Objective: Identification of the main topographic features on Mars and determination their relative ages.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Objective: Identification of the main topographic features on Mars and determination their relative ages."

Transcription

1 Objective: Identification of the main topographic features on Mars and determination their relative ages. In this lab we use the terms older and newer (or younger ) to describe the relative ages of individual geographical features on the surface of Mars. A feature which formed later in the history of the planet will be referred to as younger or newer than those features which formed earlier. You will use the interactive maps of Mars compiled from recent images collected by the Mars Global Surveyor and Mars Odyssey spacecraft at Google Mars ( Turn on the computer at your station and navigate to this site. You may also find it helpful to use the images at mars.html You will use two methods (described below) to determine the sequence of formation for adjacent geographic structures on the surface of Mars. You will work through a series of exercises, answering questions about each feature to help make these determinations. Your score for this assignment will be based upon the accuracy of an ordered list of features from youngest to oldest, and the annotations you make on the sketch map, on the last page of this handout: Method 1 - Crater Density: Rocks of all sizes have been falling on Mars since the planet formed. The impacts of these rocks produced craters. If the craters are not weathered away, nor covered up by lava or dust, then the number of craters per unit area is so large that they generally overlap. Large portions of Mars are covered with such overlapping craters. Figure 1. Lightly cratered region B has been modified by some event that obscured or obliterated the the craters evident in region A. We say that surface of region B is newer than region surface of region A However, if the craters are covered by subsequent lava flows (as on some portions of the Moon and Mars) or eroded away by the action of wind and water (as on Earth) or covered with dust (as with very small craters on the Moon and Mars), then the number of visible craters per unit area will be reduced. Comparing the number of craters per unit area in different regions allows us to determine which region was more recently modified by some crater-obscuring event. Method 2 - Superposition: Superpose means to place above, or over top of. Whatever is on top of, or partially obliterates, another feature may be taken to be younger (more recent) than the 1/8

2 Figure 2. The later impact formed a crater superposed upon the crater formed by an earlier impact. underlying features. In the images above, the the crater labeled A was formed after the crater labeled B Figure 3. Use the buttons in the upper right hand corner of the map to change the view between elevation, infrared, and visible wavelength images of mars. EXERCISES The colors of the elevation map correspond to distances above a mean altitude (there is no liquid water on Mars from which to establish a sea level ). This elevation is designated 0 km and corresponds to a yellowgreen color on the map. On the last page of this hand-out you will find a sketch map representing the entire surface of Mars between 70 N latitude and 70 S latitude. You will use this map to indicate the location of some of the major features we will examine: four major volcanoes, a very large canyon two very large craters even larger roughly circular smooth regions In the following exercises, you will identify these, and some other major features, on the surface of Mars and determine their relative ages. You will then list all of the features you have identified from most recent to oldest. Your grade for this lab will be based on a correctly labeled sketch map and a correctly ordered list. 2/8

3 Procedure 1. Identify these features on the sketch map located on the last page of this write-up: a. Label each of the four volcanoes with a V, b. Label very large canyon with a B c. Label each of the two very large craters marked with VLC d. Label the VLC which has a double rim with DR (compare the VISIBLE images of the two very large craters) e. Label each of the two VERY large roughly "circular smooth" regions with CS (These regions are many times lager than the objects you labeled "VLC") Roughly half of Mars consists of plains (fairly smooth regions with a few features such as volcanoes or the large canyon superposed), and roughly half consists of regions where the craters generally overlap. From radar surveys of the surface, and photographic images obtained at oblique angles, we know that the heavily cratered region is at higher average elevation than the smoother plains. Hence, we call the cratered region the highlands. The thick dotted line meandering across the entire width of the sketch map marks the boundary between these two regions. 2. Based upon crater density, it is apparent that the region south of the thick dotted line is the surface (circle your answer). a. NEWER b. OLDER We can now begin make a more precise estimate of the relative ages of the two regions. 3. Find at least two "very large" craters that do not lie in the highlands. Indicate their locations on the sketch map by drawing small circles. 4. The image at right is of one of the VLC on your map. Find this crater and zoom in to a region about as wide as the image. Count the number of craters that are at least as large as the circled craters and which lie entirely in the smooth plains. Record that value in the space below. Nplain = Figure 4 -- A region just past the edge of the Highlands. The circled craters will be counted as "large craters" 3/8

