# How Do We Test Multiple Regression Coefficients?

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 How Do We Test Multiple Regression Coefficients? Suppose you have constructed a multiple linear regression model and you have a specific hypothesis to test which involves more than one regression coefficient. How do we perform a hypothesis test that involves more than one regression coefficient? First, in a multiple linear regression setting, you can perform either the likelihood ratio test (discussed in topic 2 lecture notes) or the analysis of deviance test. Recall that you wish to determine if a set of s explanatory variables improve the fit of the model. Specifically, you have two models, called the null and extended of the form: Null model: E(Y i ) = \$ + \$ 1 X 1 + þ + \$ p X p Extended model: E (Y i ) = \$ + \$ 1 X 1 + þ + \$ p X p + \$ p+1 X p+1 + þ + \$ p+s X p+s s new Xs You wish to test the following hypothesis: H o : \$ p+1 = \$ p+2 = þ = \$ p+s = This test can be performed using the deviance from the regression model. You need to obtain the SS( from the null and extended model to perform the test. F = ( SS( N SS( SS( E E ) / s /( n p s 1) Under the null hypothesis, this F-statistic will follow an F distribution with s and n-p-s-1 degrees of freedom. Now lets look at an example: You would like to determine the association between total medical expenditures and smoking status (never/current/former) after adjusting for age and gender. Your variables are: Logexp = log(totalexp+1) Smoke = if never, 1 if current, 2 if former

2 Age = 9 (most plausible range of age for the disease) Male = 1 if male, if female Our regression model is: E [log exp] = β S S Age+ β Male+ ε Where S 1 = S 2 = 1 if current if never 1 if former if never Therefore, you can write out a regression model for the never, current and former smokers. Never smokers: [log exp] = β Age Male E Current smokers: [log exp] = β Age Male E 1 Former smokers: E 2 [log exp] = β Age Male So, β 1 = difference in the mean log total expenditures comparing current smokers to never smokers of the same age and gender. β 2 = difference in the mean log total expenditures comparing former smokers to never smokers of the same age and gender. The test of interest is to determine if smoking is associated with total medical expenditures. To do this, we will compare the null model (includes age and gender) to the extended model (including dummy variables for smoking status and age and gender). H o : \$ 1 = \$ 2 = Fit the null and extended model and perform the analysis of deviance. (results below are based on a sample of the 1987 National Medical Expenditure Survey)

3 Null Model: Source SS df MS Number of obs = F( 2, 162) = 9. Model Prob > F =. Residual R-squared = Adj R-squared =.52 Total Root MSE = logexp Coef. Std. Err. t P> t [95% Conf. Interval] LASTAGE MALE _cons Extended Model: Source SS df MS Number of obs = F(, 16) = Model Prob > F =. Residual R-squared = Adj R-squared =.595 Total Root MSE = 1.5 logexp Coef. Std. Err. t P> t [95% Conf. Interval] s s LASTAGE MALE _cons F = ( )/2 / 2.11 = 5.58 Pr(F>5.58) with F distribution with 2 and 16 degrees of freedom =.85. Decision: Smoking is statistically significantly associated with medical expenditures after adjusting for age and gender. Now, lets look at another example using logistic regression: You would like to determine the association between COPD and smoking status (never/current/former) after adjusting for age and gender. Your variables are: COPD = 1 if present, if absent Smoke = if never, 1 if current, 2 if former Age = 9 (most plausible range of age for the disease)

4 Male = 1 if male, if female Our logistic regression model becomes: 1S1 2S 2 Age Where S 1 = S 2 = 1 if current if never 1 if former if never Therefore, you can write out a regression model for the never, current and former smokers. Never smokers: Age Current smokers: 1 Age Former smokers: 2 Age So, β 1 = log difference in the odds of COPD comparing current smokers to never smokers of the same age and gender, or the log OR comparing current smokers to never smokers, of the same age and gender. β 2 = log difference in the odds of COPD comparing former smokers to never smokers of the same age and gender, or the log OR comparing former smokers to never smokers, of the same age and gender. The test of interest is to determine if smoking is associated with COPD. To do this, we will compare the null model (includes age and gender) to the extended model (including dummy variables for smoking status and age and gender). H o : \$ 1 = \$ 2 = Fit the null and extended model and obtain the log-likelihood and perform your test as in the notes for topic 2. (results below are based on a sample of the 1987 National Medical Expenditure Survey) Null Model:

