A Comparison of Methods for Boron Removal From Flowback and Produced Waters

Size: px
Start display at page:

Download "A Comparison of Methods for Boron Removal From Flowback and Produced Waters"

Transcription

1 A Comparison of Methods for Boron Removal From Flowback and Produced Waters Dennis Rodarte and Robert S. Smith, Express Energy Services While storage and logistics are critical elements of the viability of water reuse, if the water chemistry is not fit for gel fracturing formulations, it will not matter how much is stored in centrally located impoundments. Millions of barrels of flowback, produced, and fresh water or brackish waters are available daily for any number of uses, but only a select few exploration and production companies have taken the necessary steps to implement a quality program that works effectively. In addition, the commitment to instituting such a program is far more simplistic than most producers believe it to be. What is required, however, is a desire to manage for the long term, not just for a period of drought or in a reactionary way because of government regulatory rhetoric. Background An estimated average of 5 million gallons of fresh water per well are pumped when fracturing a shale formation. Given the new regulations and increasing droughty conditions, water management has become a crucial step in well planning. Many processes are in place to treat flowback water for reuse or disposal, but various obstacles have also emerged. The distinctive characteristics of organic and inorganic matter in these waters have given rise to various potential risks when reused. Of the various contaminants, boron is especially worrisome because of its use as a crosslinker in the hydraulic fracturing process. The presence of boron poses the threat of prematurely crosslinking the polymer and upsetting the delayed rheology desired in the gel formulation. For this reason, research on boron removal from these fluids was conducted. The removal of boron from water poses a significant challenge. Many technologies exist to remove boron from water in a clean-water application, but the selective removal of boron is a different issue altogether. Because of the molecular weight of boron and its dissociation, many traditional wastewater treatments leave the substance untouched. The behavior and chemical composition of boron varies in an aqueous environment. Boron is a metalloid and behaves as a Lewis acid and exists primarily as un-dissociated boric acid or borate ions. The borate ions dominate at higher, while boric acid dominates at lower Dennis Rodarte is a staff chemist and technical adviser at Express Energy Services, and Robert (Robby) S. Smith is the water resource business development director at Express Energy Services. Presence of boron (%) H 3 BO 3 (Boric acid) H 2 BO 3 (Borate ion) Fig. 1 The behavior and chemical composition of boron varies in an aqueous environment. Borate ions dominate at higher, and boric acid dominates at lower. (Fig. 1). This nonionic form of boron yields a very stable molecule difficult to selectively remove. Current Technologies for Boron Removal Distillation The most obvious solution to deal with boron is a clean-water approach. The primary method of obtaining fresh water absent a freshwater well or lake is through a distillation process. With advances in efficiency and mechanical vapor recompression systems, distillation to produce fresh water has improved over the years. These thermal systems may be fueled by the gas being recovered or even flare gas, but the low flow rates achieved require that the water be stored for extended periods of time, which will likely trigger bacteria issues. Reverse Osmosis Reverse osmosis (RO) reclaims fresh water from brines at higher flow rates than those associated with distillation. The use of RO for oilfield waters is 12 Oil and Gas Facilities October 2014

2 Table 1 ion exchange efficiency in boron removal Product Water Type limited by the salinity to approximately 100,000 ppm. A higher salinity would yield a system requiring multiple passes to fully clean the influent. Additionally, RO at a neutral provides poor boron rejection. The boric acid at neutral is suspected to diffuse through the membrane in a manner similar to water itself. Therefore, to achieve greater boron rejection, the must be elevated. Although an RO system may be suitable in brackish waters, special seawater membranes along with various pretreatment steps would be necessary in the concentrate brines observed in the Bakken play. In this case, the resulting effluent remains brine water, but is less concentrated. Ideally, the boron would be rejected at 99%. If the water is completely reclaimed, it may be reused in any way deemed suitable. An additional limitation with RO systems is the efficiency of the process. Typically, two-thirds of the water is reclaimed and one-third is concentrated waste. The concentrate stream must be disposed of, or it may be again treated. Adding RO to the equipment currently employed would be ineffective and uneconomical. Rather, RO should be treated as a separate system with quite high initial capital costs. These systems that yield fresh water present the opportunity to reuse wastewater in new ways, but Initial Concentration Final Concentration Removal (%) Purolite Produced Purolite Flowback Amberlite IRA Produced Amberlite IRA Flowback the flow rate limitations and initial capital cost are to be considered. Along with clean-water applications, there are various systems to treat the water selectively and include boron in the process. Several treatment trains have been developed that use new pretreatment technologies, as well as new membrane technologies that are capable of resisting typical fouling issues associated with hydrocarbon contamination. Ion Exchange Ion exchange is the most selective of the systems researched. The ion exchange system uses a boron-specific functional group, N-methyl glucamine (NMG), to complex with boron at a neutral and provides an effluent with boron concentrations of less than 1 mg/l. The system requires pretreatment to remove suspended solids and large particles of oil in the water. The resin is regenerated, and its estimated life ranges from 3 years to 5 years. The systems are primarily used in cleanwater setting, so the high boron concentrations seen in the Eagle Ford and Bakken call for the use of multiple units in line. In two estimates, a system operating at 20 bbl/min (840 gal/min), operating 12 hours per day, and removing 100 ppm of boron incurs an initial cost of USD 700,000 for resin. This cost is based on the resin volume and does not include the cost of manufacturing the columns and associated equipment. The high cost of ion exchange is in part a result of the small loading capacity of the resin. The functional group is very selective, but only removes 5 grams of boron per liter of resin, thus this type of system is best used as a final polishing step, or at much lower flow rates. Table 1 shows the results of ion exchange resins tested from Purolite and Dow Water and Process Solutions (Amberlite IRA). The tests were conducted by placing 100 ml of clarified flowback or produced water in contact with 120 grams or 60 grams, respectively. The mixture was stirred for a minute prior to filtering and sending to a laboratory for analysis. The fluids tested were from Marathon wells in the Eagle Ford formation. Table 1 shows that the Amberlite IRA resin is very efficient, but the high cost of the resin limits the size of the project. If operating the system at 20 bbl/min and regenerating after a 12-hour work day, the resin cost would be approximately USD 881,263. If the resin were regenerated every 4 hours, the cost would still be approximately USD 250,000 because of the high boron content in the flowback water. The chemical cost of regeneration is approximately USD 0.03/bbl. Electrocoagulation Electrocoagulation destabilizes suspended contaminants by contacting the fluid with electric current. The technology is optimal in systems with a fair amount of conductivity, typically resulting from total dissolved solids (TDS), making it applicable in oilfield wastewater. The suspended contaminants fall out and form sludge, but a smaller volume of sludge is produced when compared with similar chemical processes. The efficiency is dependent on current density, October 2014 Oil and Gas Facilities 13