4 5. Without changing the size of the window or the zoom level, move your field of view to a region in the southern highlands and record the number of similarly sized large craters. Nhighlands = 6. Compute the ratio of these two numbers and record it below Nhighlands /Nplain = 7. Suppose now that we know the absolute age for the plains of Mars to be 3 billion years. Suppose also that the rate of cratering (number of craters formed per billion years) is, and has been, constant for the entire age of Mars. Using the ratio you calculated above, the age of the highlands would be roughly billion years. Noting that the age of the solar system, and all of the planets in it, is approximately 4.5 billion years, explain what is wrong with this result: What do you conclude about the rate of cratering? (circle one) a. The rate of cratering has been constant for the last 4.5 billion years. b. The rate of cratering has increased over the last 4.5 billion years. c. The rate of cratering has decreased over the last 4.5 billion years. 8. From the relative ages of features on the Moon and other airless bodies, it can be deduced that most of the really large asteroids in the solar system collided with each other (making smaller rocks) and with planets (making very large craters) during the first billion years after the formation of the solar system. Therefore the "very large" craters should appear mostly on the oldest surfaces. What does the existence of asteroids today and of "very large" craters on the plains on Mars imply about the possibility of the formation of new large craters on Mars? a. There is no possibility of new large craters on Mars. b. New, large craters will continue form on Mars, only infrequently. c. New, large craters will form on Mars frequently Explain your reasoning: 9. The two very large, roughly circular and smooth regions indicated on the sketch map (The Argyre and Hellas planitias)the were likely caused by the impacts of very large bodies. However, the smooth plains at the bottoms of these basins are lava flows, which appear to have formed quite late, after most of the bombardment and 4/8

5 cratering on Mars was over. This leaves us with a dilemma. Did these giant impacts happen early, when most impacts occurred; excavating large basins with raised rims (see figure), which filled with lava only very much later? Or, did these impacts occur later in the history of the planet, after most other impacts, with lava filling the basin at the time of the impact? Inspect the elevation map near the two large basins and identify a rim for each, or at least a fairly circular ring-like structure around each. Look for evidence of impact craters interrupting the rims of these basins. Using what you have learned about superposition, choose between: a. impact early in the history of Mars - lava flow much later b. impact later in the history of Mars - lava flow soon after impact Explain your reasoning: Does your choice agree with the earlier conclusion that most "very large" craters were formed rather early in the evolution of Mars? 10.Look at the area south of the great canyon, between longitudes 45 W and 100 W. This area is not uniformly cratered (or wrinkled). A boundary seems to occur at about longitude. The older surface is to the EAST WEST of this boundary (circle your answer). 11.Zoom in on the large canyon; compare the crater density within the canyon to the terrain just to the north and south of the rims. From this examination, you may concluded that: a. the canyon formed before the surrounding plains, and the lava floods that made the plains simply did not reach the canyon. b. the canyon might have formed as a boundary between two plains of very different ages c. the canyon might have formed after the plains Explain how you arrived at your conclusion (in terms of crater density and the superposition of features) 5/8

6 12.Notice on that each of the four large volcanoes has a crater at its center (that is, on top). Considering the crater density in the areas surrounding the volcanoes, are the craters at the tops of the volcanoes likely to be due to impacts? Explain your reasoning 13.The southernmost volcano is Arsia Mons, it is surrounded by an expanse of smooth terrain called the Tharsis Plateau. Look at the long structures on the flanks of the volcano, extending radially away from the crater. These are almost certainly due to eruptions of the volcano. Do these structures extend out onto the surrounding plain without interruption? In particular, examine the gully to the south of the crater. Using what you have learned about the superposition of features, the appearance of these radial features suggests that: a. Arsia Mons is older than the surrounding terrain. b. Arsia Mons is younger than the surrounding terrain. Explain your reasoning 14.At about Latitude 23 South, Longitude 217 West -- to the SW of Arsia Mons -- at the edge of the smooth terrain surrounding the Volcano, there are three craters which just overlap (see the image on the next page). Zoom in on this feature. Look, in the infrared image, at the northern rim of the crater labeled C in the figure. Which of these craters is the YOUNGEST feature. Are any of these three craters newer (YOUNGER) than the smooth terrain to the North and East? Explain your reasoning 15.If the ridges running SW to NE on the right side of the volcano were made by the event that formed canyon, this would indicate that: a. Arsia Mons is older than the canyon. b. Arsia Mons is younger than the canyon. 6/8

7 Clark College Astronomy 101 Your grade for this lab will be based on a correctly labeled sketch map and a correctly ordered list. Name: Partners: Rank the ages of the regions you examined in this lab from 1 (youngest) to 5 (oldest). highlands volcano (Arsia Mons) canyon (Valles Marineris) south of canyon, longitudes south of canyon, longitudes Extra Credit (5 points). At about 14 N 178 E, there is a large (about 375 km) oblong depression called the Orcus Patera. What kind of feature is this, and where would you place it on the list above? Explain your answers: FOR QUESTION 14 7/8

8 8/8

20, (PAGES 267 279 IN YOUR MANUAL,

20, (PAGES 267 279 IN YOUR MANUAL, GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Examining the Terrestrial Planets (Chapter 20) For this assignment you will require: a calculator, colored pencils, a metric ruler, and your geology

More information

MARS STUDENT IMAGING PROJECT ASU MARS EDUCATION PROGRAM

MARS STUDENT IMAGING PROJECT ASU MARS EDUCATION PROGRAM I. Introduction MARS STUDENT IMAGING PROJECT MSIP Proposal Which type of crater (preserved or modified) is more common in two specific regions with similar latitudes (Southern Highlands-Nirgal Vallis or

More information

How Did These Ocean Features and Continental Margins Form?