5 Logit estimates Number of obs = 1 LR chi2(2) = Prob > chi2 =.18 Log likelihood = Pseudo R2 =.81 lc5 Coef. Std. Err. z P>z [95% Conf. Interval] lastage male _cons Extended Model: Logit estimates Number of obs = 1 LR chi2() = Prob > chi2 =. Log likelihood = Pseudo R2 =.166 lc5 Coef. Std. Err. z P>z [95% Conf. Interval] S S age male _cons Perform your likelihood ratio test: -2( (-67.2)) = 8.66 Compare this value to the.5 critical-value from the Chi-square distribution with 2 df, which is Hence, our decision is to reject the null hypothesis and we conclude that there is evidence in the data to suggest an association between COPD and smoking status.

### MULTIPLE REGRESSION EXAMPLE

MULTIPLE REGRESSION EXAMPLE For a sample of n = 166 college students, the following variables were measured: Y = height X 1 = mother s height ( momheight ) X 2 = father s height ( dadheight ) X 3 = 1 if

### Statistics 104 Final Project A Culture of Debt: A Study of Credit Card Spending in America TF: Kevin Rader Anonymous Students: LD, MH, IW, MY

Statistics 104 Final Project A Culture of Debt: A Study of Credit Card Spending in America TF: Kevin Rader Anonymous Students: LD, MH, IW, MY ABSTRACT: This project attempted to determine the relationship

### Introduction to Stata

Introduction to Stata September 23, 2014 Stata is one of a few statistical analysis programs that social scientists use. Stata is in the mid-range of how easy it is to use. Other options include SPSS,

### Regression Analysis. Data Calculations Output

Regression Analysis In an attempt to find answers to questions such as those posed above, empirical labour economists use a useful tool called regression analysis. Regression analysis is essentially a

### Marginal Effects for Continuous Variables Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised February 21, 2015

Marginal Effects for Continuous Variables Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised February 21, 2015 References: Long 1997, Long and Freese 2003 & 2006 & 2014,

### Discussion Section 4 ECON 139/239 2010 Summer Term II

Discussion Section 4 ECON 139/239 2010 Summer Term II 1. Let s use the CollegeDistance.csv data again. (a) An education advocacy group argues that, on average, a person s educational attainment would increase

### REGRESSION LINES IN STATA

REGRESSION LINES IN STATA THOMAS ELLIOTT 1. Introduction to Regression Regression analysis is about eploring linear relationships between a dependent variable and one or more independent variables. Regression

### August 2012 EXAMINATIONS Solution Part I

August 01 EXAMINATIONS Solution Part I (1) In a random sample of 600 eligible voters, the probability that less than 38% will be in favour of this policy is closest to (B) () In a large random sample,

### Multinomial and Ordinal Logistic Regression

Multinomial and Ordinal Logistic Regression ME104: Linear Regression Analysis Kenneth Benoit August 22, 2012 Regression with categorical dependent variables When the dependent variable is categorical,

### 11. Analysis of Case-control Studies Logistic Regression

Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:

### Failure to take the sampling scheme into account can lead to inaccurate point estimates and/or flawed estimates of the standard errors.

Analyzing Complex Survey Data: Some key issues to be aware of Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 24, 2015 Rather than repeat material that is

### Handling missing data in Stata a whirlwind tour

Handling missing data in Stata a whirlwind tour 2012 Italian Stata Users Group Meeting Jonathan Bartlett www.missingdata.org.uk 20th September 2012 1/55 Outline The problem of missing data and a principled

### ESTIMATING AVERAGE TREATMENT EFFECTS: IV AND CONTROL FUNCTIONS, II Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics

ESTIMATING AVERAGE TREATMENT EFFECTS: IV AND CONTROL FUNCTIONS, II Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics July 2009 1. Quantile Treatment Effects 2. Control Functions