3 Table 2 initial water quality of a sample from an eagle ford formation Ion, electrode spacing, time, and initial concentration. Competitors are employing this technology in the field to treat wastewater, but the technology does not specifically target boron. There is literature that suggests a removal efficiency of 95% is possible by simply adjusting the current density and increasing the. An electrocoagulation system may be of interest in the future, but the initial capital cost of building a 20+ bbl/min unit would require working in conjunction with the manufacturer. A pilot-scale system and proper sizing may yield a system with a low operating expense and adequate flow rate. Chemical Additions to Remove Boron In addition to these systems, many different materials have been added to waste streams to remove boron, none Produced Water Barium Boron Calcium 1, Iron Magnesium Manganese Potassium Sodium 11,500 6,910 Strontium Iron, ferric* Iron, ferrous Total organic carbon 290 2,560 *Calculated as iron minus iron, ferrous Flowback Water of which precipitate boron directly. Forming a complex with boron in a manner similar to the NMG functional groups is a common topic in patents. A patent using polyvinyl alcohol (PVOH) was tested in this study. Polyvinyl Alcohol A mechanism similar to the ion exchange functional group is achieved by putting aqueous boron in contact with water-soluble cationic polyelectrolyte, PVOH, and anionic modified PVOH under alkaline condition, followed by removal of the generated coagulation. The invention uses an anionically modified PVOH for lower concentrations, typically less than 30 ppm. The mechanism is similar in that boron is moved to dehydrate a cis-diol group and when in contact with a tertiary amine group, forms a stable complex. In the NMG functional group, this takes place on the surface of the resin, where the boron adds on the cis-diol group and the attached amine group neutralizes the charge. With the PVOH addition, the polymer provides the polyol end sites, followed by the addition of polydiallyldimethylammonium chloride (polydadmac) to provide the amine group. Testing of this method for boron removal was conducted on flowback and produced water from the Eagle Ford play (Table 2) and included various PVOH grades, combinations and doses of flocculants, polyacrylamides, adjustments, mixing time adjustments, and changes in the PVOH preparation. The majority of the testing was done with a two-stage process consisting of 1) iron and suspended solids removal with a flocculent, adjustment, and polyacrylamide, followed by 2) PVOH addition, adjustment, and polydadmac addition. Testing of the PVOH was first conducted on a boric acid solution made by diluting boric acid to a concentration of typically 100 ppm boron. Initial polymer makeup did not provide a homogenous mixture at 5% w/w (weight-by-weight) or greater.the PVOH grades tested were PVA 105, Mowiol 30-98, and KL-118. After contacting the manufacturer, the three polymers were blended and brought to 90 C to provide a homogenous mixture. Of the three polymer grades tested for boron removal, all proved to be adequate, with PVA 105 and KL-118 being the simplest to make up. The combination of a PVOH with a PVOH modified with carboxyl groups proved to be the most effective, as expected, but cost-prohibitive. Because the concentration desired does not need to reach zero, the addition of a single PVOH proved sufficient. The findings in the boric acid solution show the most efficient boron removal with a 5% w/w PVA 105 at a >10 (Fig. 2). 14 Oil and Gas Facilities October 2014

4 Boron dependence Polyvinyl alcohol ( dependence) Fig. 2 The effect of on boron removal when using polyvinyl alcohol and an associated third-order trend line. After testing to find the necessary dose of PVA 105, the preferred method to conduct the experiment is to 1) add 15 ml of 5% w/w PVA 105, 2) raise the to 10 with sodium hydroxide, and add 0.8 ml of 20% w/w polydadmac. The 100-mL tests were conducted on a stir plate. The fluid was filtered through a paper towel to remove the sludge produced. A boron removal rate of approximately 75% was achieved with a final boron concentration of 25.3 ppm. After the ideal doses were found in the boric acid solution, the flowback and produced water were tested in single-stage and two-stage processes. Hydrogen peroxide and ferric chloride were tested and compared as coagulants, and both were found suitable for clarification of the fluid. The flowback water maintained a yellow hue, even after treatment with both of the coagulants, but the hydrogen peroxide lessened the color more than the ferric chloride treatment. After further reading, a test was conducted using ferric chloride followed by hydrogen peroxide for coagulation. This method removed more of the yellow tint. With the use of sufficient hydrogen peroxide, the color may be completely removed from the fluid. An issue encountered during the testing of the PVOH in the produced and flowback waters was the formation of gel. After conducting further testing, it was discovered that in the presence of salt, the PVOH crosslinks further and turns the entire volume into a gel. If left spinning overnight, the gel sheared and the polymer separated from the fluid in the form of a plastic-like ball. Testing with different polymer makeup procedures and additives proved unsuccessful, and the removal efficiency was also affected. Table 3 shows the results of using PVOH in a two-stage process consisting of clarifying the fluid, buffering the back to neutral, and the addition of boron-removal chemistry. The treatment steps were 1) the addition of hydrogen peroxide; 2) the buffering of ; 3) the addition of polyacrylamide; 4) bringing the back to 7; 5) the addition of PVA 105; 6) the buffering of to 11; and 7) the addition of polydadmac. The process is efficient when conducted in a boric acid solution, but the high TDS of the wastewater presented a problem. In the presence of salt, rather than achieving a precipitate with the boron entrained, a gel was formed. It is suspected that the gel was the result of enhanced crosslinking in the presence of salt. The resulting gel takes hours to shear, and thus poses a serious problem in the separation process. More work may be conducted in the future to propose a similar mechanism for boron removal under brine conditions using a different polymer. Because of the high volumes of chemicals required by this method, an economical evaluation is necessary to see if the invention is cost-feasible. The typical clarification chemistry would carry a chemical cost around USD 0.50/bbl, dependent on the desired values. The added cost of boron removal chemistry pushes the price to more than USD 6/bbl. The prices of PVA 105 at USD 5 kg and polydadmac at USD 1.40/lb resulted in costs at USD 3.96/bbl and USD 2.03/bbl, respectively. Therefore, alternative chemistries were investigated. Lime Lime has been used to remove boron from wastewater and has proven to be very effective. Slaked and unslaked lime have been used and shown effective. Temperature is an issue when using October 2014 Oil and Gas Facilities 15

