# C4 Computer Vision. 4 Lectures Michaelmas Term Tutorial Sheet Prof A. Zisserman. fundamental matrix, recovering ego-motion, applications.

Save this PDF as:

Size: px
Start display at page:

Download "C4 Computer Vision. 4 Lectures Michaelmas Term Tutorial Sheet Prof A. Zisserman. fundamental matrix, recovering ego-motion, applications."

## Transcription

1 C4 Computer Vision 4 Lectures Michaelmas Term Tutorial Sheet Prof A. Zisserman Overview Lecture 1: Stereo Reconstruction I: epipolar geometry, fundamental matrix. Lecture 2: Stereo Reconstruction II: correspondence algorithms, triangulation. Lecture 3: Structure and Motion: ambiguities, computing the fundamental matrix, recovering ego-motion, applications. Lecture 4: Object detection: the adaboost algorithm for face detection. Further reading (www addresses) and the lecture notes are on

2 Stereo Reconstruction Shape (3D) from two (or more) images known camera viewpoints Example images shape surface reflectance

3 Scenarios The two images can arise from A stereo rig consisting of two cameras the two images are acquired simultaneously or A single moving camera (static scene) the two images are acquired sequentially The two scenarios are geometrically equivalent Stereo head Camera on a mobile vehicle

4 The objective Given two images of a scene acquired by known cameras compute the 3D position of the scene (structure recovery) Basic principle: triangulate from corresponding image points Determine 3D point at intersection of two back-projected rays Corresponding points are images of the same scene point Triangulation C C / The back-projected points generate rays which intersect at the 3D scene point

5 An algorithm for stereo reconstruction 1. For each point in the first image determine the corresponding point in the second image (this is a search problem) 2. For each pair of matched points determine the 3D point by triangulation (this is an estimation problem) The correspondence problem Given a point x in one image find the corresponding point in the other image This appears to be a 2D search problem, but it is reduced to a 1D search by the epipolar constraint

6 Outline 1. Epipolar geometry the geometry of two cameras reduces the correspondence problem to a line search 2. Stereo correspondence algorithms 3. Triangulation Notation The two cameras are P and P /, and a 3D point X is imaged as X P P / x x / P : 3 4matrix X : 4-vector x : 3-vector C C / Warning for equations involving homogeneous quantities = means equal up to scale

7 Epipolar geometry Epipolar geometry Given an image point in one view, where is the corresponding point in the other view?? epipolar line C epipole C / baseline A point in one view generates an epipolar line in the other view The corresponding point lies on this line

8 Epipolar line Epipolar constraint Reduces correspondence problem to 1D search along an epipolar line Epipolar geometry continued Epipolar geometry is a consequence of the coplanarity of the camera centres and scene point X x x / C C / The camera centres, corresponding points and scene point lie in a single plane, known as the epipolar plane

9 Nomenclature left epipolar line x e X C C / e / l / right epipolar line x / The epipolar line l / is the image of the ray through x The epipole e is the point of intersection of the line joining the camera centres with the image plane this line is the baseline for a stereo rig, and the translation vector for a moving camera The epipole is the image of the centre of the other camera: e = PC /, e / = P / C The epipolar pencil X e e / baseline As the position of the 3D point X varies, the epipolar planes rotate about the baseline. This family of planes is known as an epipolar pencil. All epipolar lines intersect at the epipole. (a pencil is a one parameter family)

10 Epipolar geometry example I: parallel cameras Epipolar geometry depends only on the relative pose (position and orientation) and internal parameters of the two cameras, i.e. the position of the camera centres and image planes. It does not depend on the scene structure (3D points external to the camera). Epipolar geometry example II: converging cameras e e / Note, epipolar lines are in general not parallel

11 Homogeneous notation for lines The line l through the two points p and q is l = p x q Proof The intersection of two lines l and m is the point x = l x m Example: compute the point of intersection of the two lines l and m in the figure below l = x = l m = m = i j k which is the point (2,1) = y 1 l 2 m x

12 Matrix representation of the vector cross product v is the null-vector of [v], i.e. [v] v = 0, since v v = [v] v = 0 Example: compute the cross product of l and m x = l m =[l] m = = Note = ([l] l = 0)

13 Algebraic representation of epipolar geometry We know that the epipolar geometry defines a mapping x l / point in first image epipolar line in second image Derivation of the algebraic expression Outline P Step 1: for a point x in the first image back project a ray with camera P P / Step 2: choose two points on the ray and project into the second image with camera P / Step 3: compute the line through the two image points using the relation l / = p x q