### ECON 142 SKETCH OF SOLUTIONS FOR APPLIED EXERCISE #2

University of California, Berkeley Prof. Ken Chay Department of Economics Fall Semester, 005 ECON 14 SKETCH OF SOLUTIONS FOR APPLIED EXERCISE # Question 1: a. Below are the scatter plots of hourly wages

### MODEL I: DRINK REGRESSED ON GPA & MALE, WITHOUT CENTERING

Interpreting Interaction Effects; Interaction Effects and Centering Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised February 20, 2015 Models with interaction effects

### Lectures 8, 9 & 10. Multiple Regression Analysis

Lectures 8, 9 & 0. Multiple Regression Analysis In which you learn how to apply the principles and tests outlined in earlier lectures to more realistic models involving more than explanatory variable and

### Generalized Linear Models

Generalized Linear Models We have previously worked with regression models where the response variable is quantitative and normally distributed. Now we turn our attention to two types of models where the

### Correlation and Regression

Correlation and Regression Scatterplots Correlation Explanatory and response variables Simple linear regression General Principles of Data Analysis First plot the data, then add numerical summaries Look

### Lecture 10: Logistical Regression II Multinomial Data. Prof. Sharyn O Halloran Sustainable Development U9611 Econometrics II

Lecture 10: Logistical Regression II Multinomial Data Prof. Sharyn O Halloran Sustainable Development U9611 Econometrics II Logit vs. Probit Review Use with a dichotomous dependent variable Need a link

### Using Stata 11 & higher for Logistic Regression Richard Williams, University of Notre Dame, Last revised March 28, 2015

Using Stata 11 & higher for Logistic Regression Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised March 28, 2015 NOTE: The routines spost13, lrdrop1, and extremes are

### IAPRI Quantitative Analysis Capacity Building Series. Multiple regression analysis & interpreting results

IAPRI Quantitative Analysis Capacity Building Series Multiple regression analysis & interpreting results How important is R-squared? R-squared Published in Agricultural Economics 0.45 Best article of the

### Interaction effects between continuous variables (Optional)

Interaction effects between continuous variables (Optional) Richard Williams, University of Notre Dame, http://www.nd.edu/~rwilliam/ Last revised February 0, 05 This is a very brief overview of this somewhat

### GETTING STARTED: STATA & R BASIC COMMANDS ECONOMETRICS II. Stata Output Regression of wages on education

GETTING STARTED: STATA & R BASIC COMMANDS ECONOMETRICS II Stata Output Regression of wages on education. sum wage educ Variable Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------

### is paramount in advancing any economy. For developed countries such as

Introduction The provision of appropriate incentives to attract workers to the health industry is paramount in advancing any economy. For developed countries such as Australia, the increasing demand for

### Chapter 18. Effect modification and interactions. 18.1 Modeling effect modification

Chapter 18 Effect modification and interactions 18.1 Modeling effect modification weight 40 50 60 70 80 90 100 male female 40 50 60 70 80 90 100 male female 30 40 50 70 dose 30 40 50 70 dose Figure 18.1:

### Rockefeller College University at Albany

Rockefeller College University at Albany PAD 705 Handout: Hypothesis Testing on Multiple Parameters In many cases we may wish to know whether two or more variables are jointly significant in a regression.

### Lecture 15. Endogeneity & Instrumental Variable Estimation

Lecture 15. Endogeneity & Instrumental Variable Estimation Saw that measurement error (on right hand side) means that OLS will be biased (biased toward zero) Potential solution to endogeneity instrumental

### HURDLE AND SELECTION MODELS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics July 2009

HURDLE AND SELECTION MODELS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics July 2009 1. Introduction 2. A General Formulation 3. Truncated Normal Hurdle Model 4. Lognormal

### We extended the additive model in two variables to the interaction model by adding a third term to the equation.

Quadratic Models We extended the additive model in two variables to the interaction model by adding a third term to the equation. Similarly, we can extend the linear model in one variable to the quadratic

### Title. Syntax. stata.com. fp Fractional polynomial regression. Estimation

Title stata.com fp Fractional polynomial regression Syntax Menu Description Options for fp Options for fp generate Remarks and examples Stored results Methods and formulas Acknowledgment References Also