How Did These Ocean Features and Continental Margins Form? 298 10.14 INVESTIGATION How Did These Ocean Features and Continental Margins Form? The terrain below contains various features on the seafloor, as well as parts of three continents. Some general observations

More information

CHAPTER 6 THE TERRESTRIAL PLANETS

CHAPTER 6 THE TERRESTRIAL PLANETS CHAPTER 6 THE TERRESTRIAL PLANETS MULTIPLE CHOICE 1. Which of the following is NOT one of the four stages in the development of a terrestrial planet? 2. That Earth, evidence that Earth differentiated.

More information

SURFACE ACTIVITY LESSON

SURFACE ACTIVITY LESSON SURFACE ACTIVITY LESSON Ronald Wilhelm & Jennifer Wilhelm, University of Kentucky 2007 Surface Activity on Planets and Moons The Earth and the Moon: Investigations of the Earth and the Moon show that both

More information

1. The following photos of mountains are images from the Landsat satellite.

1. The following photos of mountains are images from the Landsat satellite. Astronomy 101 Names: Lab 6: Planetary processes on terrestrial planets Satellite images of the Earth, the Moon and Mars are invaluable tools for studying the large-scale surface features of these bodies.

More information

Appearance of Venus. The Planet Venus. Current Position of Venus and Mars. Current Position of Venus and Mars. Phases of Venus

Appearance of Venus. The Planet Venus. Current Position of Venus and Mars. Current Position of Venus and Mars. Phases of Venus The Planet Venus The Moon and Mercury are geologically dead Venus, Earth, and Mars are still active geologically Venus is the planet nearest to Earth, sometimes approaching to within 40 million km The

More information

Hypsometric Globe of Mars 3D Model of the Planet

Hypsometric Globe of Mars 3D Model of the Planet Hypsometric Globe of Mars 3D Model of the Planet Zh. F. Rodionova 1, J. A. Brekhovskikh 2 1 Sternberg State Astronomical Institute Lomonosov Moscow University, Russia; marss8@mail.ru 2 Space Research Institute,

More information

Plate Tectonics: Ridges, Transform Faults and Subduction Zones

Plate Tectonics: Ridges, Transform Faults and Subduction Zones Plate Tectonics: Ridges, Transform Faults and Subduction Zones Goals of this exercise: 1. review the major physiographic features of the ocean basins 2. investigate the creation of oceanic crust at mid-ocean

More information

LABORATORY TWO GEOLOGIC STRUCTURES

LABORATORY TWO GEOLOGIC STRUCTURES EARTH AND ENVIRONMENT THROUGH TIME LABORATORY- EES 1005 LABORATORY TWO GEOLOGIC STRUCTURES Introduction Structural geology is the study of the ways in which rocks or sediments are arranged and deformed

More information

Venusian Structure. Iron-Nickel rich core Mantle composed of magnesium-rich silicates and oxides Basaltic crust Venera 13 & 14 Tholeiitic basalt

Venusian Structure. Iron-Nickel rich core Mantle composed of magnesium-rich silicates and oxides Basaltic crust Venera 13 & 14 Tholeiitic basalt Vulcanism on Venus Venusian Structure Iron-Nickel rich core Mantle composed of magnesium-rich silicates and oxides Basaltic crust Venera 13 & 14 Tholeiitic basalt Tesserae From latin word for Tile Covers

More information

Lab 7: Gravity and Jupiter's Moons

Lab 7: Gravity and Jupiter's Moons Lab 7: Gravity and Jupiter's Moons Image of Galileo Spacecraft Gravity is the force that binds all astronomical structures. Clusters of galaxies are gravitationally bound into the largest structures in

More information

Name Chapter 10 Investigation Worksheet

Name Chapter 10 Investigation Worksheet Name Chapter 10 Investigation Worksheet To complete this worksheet, see the instructions in the textbook (Chapter 10 Investigation). Table 1. Identification of Features on the Ocean Floor Different oceanic

More information

It was one of the greatest natural

It was one of the greatest natural Feature Story 1260 THE TEN BIGGEST IMPACT CRATERS IN THE SOLAR SYSTEM It was one of the greatest natural disasters in the Earth s history. Sixty-five million years ago, a piece of space rock nearly 15

More information

Lecture Outlines. Chapter 8. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 8. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 8 Astronomy Today 7th Edition Chaisson/McMillan Chapter 8 The Moon and Mercury Units of Chapter 8 8.1 Orbital Properties 8.2 Physical Properties 8.3 Surface Features on the Moon

More information

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,

More information

Geohazards and Me: What geologic hazards exist near me? Which plate boundary is closest to me?

Geohazards and Me: What geologic hazards exist near me? Which plate boundary is closest to me? 1 Geohazards and Me: What geologic hazards exist near me? Which plate boundary is closest to me? Movement of the Earth s plates creates great forces that push and reshape the rock in the crust. Sometimes

More information

The moons of the planets

The moons of the planets 22th of October 2007 The planets of our solar system Our solar system contains eight planets. Beginning with the closest one to the sun they are in order: Mercury Venus Earth Uranus The moons in our solar

More information

Explain the Big Bang Theory and give two pieces of evidence which support it.