5 Table 3 Boron removal using polyvinyl alcohol Water Type Boron, Initial Concentration (ppm) lime. Lime softening is routinely conducted at 90 C, a parameter uncontrolled in the field. Lime at room temperature is inefficient by itself at removing boron. Lime was used rather than sodium hydroxide for buffering, but a considerable increase in efficiency was not seen. Magnesium Oxide Other chemical additives work by adsorption, coprecipitation, or a combination of the two. The primary limitation in this process is the large dose of adsorbent necessary. As the dose increases, the efficiency increases because of the availability of an increased surface area. Most of the work done on the adsorption of boron has involved magnesium oxide. By adding magnesium oxide to the water and elevating the to its point of zero charge, electrostatic adsorption occurs. The maximum efficiency is noted at 10, but the process involves large Boron, Final Concentration (ppm) Removal (%) Produced Flowback Boron concentration (ppm) Fig. 3 The removal of boron with magnesium chloride was most effective at values ranging from 10 to 11. amounts of chemical per gram of boron removed. Attempting to coprecipitate also poses issues, since a of less than 2 is required to fully dissolve the magnesium oxide. Additionally, dissolving the magnesium oxide is an exothermic process, which generates a large amount of heat an undesired health, safety, and environmental concern. Testing conducted with anhydrous magnesium oxide showed high chemical consumption, as well as a high cost. Magnesium oxide successfully treated the produced and flowback water to levels of boron below 20 ppm, but at a cost-prohibitive dose. Cost was estimated at USD 65/bbl. Magnesium Chloride An alternative to magnesium oxide may be magnesium chloride. Research suggests that magnesium chloride yields a higher removal efficiency, and its use is not temperature-dependent. Anhydrous magnesium chloride is difficult to dissolve and exothermic, therefore, the hexahydrate form was used for testing. The magnesium chloride hexahydrate may be added directly or dissolved in water and added as a solution. When the is brought up to 11, brucite (the solid mineral form of magnesium hydroxide), magnesium chloride hydroxide, and boron are precipitated. The suggested mechanisms are that the boron adsorbs onto the precipitate, or it is entrapped during the precipitate formation. This method of boron removal was proven to be effective at room temperature. The limitations of this method included reduced efficiency in the presence of silica and a high chemical consumption. For every gram of magnesium chloride added, a gram of sludge was produced. The optimum for boron removal ranged from 10 to 11 (Fig. 3). The testing conducted with magnesium chloride proved successful in the removal of boron at two-thirds the dose and one-sixth the cost of raw product when compared to magnesium oxide. The produced water with an initial boron concentration of 60 ppm was treated effectively at a cost of approximately USD 2/bbl. The cost of the magnesium chloride at USD 0.22/lb puts the flowback water treatment at USD 2.31/bbl, excluding the coagulant and caustic soda. Addition of magnesium chloride in a single-stage process is a viable option for boron removal from produced and flowback water, but the chemical consumption and sludge production must be kept in mind. Conclusion The testing conducted on boron removal proved that it can be selectively removed from flowback and produced waters. The testing also showed that the processes required are complex and typically can be expensive if no 16 Oil and Gas Facilities October 2014

6 WATER TREATING INSIGHTS thorough investigation has been done to mitigate costs. Boron removal via chemical additives is possible, but large chemical demand is involved. Further studies are necessary to develop an efficient polymer or highly selective media to remove boron. Precipitation using softening may be a viable option, but temperature control is necessary. With appropriate testing and sizing, alternative processes such as RO or electrocoagulation can be used for boron removal. There has been work conducted on water reuse for hydraulic fracturing, and the obstacles encountered are being resolved. Alternatively, salttolerant polymers have been developed to allow contaminated brines to successfully stimulate a well for a high rate of hydrocarbon recovery. Also, crosslinking polymers are being developed by pressure pumping companies to control the rheology of a gel in the presence of boron. Given these new developments, water reuse is sure to remain a priority within the oil and gas industry for years to come. A treatment train was developed to effectively remove boron to acceptable gel fracturing formulation levels in waters with moderate TDS for less than USD 2/bbl. This level of pricing associated with pretreatment and subsequent removal of boron and other constituents from a water source is superior to current water-sourcing methods, such as the trucking of fresh water or deepwell construction. OGF Concentrate. MS thesis, California Polytechnic State University, San Luis Obispo, California (August 2009). edu/theses/156/. Suzuki, H. and Yabusaki, K. Agent for Removing Boron and Method for Removing Boron. Patent EP A1. EP A1?cl=en. Industrial Strength Detection etection MICROPACK Optical Detection Sees, Discriminates & Manages When fast optical flame me detection is critical... And nuisance alarms are not an option. For Further Reading Ezechi, E.H., Isa, M.H., and Kutty, S.R.B M Boron in Produced Water: Challenges and Improvements: A Comprehensive Review. Journal of Applied Sciences (Faisalabad), 12 (5): Rahman, I.Y., Nelson, Y., and Lundquist, T Removal of Boron from Produced Water by Co-Precipitation/Adsorption for Reverse Osmosis info@micropackamericas.com October 2014 Oil and Gas Facilities 17

Wastewater Reuse. Typical treated wastewater is:

Wastewater Reuse. Typical treated wastewater is: Wastewater Reuse Most metal finishing industries have in-house wastewater treatment to economically dispose of the acids, alkali, oils, and dissolved metals in the rinse water and occasional tank solution

More information

Zero Discharge Water Management for. Horizontal Shale Gas Well Development

Zero Discharge Water Management for. Horizontal Shale Gas Well Development Zero Discharge Water Management for Horizontal Shale Gas Well Development TECHNOLOGY STATUS ASSESSMENT Submitted by: West Virginia Water Research Institute West Virginia University PO Box 6064 Morgantown,

More information

ROSS Technology Removal of Oil, Solids and Scale Formers

ROSS Technology Removal of Oil, Solids and Scale Formers ROSS Technology Removal of Oil, Solids and Scale Formers Frac Flowback and Produced Treatment for Reuse WATER TECHNOLOGIES Treatment for Reuse and Enhanced Oil Recovery ROSS Technology is a an effective

More information

ECOAZUR BLUEWATER WATER PURIFICATION PLANTS

ECOAZUR BLUEWATER WATER PURIFICATION PLANTS ECOAZUR BLUEWATER WATER PURIFICATION PLANTS CONTACT EcoAzur Calle 11a #492 x 60 y 62 Tel: +52-999-920-1972 Col. Residencial Pensiones Email: info@eco-azur.com C.P. 97217 Merida, Yucatan, Mexico Website:

More information

Water Softening for Hardness Removal. Hardness in Water. Methods of Removing Hardness 5/1/15. WTRG18 Water Softening and Hardness

Water Softening for Hardness Removal. Hardness in Water. Methods of Removing Hardness 5/1/15. WTRG18 Water Softening and Hardness Water Softening for Removal 1 in Water High concentration of calcium (Ca2+) and magnesium (Mg2+) ions in water cause hardness Generally, water containing more than 100 mg/l of hardness expressed as calcium

More information

Christopher Harto Argonne National Laboratory

Christopher Harto Argonne National Laboratory Managing Water from CCS Programs Christopher Harto Argonne National Laboratory John A. Veil - Argonne National Laboratory Andrea McNemar - DOE/NETL GWPC Energy and Water Sustainability Symposium Pittsburgh,

More information

Chemistry at Work. How Chemistry is used in the Water Service

Chemistry at Work. How Chemistry is used in the Water Service Chemistry at Work How Chemistry is used in the Water Service WATER TREATMENT Everyday, more than 100 water treatment works in Northern Ireland put approximately 680 million litres of water into the supply

More information

GUIDELINES FOR LEACHATE CONTROL

GUIDELINES FOR LEACHATE CONTROL GUIDELINES FOR LEACHATE CONTROL The term leachate refers to liquids that migrate from the waste carrying dissolved or suspended contaminants. Leachate results from precipitation entering the landfill and