14 choose camera matrices internal calibration rotation translation from world to camera coordinate frame first camera world coordinate frame aligned with first camera second camera Step 1: for a point x in the first image back project a ray with camera P A point x back projects to a ray X(Z) that satisfies where Z is the point s depth, since

15 P / Step 2: choose two points on the ray and project into the second image with camera P / Consider two points on the ray Z = 0 is the camera centre Z = is the point at infinity Project these two points into the second view Step 3: compute the line through the two image points using the relation l / = p x q Compute the line through the points Using the identity F F is the fundamental matrix

16 Example I: compute the fundamental matrix for a parallel camera stereo rig X Y Z f f reduces to y = y /, i.e. raster correspondence (horizontal scan-lines) X Y Z f f Geometric interpretation?

17 Example II: compute F for a forward translating camera f X Y Z f X Y Z f f first image second image

18 Summary: Properties of the Fundamental matrix

19 Stereo correspondence algorithms Problem statement Given: two images and their associated cameras compute corresponding image points. Algorithms may be classified into two types: 1. Dense: compute a correspondence at every pixel 2. Sparse: compute correspondences only for features The methods may be top down or bottom up

20 Top down matching 1. Group model (house, windows, etc) independently in each image 2. Match points (vertices) between images Bottom up matching epipolar geometry reduces the correspondence search from 2D to a 1D search on corresponding epipolar lines 1D correspondence problem A B C a b c b / c / a /

21 cross-eye viewing random dot stereogram Correspondence algorithms Algorithms may be top down or bottom up random dot stereograms are an existence proof that bottom up algorithms are possible From here on only consider bottom up algorithms Algorithms may be classified into two types: 1. Dense: compute a correspondence at every pixel 2. Sparse: compute correspondences only for features

22 Dense correspondence algorithm Parallel camera example epipolar lines are corresponding rasters epipolar line Search problem (geometric constraint): for each point in the left image, the corresponding point in the right image lies on the epipolar line (1D ambiguity) Disambiguating assumption (photometric constraint): the intensity neighbourhood of corresponding points are similar across images Measure similarity of neighbourhood intensity by cross-correlation Intensity profiles Clear correspondence between intensities, but also noise and ambiguity

23 Normalized Cross Correlation subtract mean: A A <A>,B B <B> Write regions as vectors region A region B a b vector a vector b Cross-correlation of neighbourhood regions epipolar line (exercise)

24 left image band (x) right image band (x / ) cross correlation 0 x / disparity = x / -x target region left image band (x) right image band (x / ) cross correlation 0 x /

25 Why is cross-correlation such a poor measure in the second case? 1. The neighbourhood region does not have a distinctive spatial intensity distribution 2. Foreshortening effects fronto-parallel surface imaged length the same slanting surface imaged lengths differ Sketch of a dense correspondence algorithm For each pixel in the left image compute the neighbourhood cross correlation along the corresponding epipolar line in the right image the corresponding pixel is the one with the highest cross correlation Parameters size (scale) of neighbourhood search disparity Other constraints uniqueness ordering smoothness of disparity field Applicability textured scene, largely fronto-parallel

26 Example dense correspondence algorithm left image right image 3D reconstruction right image depth map intensity = depth

27 Views of a texture mapped 3D triangulation Pentagon example left image right image range map

28 Example: depth and disparity for a parallel camera stereo rig Then, y / = y, and the disparity Derivation d = x 0 x = ft x Z x f = X Z x 0 f = x f + t x Z x 0 f = X + t x Z tx x x / d Note image movement (disparity) is inversely proportional to depth Z as z, d 0 depth is inversely proportional to disparity Error analysis measurement errors depth error proportional to depth squared point position error ellipse How can position uncertainty be reduced? δx δx /

29 Rectification For converging cameras epipolar lines are not parallel e e / Project images onto plane parallel to baseline epipolar plane

30 Rectification continued Convert converging cameras to parallel camera geometry by an image mapping Image mapping is a 2D homography (projective transformation) (exercise) Example original stereo pair rectified stereo pair

31 Triangulation Problem statement Given: corresponding measured (i.e. noisy) points x and x /, and cameras (exact) P and P /, compute the 3D point X Problem: in the presence of noise, back projected rays do not intersect x x / rays are skew in space C C / Measured points do not lie on corresponding epipolar lines

32 1. Vector solution C C / Compute the mid-point of the shortest line between the two rays