### Ordinal Regression. Chapter

Ordinal Regression Chapter 4 Many variables of interest are ordinal. That is, you can rank the values, but the real distance between categories is unknown. Diseases are graded on scales from least severe

### Econ 371 Problem Set #3 Answer Sheet

Econ 371 Problem Set #3 Answer Sheet 4.3 In this question, you are told that a OLS regression analysis of average weekly earnings yields the following estimated model. AW E = 696.7 + 9.6 Age, R 2 = 0.023,

### Department of Economics Session 2012/2013. EC352 Econometric Methods. Solutions to Exercises from Week 10 + 0.0077 (0.052)

Department of Economics Session 2012/2013 University of Essex Spring Term Dr Gordon Kemp EC352 Econometric Methods Solutions to Exercises from Week 10 1 Problem 13.7 This exercise refers back to Equation

### Basic Statistical and Modeling Procedures Using SAS

Basic Statistical and Modeling Procedures Using SAS One-Sample Tests The statistical procedures illustrated in this handout use two datasets. The first, Pulse, has information collected in a classroom

### Please follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software

STATA Tutorial Professor Erdinç Please follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software 1.Wald Test Wald Test is used

### I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Beckman HLM Reading Group: Questions, Answers and Examples Carolyn J. Anderson Department of Educational Psychology I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Linear Algebra Slide 1 of

MODELING AUTO INSURANCE PREMIUMS Brittany Parahus, Siena College INTRODUCTION The findings in this paper will provide the reader with a basic knowledge and understanding of how Auto Insurance Companies

### VI. Introduction to Logistic Regression

VI. Introduction to Logistic Regression We turn our attention now to the topic of modeling a categorical outcome as a function of (possibly) several factors. The framework of generalized linear models

### Regression step-by-step using Microsoft Excel

Step 1: Regression step-by-step using Microsoft Excel Notes prepared by Pamela Peterson Drake, James Madison University Type the data into the spreadsheet The example used throughout this How to is a regression

### Regression in Stata. Alicia Doyle Lynch Harvard-MIT Data Center (HMDC)

Regression in Stata Alicia Doyle Lynch Harvard-MIT Data Center (HMDC) Documents for Today Find class materials at: http://libraries.mit.edu/guides/subjects/data/ training/workshops.html Several formats

### BRIEF OVERVIEW ON INTERPRETING COUNT MODEL RISK RATIOS

BRIEF OVERVIEW ON INTERPRETING COUNT MODEL RISK RATIOS An Addendum to Negative Binomial Regression Cambridge University Press (2007) Joseph M. Hilbe 2008, All Rights Reserved This short monograph is intended

### An assessment of consumer willingness to pay for Renewable Energy Sources use in Italy: a payment card approach.

An assessment of consumer willingness to pay for Renewable Energy Sources use in Italy: a payment card approach. -First findings- University of Perugia Department of Economics, Finance and Statistics 1

### College Education Matters for Happier Marriages and Higher Salaries ----Evidence from State Level Data in the US

College Education Matters for Happier Marriages and Higher Salaries ----Evidence from State Level Data in the US Anonymous Authors: SH, AL, YM Contact TF: Kevin Rader Abstract It is a general consensus

### xtmixed & denominator degrees of freedom: myth or magic

xtmixed & denominator degrees of freedom: myth or magic 2011 Chicago Stata Conference Phil Ender UCLA Statistical Consulting Group July 2011 Phil Ender xtmixed & denominator degrees of freedom: myth or

### Categorical Data Analysis

Richard L. Scheaffer University of Florida The reference material and many examples for this section are based on Chapter 8, Analyzing Association Between Categorical Variables, from Statistical Methods

### Logistic Regression. BUS 735: Business Decision Making and Research

Goals of this section 2/ 8 Specific goals: Learn how to conduct regression analysis with a dummy independent variable. Learning objectives: LO2: Be able to construct and use multiple regression models

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### Addressing Alternative. Multiple Regression. 17.871 Spring 2012

Addressing Alternative Explanations: Multiple Regression 17.871 Spring 2012 1 Did Clinton hurt Gore example Did Clinton hurt Gore in the 2000 election? Treatment is not liking Bill Clinton 2 Bivariate