More information

Removing Heavy Metals from Wastewater

Removing Heavy Metals from Wastewater Removing Heavy Metals from Wastewater Engineering Research Center Report David M. Ayres Allen P. Davis Paul M. Gietka August 1994 1 2 Removing Heavy Metals From Wastewater Introduction This manual provides

More information

Marcellus Fast Facts

Marcellus Fast Facts 1 Marcellus Fast Facts Covers about 95,000 square miles in 6 states Occurs at depths of up to 9,000 feet Thickness of 250 feet or more Largest natural gas reservoir in North America (est. 500 TCF recoverable

More information

ION EXCHANGE FOR DUMMIES. An introduction

ION EXCHANGE FOR DUMMIES. An introduction ION EXCHANGE FOR DUMMIES An introduction Water Water is a liquid. Water is made of water molecules (formula H 2 O). All natural waters contain some foreign substances, usually in small amounts. The water

More information

Total Water & Wastewater Management for Shale Gas Production. Treatment and Operation Solutions

Total Water & Wastewater Management for Shale Gas Production. Treatment and Operation Solutions Total Water & Wastewater Management for Shale Gas Production Treatment and Operation Solutions Impact of Water and Wastewater from Shale Gas Fracturing Operations As the number of shale gas fracturing

More information

Differentiation Summary. Revolutionizing Water Clean-Up Opportunities

Differentiation Summary. Revolutionizing Water Clean-Up Opportunities Differentiation Summary Revolutionizing Water Clean-Up Opportunities NanoClear is a water clean-up process that affordably and efficiently converts salt, brackish or waste water into pure, usable water.

More information

BASIC WATER TREATMENT OF STEAM BOILERS

BASIC WATER TREATMENT OF STEAM BOILERS BASIC WATER TREATMENT OF STEAM BOILERS Steve Kenny and Dave Pope Chemco Water Technology Vancouver, WA This is a brief discussion on low-pressure steam boiler chemistry. It provides dry kiln boiler operators

More information

Subject: Technical Letter 22 April 1977 Removal of Water Supply Contaminants -- Copper and Zinc

Subject: Technical Letter 22 April 1977 Removal of Water Supply Contaminants -- Copper and Zinc STATE OF ILLINOIS Department of Registration and Education JOAN G. ANDERSON DIRECTOR. SPRINGFIELD BOARD OF NATURAL RESOURCES AND CONSERVATION JOAN G. ANDERSON CHAIRMAN BIOLOGY THOMAS PARK CHEMISTRY H.

More information

IMPACT OF CHEMICALS ADDITION IN WATER/WASTEWATER TREATMENT ON TDS CONCENTRATION AND SLUDGE GENERATION Jurek Patoczka, PhD, PE Hatch Mott MacDonald 27 Bleeker Str., Millburn, NJ 07041 (973) 912 2541 jurek.patoczka@hatchmott.com

More information

TREATMENT OF PHOSPHATE FERTILIZER PLANT WASTE WATER IN FLORIDA FOR DISCHARGE AND RE USE PURPOSES

TREATMENT OF PHOSPHATE FERTILIZER PLANT WASTE WATER IN FLORIDA FOR DISCHARGE AND RE USE PURPOSES TREATMENT OF PHOSPHATE FERTILIZER PLANT WASTE WATER IN FLORIDA FOR DISCHARGE AND RE USE PURPOSES JOHN F. BOSSLER, SIEMENS Water Technologies Corp., Hoffman Estates, IL RONALD TRAVIS, SIEMENS Water Technologies

More information

Hardness ions also interfere with many chemical processes such as chemical compounding and aqueous cleaners.

Hardness ions also interfere with many chemical processes such as chemical compounding and aqueous cleaners. Water Softeners Industrial Water Purification (800) CAL-WATER By Dave Peairs, Cal Water, Technical Director Rev: 06/08/2004 Before any discussion of water softeners, we must first define what hard water

More information

Ion Exchange Softening

Ion Exchange Softening Ion Exchange Softening Ion-exchange is used extensively in small water systems and individual homes. Ion-exchange resin, (zeolite) exchanges one ion from the water being treated for another ion that is

More information

ION EXCHANGE RESINS INTRODUCTION

ION EXCHANGE RESINS INTRODUCTION ION EXANGE RESINS Ion exchange resins are polymers that are capable of exchanging particular ions within the polymer with ions in a solution that is passed through them. This ability is also seen in various

More information

Environmental Technology March/April 1998

Environmental Technology March/April 1998 Treating Metal Finishing Wastewater Sultan I. Amer, Ph.D. AQUACHEM INC. Environmental Technology March/April 1998 Wastewater from metal finishing industries contains high concentrations of contaminants

More information

Coagulation and Flocculation

Coagulation and Flocculation Coagulation and Flocculation Groundwater and surface water contain both dissolved and suspended particles. Coagulation and flocculation are used to separate the suspended solids portion from the water.

More information

Dissolved Mineral Radioactivity in Drinking Water

Dissolved Mineral Radioactivity in Drinking Water WD-WSEB-3-11 2004 Dissolved Mineral Radioactivity in Drinking Water General New Hampshire's bedrock contains naturally occurring radioactivity. A few examples with health importance include radon, radium

More information

DEIONIZATION IN A "NUT SHELL"

DEIONIZATION IN A NUT SHELL Deionized Water (DI) DEIONIZATION IN A "NUT SHELL" City water is passed through dark amber colored, caviar sized plastic beads called cation ion exchange resin. The cation resin is in the hydrogen form

More information

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion GS106 Chemical Bonds and Chemistry of Water c:wou:gs106:sp2002:chem.wpd I. Introduction A. Hierarchy of chemical substances 1. atoms of elements - smallest particles of matter with unique physical and

More information

Irrigation Water Quality for Greenhouse Production

Irrigation Water Quality for Greenhouse Production Agricultural Extension Service The University of Tennessee PB 1617 Irrigation Water Quality for Greenhouse Production 1 Table of Contents Factors Affecting Water Quality 3 ph 3 Alkalinity/Carbonates and

More information

Nitrate and Nitrite Removal from Municipal Drinking Water Supplies with Electrodialysis Reversal

Nitrate and Nitrite Removal from Municipal Drinking Water Supplies with Electrodialysis Reversal Technical Paper Nitrate and Nitrite Removal from Municipal Drinking Water Supplies with Electrodialysis Reversal Authors: Ted Prato and Richard G. Parent, Ionics Reprinted from Proceedings of 1993 AWWA

More information

Hydranautics. RO Water Chemistry

Hydranautics. RO Water Chemistry Hydranautics RO Water Chemistry Alkalinity: Alkalinity is comprised primarily of bicarbonate, carbonate and hydroxide ions. Naturally occurring alkalinity functions as the earth s natural buffering system.

