Sector Germany POWER-GEN Europe 2009 Cologne,

More information

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS 2 Be able to evaluate

More information

Review of Potential Efficiency Improvements at Coal-Fired Power Plants

Review of Potential Efficiency Improvements at Coal-Fired Power Plants Review of Potential Efficiency Improvements at Coal-Fired Power Plants Introduction The Clean Air Markets Division, U.S. Environmental Protection Agency requested that Perrin Quarles Associates, Inc.,

More information

GE Energy LMS100. Flexible Power

GE Energy LMS100. Flexible Power GE Energy LMS100 Flexible Power GE Energy is a leading supplier of aeroderivative gas turbines and packaged generator sets for industrial and marine applications. We provide power-generating equipment

More information

The Technology and Business of Power Andrew Valencia, P.E. Lower Colorado River Authority

The Technology and Business of Power Andrew Valencia, P.E. Lower Colorado River Authority The Technology and Business of Power Andrew Valencia, P.E. Lower Colorado River Authority 1 2 What is Efficiency? Efficiency: What you get divided by what you pay for Heatrate is a measure of plant efficiency

More information

HYBRID WAY EAF OFF GAS HEAT RECOVERY -ECORECS- MASANARI YAMAZAKI*1, YASUHIRO SATO*2, RYUTARO SEKI*3

HYBRID WAY EAF OFF GAS HEAT RECOVERY -ECORECS- MASANARI YAMAZAKI*1, YASUHIRO SATO*2, RYUTARO SEKI*3 HYBRID WAY EAF OFF GAS HEAT RECOVERY -ECORECS- BY MASANARI YAMAZAKI*1, YASUHIRO SATO*2, RYUTARO SEKI*3 SYNOPSIS JP Steel Plantech Co. has developed Hybrid system for EAF off-gas heat recovery, with EAF

More information

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction General Chemistry I (FC, 09-10) Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant, does not

More information

LOW-RANK COAL GASIFICATION STUDIES USING THE PSDF TRANSPORT GASIFIER

LOW-RANK COAL GASIFICATION STUDIES USING THE PSDF TRANSPORT GASIFIER LOW-RANK COAL GASIFICATION STUDIES USING THE PSDF TRANSPORT GASIFIER J. atthew Nelson* (jmnelson@southernco.com: 205-670-5065) Brandon. Davis, X. Guan, Roxann F. Leonard, P. Vimalchand Southern Company,

More information

Financing New Coal-Fired Power Plants

Financing New Coal-Fired Power Plants Financing New Coal-Fired Power Plants Guidance Note 2011 Coal is likely to be part of the energy mix for the foreseeable future. Therefore, to limit dangerous climate change, coal-fired power generation

More information

Simulation of Coal Gasification Process using ASPEN PLUS

Simulation of Coal Gasification Process using ASPEN PLUS INSTITUTE OF TECHNOLOGY, NIRMA UNIVERSITY, AHMEDABAD 382 481, 08-10 DECEMBER, 2011 1 Simulation of Coal Gasification Process using ASPEN PLUS Rajul Nayak, Raju K Mewada Abstract-- Gasification is an important

More information

Basics of Steam Generation

Basics of Steam Generation Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Basics of Steam Generation Sebastian

More information

5. State the function of pulveriser. The pulverisers are the equipments which are used to powdered coal.

5. State the function of pulveriser. The pulverisers are the equipments which are used to powdered coal. 413 POWER PLANT ENGINEERING PART-A 1. Define Power. Power is the rate at which energy is used (or) Energy/time. 2. What are the types of fuels? Solid fuel Liquid fuel Gaseous fuel (Any one among the above

More information

Boiler efficiency measurement. Department of Energy Engineering

Boiler efficiency measurement. Department of Energy Engineering Boiler efficiency measurement Department of Energy Engineering Contents Heat balance on boilers Efficiency determination Loss categories Fluegas condensation principals Seasonal efficiency Emission evaluation

More information

Efficiency Metrics for CHP Systems: Total System and Effective Electric Efficiencies

Efficiency Metrics for CHP Systems: Total System and Effective Electric Efficiencies Efficiency Metrics for CHP Systems: Total System and Effective Electric Efficiencies Combined heat and power (CHP) is an efficient and clean approach to generating power and thermal energy from a single

More information

Design and Operating Experience of the Latest 1,000-MW Coal-Fired Boiler

Design and Operating Experience of the Latest 1,000-MW Coal-Fired Boiler Hitachi Review Vol. 47 (1998), No. 5 183 Design and Operating Experience of the Latest 1,000-MW Coal-Fired Boiler Kazuhito Sakai Shigeki Morita Tsutomu Yamamoto Toshikazu Tsumura ABSTRACT: The Matsuura

More information

Iron and Steel Manufacturing

Iron and Steel Manufacturing Pollution Prevention and Abatement Handbook WORLD BANK GROUP Effective July 1998 Iron and Steel Manufacturing Industry Description and Practices Steel is manufactured by the chemical reduction of iron

More information

Gasification of Oil Refinery Waste for Power and Hydrogen Production

Gasification of Oil Refinery Waste for Power and Hydrogen Production Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7 9, 2014 Gasification of Oil Refinery Waste for Power and Hydrogen Production

More information

C H A P T E R 3 FUELS AND COMBUSTION

C H A P T E R 3 FUELS AND COMBUSTION 85 C H A P T E R 3 FUELS AND COMBUSTION 3.1 Introduction to Combustion Combustion Basics The last chapter set forth the basics of the Rankine cycle and the principles of operation of steam cycles of modern

More information

PART 11: START-UP PROCEDURES FOR THE INSTALLER

PART 11: START-UP PROCEDURES FOR THE INSTALLER PART 11: START-UP PROCEDURES FOR THE INSTALLER NOTICE It is important to note that the user can adjust the heat curve down by adjusting the central heating temperature to a lower setting. 212 CENTRAL HEATING

More information

Siemens Gas Turbines over 100 MW

Siemens Gas Turbines over 100 MW Siemens Gas Turbines over 100 MW Proven and reliable Answers for energy. State-of-the-art and innovative gas turbines to meet today s energy needs Changes in today s energy markets are presenting power

More information