Explain the Big Bang Theory and give two pieces of evidence which support it. Name: Key OBJECTIVES Correctly define: asteroid, celestial object, comet, constellation, Doppler effect, eccentricity, eclipse, ellipse, focus, Foucault Pendulum, galaxy, geocentric model, heliocentric

More information

OBJECT: To become familiar with some of the motions of the stars, Sun, Moon and planets as seen from the surface of the Earth.

OBJECT: To become familiar with some of the motions of the stars, Sun, Moon and planets as seen from the surface of the Earth. INSIDE LAB 2: Celestial Motions OBJECT: To become familiar with some of the motions of the stars, Sun, Moon and planets as seen from the surface of the Earth. DISCUSSION: As seen from a point of view centered

More information

Solar System Fact Sheet

Solar System Fact Sheet Solar System Fact Sheet (Source: http://solarsystem.nasa.gov; http://solarviews.com) The Solar System Categories Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Rocky or Gas Rocky Rocky Rocky Rocky

More information

GEOLOGIC MAPS. PURPOSE: To be able to understand, visualize, and analyze geologic maps

GEOLOGIC MAPS. PURPOSE: To be able to understand, visualize, and analyze geologic maps GEOLOGIC MAPS PURPOSE: To be able to understand, visualize, and analyze geologic maps Geologic maps show the distribution of the various igneous, sedimentary, and metamorphic rocks at Earth s surface in

More information

USING RELATIVE DATING AND UNCONFORMITIES TO DETERMINE SEQUENCES OF EVENTS

USING RELATIVE DATING AND UNCONFORMITIES TO DETERMINE SEQUENCES OF EVENTS EARTH AND ENVIRONMENT THROUGH TIME LABORATORY- EES 1005 LABORATORY THREE USING RELATIVE DATING AND UNCONFORMITIES TO DETERMINE SEQUENCES OF EVENTS Introduction In order to interpret Earth history from

More information

Topographic Maps Practice Questions and Answers Revised October 2007

Topographic Maps Practice Questions and Answers Revised October 2007 Topographic Maps Practice Questions and Answers Revised October 2007 1. In the illustration shown below what navigational features are represented by A, B, and C? Note that A is a critical city in defining

More information

11.3 Plate Boundaries In this section, you will learn how movement at the boundaries of lithospheric plates affects Earth s surface.

11.3 Plate Boundaries In this section, you will learn how movement at the boundaries of lithospheric plates affects Earth s surface. 11.3 Plate Boundaries In this section, you will learn how movement at the boundaries of lithospheric plates affects Earth s surface. Moving plates Three types of boundaries Imagine a single plate, moving

More information

Step 2: Learn where the nearest divergent boundaries are located.

Step 2: Learn where the nearest divergent boundaries are located. What happens when plates diverge? Plates spread apart, or diverge, from each other at divergent boundaries. At these boundaries new ocean crust is added to the Earth s surface and ocean basins are created.

More information

TECTONICS ASSESSMENT

TECTONICS ASSESSMENT Tectonics Assessment / 1 TECTONICS ASSESSMENT 1. Movement along plate boundaries produces A. tides. B. fronts. C. hurricanes. D. earthquakes. 2. Which of the following is TRUE about the movement of continents?

More information

A SOLAR SYSTEM COLORING BOOK

A SOLAR SYSTEM COLORING BOOK A SOLAR SYSTEM COLORING BOOK Brought to you by: THE SUN Size: The Sun is wider than 100 Earths. 1 Temperature: 27,000,000 F in the center, 10,000 F at the surface. So that s REALLY hot anywhere on the

More information

PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY

PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY Due Date: start of class 2/6/2007 5 pts extra credit if turned in before 9:00AM (early!) (To get the extra credit, the assignment must

More information

Mars Education Program Jet Propulsion Laboratory Arizona State University Version 2.00

Mars Education Program Jet Propulsion Laboratory Arizona State University Version 2.00 MAPPING THE SURFACE OF A PLANET Student Guide Mars Education Program Jet Propulsion Laboratory Arizona State University Version 2.00 Mapping the Surface of a Planet Written and Developed by: Keith Watt,

More information

Plate Tectonics Review

Plate Tectonics Review 1. Recent volcanic activity in different parts of the world supports the inference that volcanoes are located mainly in 1) the centers of landscape regions 2) the central regions of the continents 3) zones

More information

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs Earth Sciences -- Grades 9, 10, 11, and 12 California State Science Content Standards Covered in: Hands-on science labs, demonstrations, & activities. Investigation and Experimentation. Lesson Plans. Presented

More information

Impact Crater Morphology rim. cavity. ejecta blanket (ejecta)

Impact Crater Morphology rim. cavity. ejecta blanket (ejecta) Impact Crater Morphology rim cavity ejecta blanket (ejecta) Craters on Earth Meteor Crater, Arizona Wolf Creek, Australia Venus as a Planet Diameter = 12,104 km Density = 5.2 g/cm 3 Rotation Period = 243

More information

Lecture 19. 1) The geologic timescale: the age of the Earth/ Solar System the history of the Earth

Lecture 19. 1) The geologic timescale: the age of the Earth/ Solar System the history of the Earth Lecture 19 Part 2: Climates of the Past 1) The geologic timescale: the age of the Earth/ Solar System the history of the Earth 2) The evolution of Earth s atmosphere - from its origin to present-day 3)