33 2. Linear triangulation (algebraic solution) Problem: does not minimize anything meaningful Advantage: extends to more than two views

34 3. Minimizing a geometric/statistical error It can be shown that if the measurement noise is Gaussian mean zero,, then minimizing geometric error is the Maximum Likelihood Estimate of X The minimization appears to be over three parameters (the position X), but the problem can be reduced to a minimization over one parameter

35 Different formulation of the problem Minimization method Parametrize the pencil of epipolar lines in the first image by t, such that the epipolar line is l(t) Using F compute the corresponding epipolar line in the second image l / (t) Express the distance function function of t Find the value of t that minimizes the distance function Solution is a 6 th degree polynomial in t explicitly as a

### Camera calibration and epipolar geometry. Odilon Redon, Cyclops, 1914

Camera calibration and epipolar geometry Odilon Redon, Cyclops, 94 Review: Alignment What is the geometric relationship between pictures taken by cameras that share the same center? How many points do

### Epipolar Geometry. Readings: See Sections 10.1 and 15.6 of Forsyth and Ponce. Right Image. Left Image. e(p ) Epipolar Lines. e(q ) q R.

Epipolar Geometry We consider two perspective images of a scene as taken from a stereo pair of cameras (or equivalently, assume the scene is rigid and imaged with a single camera from two different locations).

### Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

### Introduction Epipolar Geometry Calibration Methods Further Readings. Stereo Camera Calibration

Stereo Camera Calibration Stereo Camera Calibration Stereo Camera Calibration Stereo Camera Calibration 12.10.2004 Overview Introduction Summary / Motivation Depth Perception Ambiguity of Correspondence

### Geometric Camera Parameters

Geometric Camera Parameters What assumptions have we made so far? -All equations we have derived for far are written in the camera reference frames. -These equations are valid only when: () all distances

### Lecture 19 Camera Matrices and Calibration

Lecture 19 Camera Matrices and Calibration Project Suggestions Texture Synthesis for In-Painting Section 10.5.1 in Szeliski Text Project Suggestions Image Stitching (Chapter 9) Face Recognition Chapter

### 2-View Geometry. Mark Fiala Ryerson University Mark.fiala@ryerson.ca

CRV 2010 Tutorial Day 2-View Geometry Mark Fiala Ryerson University Mark.fiala@ryerson.ca 3-Vectors for image points and lines Mark Fiala 2010 2D Homogeneous Points Add 3 rd number to a 2D point on image

### Structured light systems

Structured light systems Tutorial 1: 9:00 to 12:00 Monday May 16 2011 Hiroshi Kawasaki & Ryusuke Sagawa Today Structured light systems Part I (Kawasaki@Kagoshima Univ.) Calibration of Structured light

### CSE 252B: Computer Vision II

CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribes: Jia Mao, Andrew Rabinovich LECTURE 9 Affine and Euclidean Reconstruction 9.1. Stratified reconstruction Recall that in 3D reconstruction from

### Computer Vision - part II

Computer Vision - part II Review of main parts of Section B of the course School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie Lecture Name Course Name 1 1 2

### Depth from a single camera

Depth from a single camera Fundamental Matrix Essential Matrix Active Sensing Methods School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie 1 1 Geometry of two

### Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Questions 2007 INSTRUCTIONS: Answer all questions. Spend approximately 1 minute per mark. Question 1 30 Marks Total

### INTRODUCTION TO RENDERING TECHNIQUES

INTRODUCTION TO RENDERING TECHNIQUES 22 Mar. 212 Yanir Kleiman What is 3D Graphics? Why 3D? Draw one frame at a time Model only once X 24 frames per second Color / texture only once 15, frames for a feature

### Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

### 3D Scanner using Line Laser. 1. Introduction. 2. Theory

. Introduction 3D Scanner using Line Laser Di Lu Electrical, Computer, and Systems Engineering Rensselaer Polytechnic Institute The goal of 3D reconstruction is to recover the 3D properties of a geometric

### Interactive 3D Scanning Without Tracking

Interactive 3D Scanning Without Tracking Matthew J. Leotta, Austin Vandergon, Gabriel Taubin Brown University Division of Engineering Providence, RI 02912, USA {matthew leotta, aev, taubin}@brown.edu Abstract

### Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

### Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

### CSCI 445 Amin Atrash. Ultrasound, Laser and Vision Sensors. Introduction to Robotics L. Itti & M. J. Mataric

Introduction to Robotics CSCI 445 Amin Atrash Ultrasound, Laser and Vision Sensors Today s Lecture Outline Ultrasound (sonar) Laser range-finders (ladar, not lidar) Vision Stereo vision Ultrasound/Sonar