More information

Reuse of Alternative Water Sources for Cooling Tower Systems Two Case Studies Using Non-Traditional Water Sources

Reuse of Alternative Water Sources for Cooling Tower Systems Two Case Studies Using Non-Traditional Water Sources Reuse of Alternative Water Sources for Cooling Tower Systems Two Case Studies Using Non-Traditional Water Sources Matthew L. Haikalis Veolia Water Solutions & Technologies April 24, 2013 Operational Priorities

More information

SODIUM CATION EXCHANGE (ZEOLITE) WATER SOFTENING PROCESS

SODIUM CATION EXCHANGE (ZEOLITE) WATER SOFTENING PROCESS SODIUM CATION EXCHANGE (ZEOLITE) WATER SOFTENING PROCESS A. History The name zeolite comes from the two Greek words zein and lithos which mean boiling stone. It was first applied by Granstedt, a Swedish

More information

DOWEX Resins as Organic Solvent Desiccants

DOWEX Resins as Organic Solvent Desiccants Product Information DOWEX Resins as Organic Solvent Desiccants DOWEX* ion exchange resins can be used as desiccants for organic solvents, after having been dried to a low moisture level, in a manner similar

More information

Environmental Water Testing: Surface Water, Groundwater, Hard Water, Wastewater, & Seawater

Environmental Water Testing: Surface Water, Groundwater, Hard Water, Wastewater, & Seawater Document: AND Sol Env 08 2013 Environmental Water Testing: Surface Water, Groundwater, Hard Water, Wastewater, & Seawater Matrix specific sample preparation and testing methods for environmental waters

More information

REMOVAL OF PHOSPHATE FROM WASTEWATER USING LOW-COST ADSORBENTS

REMOVAL OF PHOSPHATE FROM WASTEWATER USING LOW-COST ADSORBENTS International Journal of Engineering Inventions ISSN: 2278-7461, www.ijeijournal.com Volume 1, Issue 7 (October2012) PP: 44-50 REMOVAL OF PHOSPHATE FROM WASTEWATER USING LOW-COST ADSORBENTS Dr. C.R.Ramakrishnaiah

More information

Remediation of Water-Based Drilling Fluids and Cleaning of Cuttings

Remediation of Water-Based Drilling Fluids and Cleaning of Cuttings OVERVIEW Water-Based Drilling Fluids are environmentally friendly compared with oil-based drilling fluids; however their safe disposal can still be a challenge. There are normally no hydrocarbons present,

More information

SPE Distinguished Lecturer Program

SPE Distinguished Lecturer Program SPE Distinguished Lecturer Program The SPE Distinguished Lecturer Program is funded principally through a grant from the SPE Foundation. The society gratefully acknowledges the companies that support this

More information

Membrane Filtration Technology: Meeting Today s Water Treatment Challenges

Membrane Filtration Technology: Meeting Today s Water Treatment Challenges Membrane Filtration Technology: Meeting Today s Water Treatment Challenges Growing global demand for clean water and increasing environmental concerns make membrane filtration the technology of choice

More information

Evaluation of Alternatives to Domestic Ion Exchange Water Softeners. Mara Wiest Dr. Peter Fox Dr. Lee Wontae, HDR Tim Thomure, HDR

Evaluation of Alternatives to Domestic Ion Exchange Water Softeners. Mara Wiest Dr. Peter Fox Dr. Lee Wontae, HDR Tim Thomure, HDR Evaluation of Alternatives to Domestic Ion Exchange Water Softeners Mara Wiest Dr. Peter Fox Dr. Lee Wontae, HDR Tim Thomure, HDR April 26, 2011 OUTLINE Water Quality and reuse in the Southwest US Ion

More information

Metal Ion + EDTA Metal EDTA Complex

Metal Ion + EDTA Metal EDTA Complex Simplified Removal of Chelated Metals Sultan I. Amer, AQUACHEM INC. Metal Finishing, April 2004, Vol. 102 No. 4 Chelating agents are used in large quantities in industrial applications involving dissolved

More information

Granular Ferric Hydroxide for Elimination of Arsenic from Drinking Water

Granular Ferric Hydroxide for Elimination of Arsenic from Drinking Water Pal : Granular Ferric Hydroxide for Elimination of Arsenic from drinking Water 59 Granular Ferric Hydroxide for Elimination of Arsenic from Drinking Water B. N. Pal M/S Pal Trockner [P] Ltd. 25/1B Ibrahimpur

More information

1. Inspection and monitoring... 3

1. Inspection and monitoring... 3 1 Index 1. Inspection and monitoring... 3 1.1 Handling of new elements... 3 1.1.1 Storage of original packaged RO elements... 3 1.1.2 Packing... 3 1.2 Initial start- up checks of a plant... 3 1.2.1 Preparation

More information

MEMBRANE TECHNOLOGY TREATING OILY WASTEWATER FOR REUSE

MEMBRANE TECHNOLOGY TREATING OILY WASTEWATER FOR REUSE MEMBRANE TECHNOLOGY TREATING OILY WASTEWATER FOR REUSE Jeff Peeters, P.Eng. ZENON Environmental Inc. SAWEA 2005 Workshop Al-Khobar Holiday Inn Hotel, Saudi Arabia November 29, 2005 Presentation outline

More information

How To Remove Iron From Water

How To Remove Iron From Water ISR IRON REMOVAL MEDIA Description INDION ISR is a special media designed to provide excellent catalytic properties to remove dissolved iron from ground water. INDION ISR is an insoluble media which oxidizes

More information

A meaningful, cost-effective solution for polishing reverse osmosis permeate

A meaningful, cost-effective solution for polishing reverse osmosis permeate A meaningful, cost-effective solution for polishing reverse osmosis permeate Electrodeionization or EDI, is a continuous and chemicalfree process of removing ionized and ionizable species from the feed

More information

Water Solutions for Upstream Oil & Gas

Water Solutions for Upstream Oil & Gas Water Solutions for Upstream Oil & Gas WATER TECHNOLOGIES Produced water project, Bahrain. Veolia Water Technologies is dedicated to creating water solutions for the global oil & gas industry Oil and gas

More information

CENTRAL ARIZONA SALINITY STUDY ---- Phase I. Technical Appendix O. Municipal TDS Research

CENTRAL ARIZONA SALINITY STUDY ---- Phase I. Technical Appendix O. Municipal TDS Research CENTRAL ARIZONA SALINITY STUDY ---- Phase I Technical Appendix O Municipal TDS Research Introduction Water availability and quality are among the world s most important environmental issues. Demand for

More information

GUIDELINES FOR SELECTING RESIN ION EXCHANGE OR REVERSE OSMOSIS FOR FEED WATER DEMINERALISATION

GUIDELINES FOR SELECTING RESIN ION EXCHANGE OR REVERSE OSMOSIS FOR FEED WATER DEMINERALISATION GUIDELINES FOR SELECTING RESIN ION EXCHANGE OR REVERSE OSMOSIS FOR FEED WATER DEMINERALISATION Prepared by: Purolite International Date: November 2003 Operating Puropack Plant 2 GUIDELINES FOR SELECTING