More information

Rapid Changes in Earth s Surface

Rapid Changes in Earth s Surface TEKS investigate rapid changes in Earth s surface such as volcanic eruptions, earthquakes, and landslides Rapid Changes in Earth s Surface Constant Changes Earth s surface is constantly changing. Wind,

More information

Maps and Globes. By Kennedy s Korner

Maps and Globes. By Kennedy s Korner Maps and Globes By Kennedy s Korner Table of Contents Words to Know What are Maps and Globes Map Key or Symbols Cardinal Directions Intermediate Directions Equator Prime Meridian Hemispheres Coordinate

More information

Rosaly Lopes, Jet Propulsion Laboratory, California Institute of Technology

Rosaly Lopes, Jet Propulsion Laboratory, California Institute of Technology Saturn s Moon Titan: Cassini-Huygens Reveals a New World Rosaly Lopes, Jet Propulsion Laboratory, California Institute of Technology The year 2005 will be remembered in the history of space exploration

More information

Geohazards and Me: What geologic hazards exist near me? Which plate boundary is closest to me?

Geohazards and Me: What geologic hazards exist near me? Which plate boundary is closest to me? 1 Geohazards and Me: What geologic hazards exist near me? Which plate boundary is closest to me? Movement of the Earth s plates creates great forces that push and reshape the rock in the crust. Sometimes

More information

Module 2 Educator s Guide Investigation 4

Module 2 Educator s Guide Investigation 4 Module 2 Educator s Guide Investigation 4 Is life on Mars possible and could humans establish settlements there? Investigation Overview Humans will, within the next few decades, travel to Mars to explore

More information

Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth

Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth OBJECTIVES 1. To examine the magnetic field associated with a

More information

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF SECOND GRADE UNIVERSE WEEK 1. PRE: Discovering stars. LAB: Analyzing the geometric pattern of constellations. POST: Exploring

More information

Planet Earth in Cross Section By Michael Osborn Fayetteville-Manlius HS

Planet Earth in Cross Section By Michael Osborn Fayetteville-Manlius HS Planet Earth in Cross Section By Michael Osborn Fayetteville-Manlius HS Objectives Devise a model of the layers of the Earth to scale. Background Planet Earth is organized into layers of varying thickness.

More information

Inside Earth Chapter 3

Inside Earth Chapter 3 Name Hour Due Date Inside Earth Chapter Page 1 Volcanoes and Plate Tectonics Page 2 Volcanic Activity Page - Mapping Earthquakes and Volcanoes Page 4 Mapping Earthquakes and Volcanoes table Page 5 - Mapping

More information

Investigation 6: What happens when plates collide?

Investigation 6: What happens when plates collide? Tectonics Investigation 6: Teacher Guide Investigation 6: What happens when plates collide? In this activity, students will use the distribution of earthquakes and volcanoes in a Web GIS to learn about

More information

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

More information

A Solar System Coloring Book

A Solar System Coloring Book A Solar System Coloring Book Courtesy of the Windows to the Universe Project http://www.windows2universe.org The Sun Size: The Sun is wider than 100 Earths. Temperature: ~27,000,000 F in the center, ~10,000

More information

Impact Cratering. High kinetic energy of impacting object Excavation Heat. Shape round for all impact directions

Impact Cratering. High kinetic energy of impacting object Excavation Heat. Shape round for all impact directions Impact Cratering High kinetic energy of impacting object Excavation Heat Shape round for all impact directions The sky is falling! I would rather believe that two Yankee professors would lie than believe

More information

Introduction to Google Earth

Introduction to Google Earth Center for Teaching, Research & Learning Social Science Research Lab American University, Washington, D.C. http://www.american.edu/provost/ctrl/ 202-885-3862 Introduction to Google Earth This tutorial

More information

Planetary Trading Cards

Planetary Trading Cards Planetary Order: 1 st planet from the sun Planet Size: 4,880 Kilometers Rotation Time (Earth Days): 59 Orbit Time (Earth Years):.241 Orbit Time (Earth Days): 88 MERCURY 38 lbs AU s:.4 Kilometers: 60 million

More information

Laboratory #8: Structural Geology Thinking in 3D

Laboratory #8: Structural Geology Thinking in 3D Name: Lab day: Tuesday Wednesday Thursday ENVG /SC 10110-20110L Planet Earth Laboratory Laboratory #8: Structural Geology Thinking in 3D http://www.nd.edu/~cneal/physicalgeo/lab-structural/index.html Readings:

More information

Michelle Mindick. volcanism, gradation, impact cratering, and Earth s interior core.