### Module 6: Pinhole camera model Lecture 30: Intrinsic camera parameters, Perspective projection using homogeneous coordinates

The Lecture Contains: Pinhole camera model 6.1 Intrinsic camera parameters A. Perspective projection using homogeneous coordinates B. Principal-point offset C. Image-sensor characteristics file:///d /...0(Ganesh%20Rana)/MY%20COURSE_Ganesh%20Rana/Prof.%20Sumana%20Gupta/FINAL%20DVSP/lecture%2030/30_1.htm[12/31/2015

### December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

### Epipolar Geometry and Visual Servoing

Epipolar Geometry and Visual Servoing Domenico Prattichizzo joint with with Gian Luca Mariottini and Jacopo Piazzi www.dii.unisi.it/prattichizzo Robotics & Systems Lab University of Siena, Italy Scuoladi

### THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

### Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 7 Transformations in 2-D

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 7 Transformations in 2-D Welcome everybody. We continue the discussion on 2D

### CS 534: Computer Vision 3D Model-based recognition

CS 534: Computer Vision 3D Model-based recognition Ahmed Elgammal Dept of Computer Science CS 534 3D Model-based Vision - 1 High Level Vision Object Recognition: What it means? Two main recognition tasks:!

### Lecture 2: Homogeneous Coordinates, Lines and Conics

Lecture 2: Homogeneous Coordinates, Lines and Conics 1 Homogeneous Coordinates In Lecture 1 we derived the camera equations λx = P X, (1) where x = (x 1, x 2, 1), X = (X 1, X 2, X 3, 1) and P is a 3 4

### Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

### Essential Mathematics for Computer Graphics fast

John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made

### Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11

Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter

### Math 241, Exam 1 Information.

Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

### 521493S Computer Graphics. Exercise 2 & course schedule change

521493S Computer Graphics Exercise 2 & course schedule change Course Schedule Change Lecture from Wednesday 31th of March is moved to Tuesday 30th of March at 16-18 in TS128 Question 2.1 Given two nonparallel,

### An Iterative Image Registration Technique with an Application to Stereo Vision

An Iterative Image Registration Technique with an Application to Stereo Vision Bruce D. Lucas Takeo Kanade Computer Science Department Carnegie-Mellon University Pittsburgh, Pennsylvania 15213 Abstract

### Single Image 3D Reconstruction of Ball Motion and Spin From Motion Blur

Single Image 3D Reconstruction of Ball Motion and Spin From Motion Blur An Experiment in Motion from Blur Giacomo Boracchi, Vincenzo Caglioti, Alessandro Giusti Objective From a single image, reconstruct:

### Projective Reconstruction from Line Correspondences

Projective Reconstruction from Line Correspondences Richard I. Hartley G.E. CRD, Schenectady, NY, 12301. Abstract The paper gives a practical rapid algorithm for doing projective reconstruction of a scene

### Grade 6 Grade-Level Goals. Equivalent names for fractions, decimals, and percents. Comparing and ordering numbers

Content Strand: Number and Numeration Understand the Meanings, Uses, and Representations of Numbers Understand Equivalent Names for Numbers Understand Common Numerical Relations Place value and notation

### The Geometry of Perspective Projection

The Geometry o Perspective Projection Pinhole camera and perspective projection - This is the simplest imaging device which, however, captures accurately the geometry o perspective projection. -Rays o

### JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson

JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### Relating Vanishing Points to Catadioptric Camera Calibration

Relating Vanishing Points to Catadioptric Camera Calibration Wenting Duan* a, Hui Zhang b, Nigel M. Allinson a a Laboratory of Vision Engineering, University of Lincoln, Brayford Pool, Lincoln, U.K. LN6

### V-PITS : VIDEO BASED PHONOMICROSURGERY INSTRUMENT TRACKING SYSTEM. Ketan Surender

V-PITS : VIDEO BASED PHONOMICROSURGERY INSTRUMENT TRACKING SYSTEM by Ketan Surender A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Electrical Engineering)

### MATHEMATICS (CLASSES XI XII)

MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)

### An Efficient Solution to the Five-Point Relative Pose Problem

An Efficient Solution to the Five-Point Relative Pose Problem David Nistér Sarnoff Corporation CN5300, Princeton, NJ 08530 dnister@sarnoff.com Abstract An efficient algorithmic solution to the classical