### From this it is not clear what sort of variable that insure is so list the first 10 observations.

MNL in Stata We have data on the type of health insurance available to 616 psychologically depressed subjects in the United States (Tarlov et al. 1989, JAMA; Wells et al. 1989, JAMA). The insurance is

### Logistic regression diagnostics

Logistic regression diagnostics Biometry 755 Spring 2009 Logistic regression diagnostics p. 1/28 Assessing model fit A good model is one that fits the data well, in the sense that the values predicted

### Using Stata for Categorical Data Analysis

Using Stata for Categorical Data Analysis NOTE: These problems make extensive use of Nick Cox s tab_chi, which is actually a collection of routines, and Adrian Mander s ipf command. From within Stata,

### Interaction effects and group comparisons Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised February 20, 2015

Interaction effects and group comparisons Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised February 20, 2015 Note: This handout assumes you understand factor variables,

### Linear Regression Models with Logarithmic Transformations

Linear Regression Models with Logarithmic Transformations Kenneth Benoit Methodology Institute London School of Economics kbenoit@lse.ac.uk March 17, 2011 1 Logarithmic transformations of variables Considering

### Overview Classes. 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7)

Overview Classes 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7) 2-4 Loglinear models (8) 5-4 15-17 hrs; 5B02 Building and

### Lecture 5 Hypothesis Testing in Multiple Linear Regression

Lecture 5 Hypothesis Testing in Multiple Linear Regression BIOST 515 January 20, 2004 Types of tests 1 Overall test Test for addition of a single variable Test for addition of a group of variables Overall

### Quantitative Methods for Economics Tutorial 9. Katherine Eyal

Quantitative Methods for Economics Tutorial 9 Katherine Eyal TUTORIAL 9 4 October 2010 ECO3021S Part A: Problems 1. In Problem 2 of Tutorial 7, we estimated the equation ŝleep = 3, 638.25 0.148 totwrk

### Multicollinearity Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015

Multicollinearity Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015 Stata Example (See appendices for full example).. use http://www.nd.edu/~rwilliam/stats2/statafiles/multicoll.dta,

### Module 14: Missing Data Stata Practical

Module 14: Missing Data Stata Practical Jonathan Bartlett & James Carpenter London School of Hygiene & Tropical Medicine www.missingdata.org.uk Supported by ESRC grant RES 189-25-0103 and MRC grant G0900724

### Testing for serial correlation in linear panel-data models

The Stata Journal (2003) 3, Number 2, pp. 168 177 Testing for serial correlation in linear panel-data models David M. Drukker Stata Corporation Abstract. Because serial correlation in linear panel-data

### How to set the main menu of STATA to default factory settings standards

University of Pretoria Data analysis for evaluation studies Examples in STATA version 11 List of data sets b1.dta (To be created by students in class) fp1.xls (To be provided to students) fp1.txt (To be

### Econometrics II. Lecture 9: Sample Selection Bias

Econometrics II Lecture 9: Sample Selection Bias Måns Söderbom 5 May 2011 Department of Economics, University of Gothenburg. Email: mans.soderbom@economics.gu.se. Web: www.economics.gu.se/soderbom, www.soderbom.net.

### International Statistical Institute, 56th Session, 2007: Phil Everson

Teaching Regression using American Football Scores Everson, Phil Swarthmore College Department of Mathematics and Statistics 5 College Avenue Swarthmore, PA198, USA E-mail: peverso1@swarthmore.edu 1. Introduction

### Regression Analysis: A Complete Example

Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

### DETERMINANTS OF CAPITAL ADEQUACY RATIO IN SELECTED BOSNIAN BANKS

DETERMINANTS OF CAPITAL ADEQUACY RATIO IN SELECTED BOSNIAN BANKS Nađa DRECA International University of Sarajevo nadja.dreca@students.ius.edu.ba Abstract The analysis of a data set of observation for 10

### Nonlinear Regression Functions. SW Ch 8 1/54/

Nonlinear Regression Functions SW Ch 8 1/54/ The TestScore STR relation looks linear (maybe) SW Ch 8 2/54/ But the TestScore Income relation looks nonlinear... SW Ch 8 3/54/ Nonlinear Regression General