Michelle Mindick. volcanism, gradation, impact cratering, and Earth s interior core. Michelle Mindick The Evolution of Earth s Surface According to 21 st Century Astronomy, Earth originally formed as a result of gas and dust that rotated around a protostar - our sun- billions of years

More information

Use this document for reference. Answer questions on a separate sheet of paper. Introduction to Plate Tectonics

Use this document for reference. Answer questions on a separate sheet of paper. Introduction to Plate Tectonics Use this document for reference. Answer questions on a separate sheet of paper. Introduction to Plate Tectonics In this lab you will learn the basics of plate tectonics, including locations of the plate

More information

The Dynamic Crust 2) EVIDENCE FOR CRUSTAL MOVEMENT

The Dynamic Crust 2) EVIDENCE FOR CRUSTAL MOVEMENT The Dynamic Crust 1) Virtually everything you need to know about the interior of the earth can be found on page 10 of your reference tables. Take the time to become familiar with page 10 and everything

More information

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING/EARTH SCIENCE

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING/EARTH SCIENCE FOR TEACHERS ONLY PS ES The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING/EARTH SCIENCE Tuesday, June 22, 2010 9:15 a.m. to 12:15 p.m., only SCORING KEY AND RATING

More information

Douglas Adams The Hitchhikers Guide to the Galaxy

Douglas Adams The Hitchhikers Guide to the Galaxy There is a theory which states that if ever anybody discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable.

More information

lat/long/size&shape of Earth 1. Which statement provides the best evidence that Earth has a nearly spherical shape?

lat/long/size&shape of Earth 1. Which statement provides the best evidence that Earth has a nearly spherical shape? Name: Tuesday, September 23, 2008 lat/long/size&shape of Earth 1. Which statement provides the best evidence that Earth has a nearly spherical shape? 1. The Sun has a spherical shape. 3. Star trails photographed

More information

Exploring Our World with GIS Lesson Plans Engage

Exploring Our World with GIS Lesson Plans Engage Exploring Our World with GIS Lesson Plans Engage Title: Exploring Our Nation 20 minutes *Have students complete group work prior to going to the computer lab. 2.List of themes 3. Computer lab 4. Student

More information

Geol 101: Physical Geology PAST EXAM QUESTIONS LECTURE 4: PLATE TECTONICS II

Geol 101: Physical Geology PAST EXAM QUESTIONS LECTURE 4: PLATE TECTONICS II Geol 101: Physical Geology PAST EXAM QUESTIONS LECTURE 4: PLATE TECTONICS II 4. Which of the following statements about paleomagnetism at spreading ridges is FALSE? A. there is a clear pattern of paleomagnetic

More information

Hatch a Plot to Track Some Satellites!

Hatch a Plot to Track Some Satellites! Hatch a Plot to Track Some Satellites! Overview There are literally hundreds of satellites that are currently orbiting Earth, including the International Space Station. Clearly, satellites are important

More information

Formation of the Solar System

Formation of the Solar System Formation of the Solar System Any theory of formation of the Solar System must explain all of the basic facts that we have learned so far. 1 The Solar System The Sun contains 99.9% of the mass. The Solar

More information

STUDY GUIDE: Earth Sun Moon

STUDY GUIDE: Earth Sun Moon The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

More information

Heat Flow. The decay of short-lived radioactive elements (such as aluminum-26) generated heat energy in the early stages of the Earth s formation.

Heat Flow. The decay of short-lived radioactive elements (such as aluminum-26) generated heat energy in the early stages of the Earth s formation. Heat Flow Heat from Earth s Interior Earth s interior heat comes from a combination of the following factors: Original heat from the formation and gravitational compression of the Earth from the solar

More information

Are Those Sunspots Really on the Sun?

Are Those Sunspots Really on the Sun? Are Those Sunspots Really on the Sun? Summary of Activity: Students will acquire solar images (or draw sunspots), and record coordinates of sunspots. They will calculate and plot their apparent movement

More information

Activity Book for Imaging Mars at High Resolution Grades K-3 Draft version

Activity Book for Imaging Mars at High Resolution Grades K-3 Draft version Activity Book for Imaging Mars at High Resolution Grades K-3 Draft version Imaging Mars at High Resolution Written and developed by: Alexandra Davatzes and Virginia Gulick NASA Ames Research Center Mail

More information

THE NATIONAL PARKS: AMERICA S BEST IDEA LESSON PLANS

THE NATIONAL PARKS: AMERICA S BEST IDEA LESSON PLANS THE NATIONAL PARKS: AMERICA S BEST IDEA LESSON PLANS MAPPING THE NATIONAL PARKS For more information, visit www.pbs.org/nationalparks/for-educators/ MAPPING THE NATIONAL PARKS Overview All of us have a

More information

INTERNATIONAL INDIAN SCHOOL, RIYADH SA I 2016-17

INTERNATIONAL INDIAN SCHOOL, RIYADH SA I 2016-17 INTERNATIONAL INDIAN SCHOOL, RIYADH SA I 2016-17 STD V WORKSHEET Page 1 of 7 SOCIAL STUDIES LESSON - 1. KNOW YOUR PLANET Fill in the blanks: 1. A book containing maps is called an. 2. A Flemish map maker,

More information

Who am I? 2 pixel/cm. Can you guess who I am? Write your guess here:

Who am I? 2 pixel/cm. Can you guess who I am? Write your guess here: Who am I? Below is a photo of a famous person. You will see the image first at low resolution, then at medium resolution and finally at high resolution. Resolution is a measure of how much detail you can

More information

Chapter 7 Earth and the Terrestrial Worlds

Chapter 7 Earth and the Terrestrial Worlds Chapter 7 Earth and the Terrestrial Worlds Mercury craters smooth plains, cliffs Venus volcanoes few craters Radar view of a twinpeaked volcano Mars some craters volcanoes riverbeds? Moon craters smooth

More information

Name. Your Mission: To become familiar with the major plate boundaries through exploration of plate tectonic features using Google Earth.