More information

SYNERGISTIC APPLICATION OF ADVANCED PRIMARY AND SECONDARY WASTEWATER TREATMENT SYSTEMS

SYNERGISTIC APPLICATION OF ADVANCED PRIMARY AND SECONDARY WASTEWATER TREATMENT SYSTEMS SYNERGISTIC APPLICATION OF ADVANCED PRIMARY AND SECONDARY WASTEWATER TREATMENT SYSTEMS Published in Water and Waste Digest membrane issue, November 2008 Miroslav Colic; Chief Scientist, Clean Water Technology

More information

Culligan Exchange Tank Deionization Service

Culligan Exchange Tank Deionization Service Culligan Exchange Tank Deionization Service Beverages Boiler Feedwater Distilleries Food Preparation/Processing Glass/Mirrors Humidification Ice Making Photo Processing Plating/Anodizing Printing Vehicle

More information

Treatment options for hydrogen sulfide. Testing for hydrogen sulfide

Treatment options for hydrogen sulfide. Testing for hydrogen sulfide Sometimes hot water will have a sour smell, similar to that of an old damp rag. This smell often develops when the thermostat has been lowered to save energy or reduce the potential for scalding. Odor-causing

More information

Ion Exchange RESIN SELECTION. Marc Slagt Technical Support Specialist DOW Water & Process Solutions

Ion Exchange RESIN SELECTION. Marc Slagt Technical Support Specialist DOW Water & Process Solutions Ion Exchange RESIN SELECTION Marc Slagt Technical Support Specialist DOW Water & Process Solutions I WILL BRING YOU HAPPINESS!! Resin selection = HAPPINESS Why happiness... When it comes to resin selection

More information

C-100E Strong Acid Cation Exchange Resin (For use in water softening applications)

C-100E Strong Acid Cation Exchange Resin (For use in water softening applications) ION EXCHANGE RESINS C-1E Strong Acid Cation Exchange Resin (For use in water softening applications) Lenntech info@lenntech.com www.lenntech.com Tel. +31-15-61.9. Fax. +31-15-61.6.89 Technical Data PRODUCT

More information

The Grand Miramare Hotel Santa Margherita (Portofino) Italy March 19 22, 2013. Inspiring Innovation and Excellence

The Grand Miramare Hotel Santa Margherita (Portofino) Italy March 19 22, 2013. Inspiring Innovation and Excellence The Grand Miramare Hotel Santa Margherita (Portofino) Italy March 19 22, 2013 Inspiring Innovation and Excellence About the IDA Desalination Academy The IDA Desalination Academy aspires to increase knowledge

More information

WASTE WATER TREATMENT SYSTEM (OPERATING MANUALS )

WASTE WATER TREATMENT SYSTEM (OPERATING MANUALS ) Page 1 of 76 1.0 PURPOSE The purpose of the Wastewater Treatment System is to remove contaminates from plant wastewater so that it may be sent to the Final Plant Effluent Tank and eventually discharged

More information

Engineered Media for Removal of Fission Products from Aqueous Streams 14580. Abigail Holmquist, UOP - A Honeywell Company

Engineered Media for Removal of Fission Products from Aqueous Streams 14580. Abigail Holmquist, UOP - A Honeywell Company Engineered Media for Removal of Fission Products from Aqueous Streams 14580 Abigail Holmquist, UOP - A Honeywell Company ABSTRACT Nuclear fission products from fuel have the potential to be released into

More information

Facility Classification Standards

Facility Classification Standards Facility Classification Standards Approval Date: April 3, 2009 Effective Date: April 3, 2009 Approved By: Nancy Vanstone, Deputy Minister Version Control: Replaces Facility Classification Standards dated

More information

2.500 Desalination and Water Purification

2.500 Desalination and Water Purification MIT OpenCourseWare http://ocw.mit.edu 2.500 Desalination and Water Purification Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Institut für

More information

Well Water Iron Removal Using Quantum DMI-65 Granular Filter Media

Well Water Iron Removal Using Quantum DMI-65 Granular Filter Media Well Water Iron Removal Using Quantum DMI-65 Granular Filter Media ASME Research Committee Power Plant and Environmental Chemistry Overland Park, Kansas April 2-4, 2007 Prepared by: W. H. Stroman Primary

More information

Dispelling the Myths of Heat Transfer Fluids. Kevin Connor The Dow Chemical Company

Dispelling the Myths of Heat Transfer Fluids. Kevin Connor The Dow Chemical Company Dispelling the Myths of Heat Transfer Fluids Kevin Connor The Dow Chemical Company Heat Transfer Chill Water Loop Secondary Coolant (Heat Transfer Fluid) Primary Refrigerant Expansion Device Air Handler

More information

FRACTURING FLOWBACK: CONTROLS, ANALYSIS & BENEFITS

FRACTURING FLOWBACK: CONTROLS, ANALYSIS & BENEFITS FRACTURING FLOWBACK: CONTROLS, ANALYSIS & BENEFITS SPE GCS WESTSIDE STUDY GROUP JANUARY 15, 2015 GEORGE E. KING, P.E. I ll review several presentations from the SPE Workshop on fracturing flowback, 6-7

More information

Comparison of natural radioactivity removal methods for drinking water supplies: A review

Comparison of natural radioactivity removal methods for drinking water supplies: A review Comparison of natural radioactivity removal methods for drinking water supplies: A review E. Esmeray, M. E. Aydin Selcuk University Environmental Engineering Department, Konya Turkey e-mail: eesmeray@selcuk.edu.tr

More information

Guide to Reverse Phase SpinColumns Chromatography for Sample Prep

Guide to Reverse Phase SpinColumns Chromatography for Sample Prep Guide to Reverse Phase SpinColumns Chromatography for Sample Prep www.harvardapparatus.com Contents Introduction...2-3 Modes of Separation...4-6 Spin Column Efficiency...7-8 Fast Protein Analysis...9 Specifications...10

More information

HEXAVALENT CHROMIUM REMOVAL FROM INDUSTRIAL WATSEWATER BY CHEMICAL PRECIPITATION METHOD

HEXAVALENT CHROMIUM REMOVAL FROM INDUSTRIAL WATSEWATER BY CHEMICAL PRECIPITATION METHOD HEXAVALENT CHROMIUM REMOVAL FROM INDUSTRIAL WATSEWATER BY CHEMICAL PRECIPITATION METHOD Dr. C.R.Ramakrishnaiah P.G-Environmental Engineering Dept of Civil Engineering, B.M.S. College of Engineering Bull

More information

Basics of Reverse Osmosis

Basics of Reverse Osmosis What is Reverse Osmosis? Reverse Osmosis is a technology that is used to remove a large majority of contaminants from water by pushing the water under pressure through a semi- permeable membrane. This

More information

ENE 806, Project Report 3 CHEMICAL PRECIPITATION: WATER SOFTENING. Grégoire Seyrig Wenqian Shan