### 25 Working with categorical data and factor variables

25 Working with categorical data and factor variables Contents 25.1 Continuous, categorical, and indicator variables 25.1.1 Converting continuous variables to indicator variables 25.1.2 Converting continuous

### 13. Poisson Regression Analysis

136 Poisson Regression Analysis 13. Poisson Regression Analysis We have so far considered situations where the outcome variable is numeric and Normally distributed, or binary. In clinical work one often

### STATA FUNDAMENTALS FOR MIDDLEBURY COLLEGE ECONOMICS STUDENTS

STATA FUNDAMENTALS FOR MIDDLEBURY COLLEGE ECONOMICS STUDENTS BY EMILY FORREST AUGUST 2008 CONTENTS INTRODUCTION STATA SYNTAX DATASET FILES OPENING A DATASET FROM EXCEL TO STATA WORKING WITH LARGE DATASETS

### Multiple Linear Regression

Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is

### 5. Ordinal regression: cumulative categories proportional odds. 6. Ordinal regression: comparison to single reference generalized logits

Lecture 23 1. Logistic regression with binary response 2. Proc Logistic and its surprises 3. quadratic model 4. Hosmer-Lemeshow test for lack of fit 5. Ordinal regression: cumulative categories proportional

### Logistic Regression Logistic regression is an example of a large class of regression models called generalized linear models (GLM)

Logistic Regression Logistic regression is an example of a large class of regression models called generalized linear models (GLM) n Observational Case Study: The Donner Party (Gayson, D.K., 1990, Donner

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Statistics 305: Introduction to Biostatistical Methods for Health Sciences

Statistics 305: Introduction to Biostatistical Methods for Health Sciences Modelling the Log Odds Logistic Regression (Chap 20) Instructor: Liangliang Wang Statistics and Actuarial Science, Simon Fraser

### Testing for Lack of Fit

Chapter 6 Testing for Lack of Fit How can we tell if a model fits the data? If the model is correct then ˆσ 2 should be an unbiased estimate of σ 2. If we have a model which is not complex enough to fit

### Statistics 112 Regression Cheatsheet Section 1B - Ryan Rosario

Statistics 112 Regression Cheatsheet Section 1B - Ryan Rosario I have found that the best way to practice regression is by brute force That is, given nothing but a dataset and your mind, compute everything

### Odds ratios and logistic regression: further examples of their use and interpretation

The Stata Journal (2003) 3, Number 3, pp. 213 225 Odds ratios and logistic regression: further examples of their use and interpretation Susan M. Hailpern, MS, MPH Paul F. Visintainer, PhD School of Public

### Nonlinear relationships Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised February 20, 2015

Nonlinear relationships Richard Williams, University of Notre Dame, http://www.nd.edu/~rwilliam/ Last revised February, 5 Sources: Berry & Feldman s Multiple Regression in Practice 985; Pindyck and Rubinfeld

### Using An Ordered Logistic Regression Model with SAS Vartanian: SW 541

Using An Ordered Logistic Regression Model with SAS Vartanian: SW 541 libname in1 >c:\=; Data first; Set in1.extract; A=1; PROC LOGIST OUTEST=DD MAXITER=100 ORDER=DATA; OUTPUT OUT=CC XBETA=XB P=PROB; MODEL

### Examples of Multiple Linear Regression Models

ECON *: Examples of Multple Regresson Models Examples of Multple Lnear Regresson Models Data: Stata tutoral data set n text fle autoraw or autotxt Sample data: A cross-sectonal sample of 7 cars sold n

### Title. Syntax. nlcom Nonlinear combinations of estimators. Nonlinear combination of estimators one expression. nlcom [ name: ] exp [, options ]

Title nlcom Nonlinear combinations of estimators Syntax Nonlinear combination of estimators one expression nlcom [ name: ] exp [, options ] Nonlinear combinations of estimators more than one expression

### Econometrics I: Econometric Methods

Econometrics I: Econometric Methods Jürgen Meinecke Research School of Economics, Australian National University 24 May, 2016 Housekeeping Assignment 2 is now history The ps tute this week will go through

### Title. Syntax. Menu. Description. stata.com. lrtest Likelihood-ratio test after estimation. modelspec2. lrtest modelspec 1.