Name. Your Mission: To become familiar with the major plate boundaries through exploration of plate tectonic features using Google Earth. Name Geophysics Earth Sci. Computer of Earthquakes Applications GEOL 5303 using Google Earth Lab 3: Plate Tectonics Your Mission: To become familiar with the major plate boundaries through exploration

More information

SPATIAL REFERENCE SYSTEMS

SPATIAL REFERENCE SYSTEMS SPATIAL REFERENCE SYSTEMS We will begin today with the first of two classes on aspects of cartography. Cartography is both an art and a science, but we will focus on the scientific aspects. Geographical

More information

Laboratory 6: Topographic Maps

Laboratory 6: Topographic Maps Name: Laboratory 6: Topographic Maps Part 1: Construct a topographic map of the Egyptian Pyramid of Khafre A topographic map is a two-dimensional representation of a three-dimensional space. Topographic

More information

ASTR 380 Possibilities for Life on the Moons of Giant Planets

ASTR 380 Possibilities for Life on the Moons of Giant Planets Let s first consider the large gas planets: Jupiter, Saturn, Uranus and Neptune Planets to scale with Sun in background 67 62 14 The many moons of the outer planets.. Most of the moons are very small 1

More information

THE STARRY SKY AST MESA COMMUNITY COLLEGE

THE STARRY SKY AST MESA COMMUNITY COLLEGE NAME: DATE: INTRODUCTION This lab exercise introduces the arrangement and motions of the stars, constellations, and other objects of the night sky. LEARNING GOALS Describe the motions of stars during a

More information

Origins of the Cosmos Summer 2016. Pre-course assessment

Origins of the Cosmos Summer 2016. Pre-course assessment Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of

More information

Spectroscopy: Colors of Light

Spectroscopy: Colors of Light Spectroscopy: Colors of Light IN THE WORKSHOP SPECTROSCOPY: COLORS OF LIGHT YOUR STUDENTS WILL EXPLORE ONE OF THE WAYS THAT ASTRONOMERS STUDY DISTANT OBJECTS IN THE UNIVERSE AS THEY BUILD SIMPLE SPECTROSCOPES

More information

Fall 2001: The Moon. Objectives:! Learn the correct way to keep an observing log! Identify basic lunar features and estimate their sizes

Fall 2001: The Moon. Objectives:! Learn the correct way to keep an observing log! Identify basic lunar features and estimate their sizes Our Moon is one of the easiest objects in the night sky to observe (when the phase is right). Unfortunately, it is one of the most overlooked objects by amateur skywatchers, who are usually in the market

More information

Lecture 23: Terrestrial Worlds in Comparison. This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies.

Lecture 23: Terrestrial Worlds in Comparison. This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies. Lecture 23: Terrestrial Worlds in Comparison Astronomy 141 Winter 2012 This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies. The small terrestrial planets have

More information

What causes Earth s surface to change?

What causes Earth s surface to change? Lesson 1 Earth s Landforms Lesson 2 Plate Tectonics Lesson 3 Volcanoes Lesson 4 Earthquakes What causes Earth s surface to change? Lesson 5 Shaping Earth s Surface landform relief map topographical map

More information

o Rotate and tilt o Latitude, longitude, elevation

o Rotate and tilt o Latitude, longitude, elevation Google Earth 3D globe overlaid with satellite imagery with interactive zoom, rotate, and tilt, and the ability to search, import, and export. Download o http://www.google.com/earth/index.html Navigation

More information

The Size & Shape of the Galaxy

The Size & Shape of the Galaxy name The Size & Shape of the Galaxy The whole lab consists of plotting two graphs. What s the catch? Aha visualizing and understanding what you have plotted of course! Form the Earth Science Picture of

More information

Weekend Cabin Retreat Project Site Plans

Weekend Cabin Retreat Project Site Plans Weekend Cabin Retreat Project Site Plans Sacramento City College EDT 300/ENGR 306 EDT 300/ENGR 306 - Site Plans 1 Cabin Project Site Plan/Bubble Diagram - Assignment 1 =10-0 Floor Plan - Assignment 1/4

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 11: Projected Coordinate Systems

GEOGRAPHIC INFORMATION SYSTEMS Lecture 11: Projected Coordinate Systems UTM Coordinate System GEOGRAPHIC INFORMATION SYSTEMS Lecture 11: Projected Coordinate Systems Why do we need the UTM coordinate system? - in a rectangular (Cartesian) coordinate system, with linear x and

More information

Plate Tectonics Practice Questions and Answers Revised August 2007

Plate Tectonics Practice Questions and Answers Revised August 2007 Plate Tectonics Practice Questions and Answers Revised August 2007 1. Please fill in the missing labels. 2. Please fill in the missing labels. 3. How many large plates form the outer shell of the earth?

More information

The following questions refer to Chapter 19, (PAGES 259 278 IN YOUR MANUAL, 7 th ed.)