ENE 806, Project Report 3 CHEMICAL PRECIPITATION: WATER SOFTENING. Grégoire Seyrig Wenqian Shan ENE 806, Project Report 3 CHEMICAL PRECIPITATION: WATER SOFTENING Grégoire Seyrig Wenqian Shan College of Engineering, Michigan State University Spring 2007 ABSTRACT The groundwater with high level initial

More information

DOW Ultrafiltration. Case History. High Turbidity and Temperature Fluctuation No Obstacle for DOW Ultrafiltration

DOW Ultrafiltration. Case History. High Turbidity and Temperature Fluctuation No Obstacle for DOW Ultrafiltration Case History High Turbidity and Temperature Fluctuation No Obstacle for Site Information Location: HeBei, China Capacity: 12 m 3 /h (5283 gpm) Purpose: Pretreat sea water prior to RO system Time in Operation:

More information

ACUSOL 810A Detergent Grade Rheology Modifier and Stabilizer

ACUSOL 810A Detergent Grade Rheology Modifier and Stabilizer ACUSOL 810A Detergent Grade Rheology Modifier and Stabilizer Description ACUSOL 810A is an Alkali Soluble acrylic polymer Emulsion (ASE). ACUSOL 810A can be directly incorporated into formulations without

More information

Electrodeionization (EDI)

Electrodeionization (EDI) Electrodeionization (EDI) Fact Sheet Cal Water Industrial Water Purification (800) CAL-WATER EDI is a continuous electro-chemical process of water purification where ion specific membranes, mixed bed resin,

More information

Iron and Manganese BACTERIA AND IRON AND MANGANESE

Iron and Manganese BACTERIA AND IRON AND MANGANESE Iron and Manganese Iron and manganese control is the most common type of municipal water treatment in Minnesota. Iron and manganese occur naturally in groundwater. Neither element causes adverse heath

More information

CHAPTER 7 THE DEHYDRATION AND SWEETENING OF NATURAL GAS

CHAPTER 7 THE DEHYDRATION AND SWEETENING OF NATURAL GAS CHAPTER 7 THE DEHYDRATION AND SWEETENING OF NATURAL GAS Natural gases either from natural production or storage reservoirs contain water, which condense and form solid gas hydrates to block pipeline flow

More information

Eye On Water. New Options for Removal of Trace Contaminants see page 1. Producing Spot-Free Rinse Water for Consumer Applications see page 1

Eye On Water. New Options for Removal of Trace Contaminants see page 1. Producing Spot-Free Rinse Water for Consumer Applications see page 1 Eye On Water A publication about water purification and specialty applications using ion exchange resins New Options for Removal of Trace Contaminants see page 1 Producing Spot-Free Rinse Water for Consumer

More information

WISCONSIN WASTEWATER OPERATORS ASSOCIATION

WISCONSIN WASTEWATER OPERATORS ASSOCIATION Integrity. People. Knowledge. WISCONSIN WASTEWATER OPERATORS ASSOCIATION ANNUAL CONFERENCE GREEN BAY Resources. MEETING LOW LEVEL PHOSPHORUS LIMITS BY CHEMICAL ADDITION WHAT IS PHOSPHORUS Atomic # 15 Electron

More information

Chapter 14 Solutions

Chapter 14 Solutions Chapter 14 Solutions 1 14.1 General properties of solutions solution a system in which one or more substances are homogeneously mixed or dissolved in another substance two components in a solution: solute

More information

Measuring the Benefit of a State of the Art Water Treatment Facility to the Monongahela Basin

Measuring the Benefit of a State of the Art Water Treatment Facility to the Monongahela Basin CONSOL, Inc. Measuring the Benefit of a State of the Art Treatment Facility to the Monongahela Basin WATER IMPACT INDEX APPLICATION Innovative waste treatment is critical to ensuring a future with sufficient

More information

Fracturing Fluid Systems

Fracturing Fluid Systems Fracturing Fluid Systems Broad Variety of Systems Enables Customizing the Treatment Fluid to Reservoir Requirements Since Halliburton performed the first commercial fracturing treatment in 1949, the development

More information

KODAK Developer System Cleaner and Neutralizer

KODAK Developer System Cleaner and Neutralizer KODAK Developer System Cleaner and Neutralizer TECHNICAL DATA / CHEMICAL March 2010 TI-2000 GENERAL INFORMATION KODAK Developer System Cleaner and Neutralizer is designed to remove the buildup of silver

More information

Lab 7 Soil ph and Salinity OBJECTIVE INTRODUCTION Soil ph active

Lab 7 Soil ph and Salinity OBJECTIVE INTRODUCTION Soil ph active Lab 7 Soil ph and Salinity OBJECTIVE In this lab you will learn the effect of the concentration of hydrogen ions (ph) and various salts on the fertility of a soil. You will perform some tests which are

More information

Ion Exchange Design Hand calculation. Brian Windsor (Purolite International Ltd)

Ion Exchange Design Hand calculation. Brian Windsor (Purolite International Ltd) Ion Exchange Design Hand calculation Brian Windsor (Purolite International Ltd) Introduction Before design programmes were introduced, every engineer had to calculate the design by hand using resin manufacturers

More information

PRINCIPLES AND PRACTICES OF REVERSE OSMOSIS

PRINCIPLES AND PRACTICES OF REVERSE OSMOSIS PRINCIPLES AND PRACTICES OF REVERSE OSMOSIS O.J. Morin Black and Veatch, Florida, USA Keywords : Acidity, Alkaline scale, Anion, Anionic, Antiscalant, Aquifer, Avogadro's number, Brackish water, Buffer,

More information

The Relationship between ph and Deionized Water

The Relationship between ph and Deionized Water The Relationship between ph and Deionized Water The basics of ph The topic of ph and water has been well documented over the years; however, there is still much confusion about its significance in high

More information

Pure Water. Isn t Hard to Find

Pure Water. Isn t Hard to Find COOL TALK Pure Water BY WILLIAM SLUHAN Isn t Hard to Find Hard water badly degrades coolant performance. To maximize the efficiency and longevity of coolant, pure water is essential - and not as hard to

More information

Technical Presentation IMPORTANT TOPICS

Technical Presentation IMPORTANT TOPICS BOILER WATER TREATMENT FOR KILN DRY OPERATIONS Technical Presentation IMPORTANT TOPICS PRETREATMENT TEMPERATURE VS OXYGEN FEED WATER / DA BOILER WATER CONDENSATE 1 Boiler Water Pretreatment Purpose - Statistically

More information

Use of Color Removal Membranes on Waste Water Treatment in the Pulp and Paper Industry

Use of Color Removal Membranes on Waste Water Treatment in the Pulp and Paper Industry Use of Color Removal Membranes on Waste Water Treatment in the Pulp and Paper Industry R.BODA*, W.T.BATES**, C.R.BARTELS, PhD*** * HYDRANAUTICS A NITTO DENKO COMPANY, 11 Laurel Court, Glasgow G72 7BD,