Title stata.com lrtest Likelihood-ratio test after estimation Syntax Menu Description Options Remarks and examples Stored results Methods and formulas References Also see Syntax lrtest modelspec 1 [ modelspec2

### Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1. 1. Introduction p. 2. 2. Statistical Methods Used p. 5. 3. 10 and under Males p.

Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1 Table of Contents 1. Introduction p. 2 2. Statistical Methods Used p. 5 3. 10 and under Males p. 8 4. 11 and up Males p. 10 5. 10 and under

### Binary Diagnostic Tests Two Independent Samples

Chapter 537 Binary Diagnostic Tests Two Independent Samples Introduction An important task in diagnostic medicine is to measure the accuracy of two diagnostic tests. This can be done by comparing summary

### Statistical Models in R

Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova

### Is it statistically significant? The chi-square test

UAS Conference Series 2013/14 Is it statistically significant? The chi-square test Dr Gosia Turner Student Data Management and Analysis 14 September 2010 Page 1 Why chi-square? Tests whether two categorical

### STA 4163 Lecture 10: Practice Problems

STA 463 Lecture 0: Practice Problems Problem.0: A study was conducted to determine whether a student's final grade in STA406 is linearly related to his or her performance on the MATH ability test before

### Nested Logit. Brad Jones 1. April 30, 2008. University of California, Davis. 1 Department of Political Science. POL 213: Research Methods

Nested Logit Brad 1 1 Department of Political Science University of California, Davis April 30, 2008 Nested Logit Interesting model that does not have IIA property. Possible candidate model for structured

### A Simple Feasible Alternative Procedure to Estimate Models with High-Dimensional Fixed Effects

DISCUSSION PAPER SERIES IZA DP No. 3935 A Simple Feasible Alternative Procedure to Estimate Models with High-Dimensional Fixed Effects Paulo Guimarães Pedro Portugal January 2009 Forschungsinstitut zur

### The average hotel manager recognizes the criticality of forecasting. However, most

Introduction The average hotel manager recognizes the criticality of forecasting. However, most managers are either frustrated by complex models researchers constructed or appalled by the amount of time

### 6. CONDUCTING SURVEY DATA ANALYSIS

49 incorporating adjustments for the nonresponse and poststratification. But such weights usually are not included in many survey data sets, nor is there the appropriate information for creating such replicate

### Lab 5 Linear Regression with Within-subject Correlation. Goals: Data: Use the pig data which is in wide format:

Lab 5 Linear Regression with Within-subject Correlation Goals: Data: Fit linear regression models that account for within-subject correlation using Stata. Compare weighted least square, GEE, and random

### THE EFFECT ON STUDENT PERFORMANCE OF WEB- BASED LEARNING AND HOMEWORK IN MICROECONOMICS

Page 115 THE EFFECT ON STUDENT PERFORMANCE OF WEB- BASED LEARNING AND HOMEWORK IN MICROECONOMICS Jay A. Johnson, Southeastern Louisiana University Russell McKenzie, Southeastern Louisiana University ABSTRACT

### Standard errors of marginal effects in the heteroskedastic probit model

Standard errors of marginal effects in the heteroskedastic probit model Thomas Cornelißen Discussion Paper No. 320 August 2005 ISSN: 0949 9962 Abstract In non-linear regression models, such as the heteroskedastic

### Data Analysis Methodology 1

Data Analysis Methodology 1 Suppose you inherited the database in Table 1.1 and needed to find out what could be learned from it fast. Say your boss entered your office and said, Here s some software project

### Institut für Soziologie Eberhard Karls Universität Tübingen www.maartenbuis.nl

from Indirect Extracting from Institut für Soziologie Eberhard Karls Universität Tübingen www.maartenbuis.nl from Indirect What is the effect of x on y? Which effect do I choose: average marginal or marginal

### In the general population of 0 to 4-year-olds, the annual incidence of asthma is 1.4%

Hypothesis Testing for a Proportion Example: We are interested in the probability of developing asthma over a given one-year period for children 0 to 4 years of age whose mothers smoke in the home In the