The following questions refer to Chapter 19, (PAGES 259 278 IN YOUR MANUAL, 7 th ed.) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Locating the Planets (Chapter 19) and the Moon and Sun (Chapter 21) For this assignment you will require: a calculator, colored pencils, a metric

More information

Measuring Your Latitude from the Angle of the Sun at Noon

Measuring Your Latitude from the Angle of the Sun at Noon Measuring Your Latitude from the Angle of the Sun at Noon Background: You can measure your latitude in earth's northern hemisphere by finding out the altitude of the celestial equator from the southern

More information

Composition of planets. Mercury

Composition of planets. Mercury The Solar System Solar System Nebular Hypothesis of Solar System Formation. Planets drawn to scale Distances not to scale Earth approximately 12,800 km diameter Earth is about 150,000,000 km from Sun Composition

More information

MS-ESS1-1 Earth's Place in the Universe

MS-ESS1-1 Earth's Place in the Universe MS-ESS1-1 Earth's Place in the Universe Students who demonstrate understanding can: MS-ESS1-1. Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses

More information

Using 3 D SketchUp Design Software. Building Blocks Tools

Using 3 D SketchUp Design Software. Building Blocks Tools Using 3 D SketchUp Design Software Building Blocks Tools Introduction Google s SketchUp is an easy to use drawing program capable of building 3 dimensional (or 3 D) objects (SketchUp also does 2 D easily).

More information

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

More information

Purpose To determine the factors affecting the appearance of impact craters and ejecta.

Purpose To determine the factors affecting the appearance of impact craters and ejecta. Teacher Page Purpose To determine the factors affecting the appearance of impact s and ejecta. Background [also see Teacher's Guide Pages 1, 2, photo on 8, 12, and photo on 13] The circular features so

More information

6. The greatest atmospheric pressure occurs in the 1) troposphere 3) mesosphere 2) stratosphere 4) thermosphere

6. The greatest atmospheric pressure occurs in the 1) troposphere 3) mesosphere 2) stratosphere 4) thermosphere 1. The best evidence of the Earth's nearly spherical shape is obtained through telescopic observations of other planets photographs of the Earth from an orbiting satellite observations of the Sun's altitude

More information

Related Standards and Background Information

Related Standards and Background Information Related Standards and Background Information Earth Patterns, Cycles and Changes This strand focuses on student understanding of patterns in nature, natural cycles, and changes that occur both quickly and

More information

The Solar System. Olivia Paquette

The Solar System. Olivia Paquette The Solar System Olivia Paquette Table of Contents The Sun 1 Mercury 2,3 Venus 4,5 Earth 6,7 Mars 8,9 Jupiter 10,11 Saturn 12 Uranus 13 Neptune Pluto 14 15 Glossary. 16 The Sun Although it may seem like

More information

Alfred Wegener s Theory of Continental Drift Became Modern Plate Tectonics. Wegener in Greenland about 1912. He froze to death there in 1930.

Alfred Wegener s Theory of Continental Drift Became Modern Plate Tectonics. Wegener in Greenland about 1912. He froze to death there in 1930. Alfred Wegener s Theory of Continental Drift Became Modern Plate Tectonics Wegener in Greenland about 1912. He froze to death there in 1930. Science is self correcting. The Scientific Method The history

More information

Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun)

Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun) Lecture 3: Motions of the and Moon ecliptic (path of ) ecliptic (path of ) The 23.5 degree tilt of Earth s spin axis relative to its orbital axis around the causes the seasons Celestial Sphere Celestial

More information

THE SOLAR SYSTEM - EXERCISES 1

THE SOLAR SYSTEM - EXERCISES 1 THE SOLAR SYSTEM - EXERCISES 1 THE SUN AND THE SOLAR SYSTEM Name the planets in their order from the sun. 1 2 3 4 5 6 7 8 The asteroid belt is between and Which planet has the most moons? About how many?

More information

9.0 Planetary Geology: Earth and the Other Terrestrial Worlds. 9.1 Comparative Planetary Geology

9.0 Planetary Geology: Earth and the Other Terrestrial Worlds. 9.1 Comparative Planetary Geology 9.0 Planetary Geology: Earth and the Other Terrestrial Worlds Think back to a time when you went for a walk or a drive through the open countryside. Did you see a valley? If so, the creek or river that

More information

Earthquakes Volcanoes Mountains

Earthquakes Volcanoes Mountains Earthquakes Volcanoes Mountains Sea Floor Spreading Where is it located? How does it form? How does it change the Earth s surface? Earthquakes Where are earthquakes located? Most earthquakes happen around

More information

The Gravitational Field

The Gravitational Field The Gravitational Field The use of multimedia in teaching physics Texts to multimedia presentation Jan Hrnčíř jan.hrncir@gfxs.cz Martin Klejch martin.klejch@gfxs.cz F. X. Šalda Grammar School, Liberec

More information

The Seasons on a Planet like Earth

The Seasons on a Planet like Earth The Seasons on a Planet like Earth As the Earth travels around the Sun, it moves in a giant circle 300 million kilometers across. (Well, it is actually a giant ellipse but the shape is so close to that

More information