More information

Development of Advanced Wastewater Treatment and Reclamation System

Development of Advanced Wastewater Treatment and Reclamation System 14 Development of Advanced Wastewater Treatment and Reclamation System TAKESHI TERAZAKI *1 HOZUMI OTOZAI *2 KOSUKE SHIGIISHI *2 HIDEO SUZUKI *3 HIROSHI NAKASHOJI *4 HIROYUKI KAWAMOTO *5 Recycling and the

More information

Water Treatment and Reverse Osmosis Systems

Water Treatment and Reverse Osmosis Systems Water 2012 Treatment Pure Aqua, and Inc. Reverse All Rights Osmosis Reserved. ystems Worldwide Experience uperior Technology About the Company Pure Aqua is a company with a strong philosophy and drive

More information

Non-polar hydrocarbon chain

Non-polar hydrocarbon chain THE SCIENCE OF SOAPS AND DETERGENTS 2000 by David A. Katz. All rights reserved Reproduction permitted for educational purposes as long as the original copyright is included. INTRODUCTION A soap is a salt

More information

A Volumetric Analysis (Redox Titration) of Hypochlorite in Bleach

A Volumetric Analysis (Redox Titration) of Hypochlorite in Bleach CHEM 311L Quantitative Analysis Laboratory Revision 2.3 A Volumetric Analysis (Redox Titration) of Hypochlorite in Bleach In this laboratory exercise, we will determine the concentration of the active

More information

SEAR Wastewater Treatment: Contaminant Removal and Material Recovery

SEAR Wastewater Treatment: Contaminant Removal and Material Recovery ESTCP SEAR Wastewater Treatment: Contaminant Removal and Material Recovery U.S. Environmental Protection Agency National Risk Management Research Laboratory Cincinnati, Ohio SEAR Workshop Outline Motivation

More information

Shale Energy Produced Fluids Management and UIC Well Disposal Trends

Shale Energy Produced Fluids Management and UIC Well Disposal Trends Shale Energy Produced Fluids Management and UIC Well Disposal Trends Dave Yoxtheimer, PG Hydrogeologist Penn State Marcellus Center for Outreach and Research GWPC Annual Forum Seattle, WA October 8, 2014

More information

NORKOOL Industrial Coolants

NORKOOL Industrial Coolants NORKOOL Industrial Coolants The most trusted brand in the business The NORKOOL Advantage The NORKOOL product line is Dow s premium heat transfer fluid for gas compression engines and line heaters. the

More information

TECHNICAL AND ECONOMIC EVALUATION AND SELECTION OF SULFATE ION REMOVAL TECHNOLOGIES FOR RECOVERY OF WATER FROM MINERAL CONCENTRATE TRANSPORT SLURRY

TECHNICAL AND ECONOMIC EVALUATION AND SELECTION OF SULFATE ION REMOVAL TECHNOLOGIES FOR RECOVERY OF WATER FROM MINERAL CONCENTRATE TRANSPORT SLURRY TECHNICAL AND ECONOMIC EVALUATION AND SELECTION OF SULFATE ION REMOVAL TECHNOLOGIES FOR RECOVERY OF WATER FROM MINERAL CONCENTRATE TRANSPORT SLURRY ABSTRACT Paul J. Usinowicz, Ph.D., P.E., BCEE*, Bruce

More information

Iron and manganese are two similar elements

Iron and manganese are two similar elements L-5451 2-04 Drinking Water Problems: Iron and Manganese Mark L. McFarland, Associate Professor and Extension Soil Fertility Specialist Monty C. Dozier, Assistant Professor and Extension Water Resources

More information

Unconventional Oil and Gas Production Drives Trends in Water Management and Treatment

Unconventional Oil and Gas Production Drives Trends in Water Management and Treatment Unconventional Oil and Gas Production Drives Trends in Water Management and Treatment Jelena Stanic, Global Water Intelligence A research report, Water for the Onshore Oil and Gas, by Global Water Intelligence

More information

NUTRIENT REMOVAL FROM SECONDARY EFFLUENT BY ALUM FLOCCULATION AND LIME PRECIPITATION*

NUTRIENT REMOVAL FROM SECONDARY EFFLUENT BY ALUM FLOCCULATION AND LIME PRECIPITATION* University of Wisconsin Engineering Experiment Station Reprint Number 708 Int. J. Air Wat. Poll. Pergamon Press 1964. Vol. 8, pp. 487-500. Printed in Great Britain. NUTRIENT REMOVAL FROM SECONDARY EFFLUENT

More information

GE Power & Water Water & Process Technologies. Water Treatment Solutions for Unconventional Gas

GE Power & Water Water & Process Technologies. Water Treatment Solutions for Unconventional Gas GE Power & Water Water & Process Technologies Water Treatment Solutions for Unconventional Gas Addressing Today s Challenges Today, corporations, individuals and governmental bodies alike are focused on

More information

RO / NF Cleaning Guidelines

RO / NF Cleaning Guidelines Nanostone Water, Inc. Carlsbad Office 2463 Impala Dr. Carlsbad, CA 92010 USA T: +1 (844) 765-7377 www.nanostone.com RO / NF Cleaning Guidelines 2015 Nanostone Water, Inc. www.nanostone.com RO/NF Cleaning

More information

Preparation of frequently used solutions

Preparation of frequently used solutions Preparation of frequently used solutions Content 1. Diluting Concentrated Acids (Last Login: 08/08/2009) 2. Indicators (Last Login: 27/07/2009) 3. Standard Buffer Solutions (Last Login: 27/07/2009) 4.

More information

Removal of Sulfate from Waste Water by Activated Carbon. Mohammed Sadeq Salman Computer Centre/ University of Baghdad

Removal of Sulfate from Waste Water by Activated Carbon. Mohammed Sadeq Salman Computer Centre/ University of Baghdad Al-Khwarizmi Engineering Journal, Vol. 5, No. 3, PP 72-76 (29) Al-Khwarizmi Engineering Journal Removal of Sulfate from Waste Water by Activated Carbon Mohammed Sadeq Salman Computer Centre/ University

More information

Nine Industrial Scale V SEPs. Feed Tank V SEP. Feed Pumps (Three) Concentrate. Tank. V SEP Treatment System

Nine Industrial Scale V SEPs. Feed Tank V SEP. Feed Pumps (Three) Concentrate. Tank. V SEP Treatment System River Treatment for Ultrapure Production A cost-effective and environmentally-sound solution Abstract New Logic International installed its Vibratory Shear Enhanced Processing (VSEP) Phase I system in

More information

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap Introduction A soap is the sodium or potassium salt of a long-chain fatty acid. The fatty acid usually contains 12 to 18 carbon atoms.

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL SUPPLEMENTARY MATERIAL (Student Instructions) Determination of the Formula of a Hydrate A Greener Approach Objectives To experimentally determine the formula of a hydrate salt. To learn to think in terms

More information