### 2D Geometric Transformations. COMP 770 Fall 2011

2D Geometric Transformations COMP 770 Fall 2011 1 A little quick math background Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector multiplication Matrix-matrix multiplication

### Chapter 1: Essentials of Geometry

Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

### Number Sense and Operations

Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

### Using Many Cameras as One

Using Many Cameras as One Robert Pless Department of Computer Science and Engineering Washington University in St. Louis, Box 1045, One Brookings Ave, St. Louis, MO, 63130 pless@cs.wustl.edu Abstract We

### Least-Squares Intersection of Lines

Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a

### B4 Computational Geometry

3CG 2006 / B4 Computational Geometry David Murray david.murray@eng.o.ac.uk www.robots.o.ac.uk/ dwm/courses/3cg Michaelmas 2006 3CG 2006 2 / Overview Computational geometry is concerned with the derivation

### Part-Based Recognition

Part-Based Recognition Benedict Brown CS597D, Fall 2003 Princeton University CS 597D, Part-Based Recognition p. 1/32 Introduction Many objects are made up of parts It s presumably easier to identify simple

### Florida Department of Education/Office of Assessment January 2012. Grade 7 FCAT 2.0 Mathematics Achievement Level Descriptions

Florida Department of Education/Office of Assessment January 2012 Grade 7 FCAT 2.0 Mathematics Grade 7 FCAT 2.0 Mathematics Reporting Category Geometry and Measurement Students performing at the mastery

### Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems

Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small

### Orthogonal Projections

Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

### Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

### Projective Geometry. Projective Geometry

Euclidean versus Euclidean geometry describes sapes as tey are Properties of objects tat are uncanged by rigid motions» Lengts» Angles» Parallelism Projective geometry describes objects as tey appear Lengts,

### Illinois State Standards Alignments Grades Three through Eleven

Illinois State Standards Alignments Grades Three through Eleven Trademark of Renaissance Learning, Inc., and its subsidiaries, registered, common law, or pending registration in the United States and other

### Utah Core Curriculum for Mathematics

Core Curriculum for Mathematics correlated to correlated to 2005 Chapter 1 (pp. 2 57) Variables, Expressions, and Integers Lesson 1.1 (pp. 5 9) Expressions and Variables 2.2.1 Evaluate algebraic expressions

### Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

### Tennessee Mathematics Standards 2009-2010 Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes

Tennessee Mathematics Standards 2009-2010 Implementation Grade Six Mathematics Standard 1 Mathematical Processes GLE 0606.1.1 Use mathematical language, symbols, and definitions while developing mathematical

### The Trimmed Iterative Closest Point Algorithm

Image and Pattern Analysis (IPAN) Group Computer and Automation Research Institute, HAS Budapest, Hungary The Trimmed Iterative Closest Point Algorithm Dmitry Chetverikov and Dmitry Stepanov http://visual.ipan.sztaki.hu

### Geometric Image Transformations

Geometric Image Transformations Part One 2D Transformations Spatial Coordinates (x,y) are mapped to new coords (u,v) pixels of source image -> pixels of destination image Types of 2D Transformations Affine

### We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model

CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant

### Algebra I Credit Recovery

Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,

### NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

### 12.5 Equations of Lines and Planes

Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P

### of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property

### Robotics. Lecture 3: Sensors. See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information.

Robotics Lecture 3: Sensors See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College London Review: Locomotion Practical

### Solution Guide III-C. 3D Vision. Building Vision for Business. MVTec Software GmbH

Solution Guide III-C 3D Vision MVTec Software GmbH Building Vision for Business Machine vision in 3D world coordinates, Version 10.0.4 All rights reserved. No part of this publication may be reproduced,

### Optical Tracking Using Projective Invariant Marker Pattern Properties

Optical Tracking Using Projective Invariant Marker Pattern Properties Robert van Liere, Jurriaan D. Mulder Department of Information Systems Center for Mathematics and Computer Science Amsterdam, the Netherlands

### Big Ideas in Mathematics

Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards

### Introduction to Computer Graphics

Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 torsten@sfu.ca www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics

### Non-Metric Image-Based Rendering for Video Stabilization

Non-Metric Image-Based Rendering for Video Stabilization Chris Buehler Michael Bosse Leonard McMillan MIT Laboratory for Computer Science Cambridge, MA 02139 Abstract We consider the problem of video stabilization:

### Figure 1.1 Vector A and Vector F

CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

### Linear Threshold Units

Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

### Radiometric alignment and vignetting calibration. Pablo d'angelo University of Bielefeld

Radiometric alignment and vignetting calibration University of Bielefeld Overview Motivation Image formation Vignetting and exposure estimation Results Summary Motivation Determination of vignetting and

### Automatic Labeling of Lane Markings for Autonomous Vehicles

Automatic Labeling of Lane Markings for Autonomous Vehicles Jeffrey Kiske Stanford University 450 Serra Mall, Stanford, CA 94305 jkiske@stanford.edu 1. Introduction As autonomous vehicles become more popular,

### geometric transforms

geometric transforms 1 linear algebra review 2 matrices matrix and vector notation use column for vectors m 11 =[ ] M = [ m ij ] m 21 m 12 m 22 =[ ] v v 1 v = [ ] T v 1 v 2 2 3 matrix operations addition

### Wii Remote Calibration Using the Sensor Bar

Wii Remote Calibration Using the Sensor Bar Alparslan Yildiz Abdullah Akay Yusuf Sinan Akgul GIT Vision Lab - http://vision.gyte.edu.tr Gebze Institute of Technology Kocaeli, Turkey {yildiz, akay, akgul}@bilmuh.gyte.edu.tr

### North Carolina Math 2

Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively 3. Construct viable arguments and critique the reasoning of others 4.

### Taking Inverse Graphics Seriously

CSC2535: 2013 Advanced Machine Learning Taking Inverse Graphics Seriously Geoffrey Hinton Department of Computer Science University of Toronto The representation used by the neural nets that work best

### Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Information Meeting 15 Dec 2009 by Marianna Pronobis Content of the Meeting 1. Motivation & Objectives 2. What the course will be about (Stefan) 3. Content of

### COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies

COMP175: Computer Graphics Lecture 1 Introduction and Display Technologies Course mechanics Number: COMP 175-01, Fall 2009 Meetings: TR 1:30-2:45pm Instructor: Sara Su (sarasu@cs.tufts.edu) TA: Matt Menke

### KEANSBURG SCHOOL DISTRICT KEANSBURG HIGH SCHOOL Mathematics Department. HSPA 10 Curriculum. September 2007

KEANSBURG HIGH SCHOOL Mathematics Department HSPA 10 Curriculum September 2007 Written by: Karen Egan Mathematics Supervisor: Ann Gagliardi 7 days Sample and Display Data (Chapter 1 pp. 4-47) Surveys and

### EVERY DAY COUNTS CALENDAR MATH 2005 correlated to

EVERY DAY COUNTS CALENDAR MATH 2005 correlated to Illinois Mathematics Assessment Framework Grades 3-5 E D U C A T I O N G R O U P A Houghton Mifflin Company YOUR ILLINOIS GREAT SOURCE REPRESENTATIVES:

### B2.53-R3: COMPUTER GRAPHICS. NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions.

B2.53-R3: COMPUTER GRAPHICS NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered in the TEAR-OFF ANSWER

### Algebra 1 Course Information

Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

### The Essentials of CAGD

The Essentials of CAGD Chapter 2: Lines and Planes Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd c 2000 Farin & Hansford

### Segmentation of building models from dense 3D point-clouds

Segmentation of building models from dense 3D point-clouds Joachim Bauer, Konrad Karner, Konrad Schindler, Andreas Klaus, Christopher Zach VRVis Research Center for Virtual Reality and Visualization, Institute

### Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

### Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

### Space Perception and Binocular Vision

Space Perception and Binocular Vision Space Perception Monocular Cues to Three-Dimensional Space Binocular Vision and Stereopsis Combining Depth Cues 9/30/2008 1 Introduction to Space Perception Realism:

### FOREWORD. Executive Secretary

FOREWORD The Botswana Examinations Council is pleased to authorise the publication of the revised assessment procedures for the Junior Certificate Examination programme. According to the Revised National

### EXPERIMENTAL EVALUATION OF RELATIVE POSE ESTIMATION ALGORITHMS

EXPERIMENTAL EVALUATION OF RELATIVE POSE ESTIMATION ALGORITHMS Marcel Brückner, Ferid Bajramovic, Joachim Denzler Chair for Computer Vision, Friedrich-Schiller-University Jena, Ernst-Abbe-Platz, 7743 Jena,

### MetropoGIS: A City Modeling System DI Dr. Konrad KARNER, DI Andreas KLAUS, DI Joachim BAUER, DI Christopher ZACH

MetropoGIS: A City Modeling System DI Dr. Konrad KARNER, DI Andreas KLAUS, DI Joachim BAUER, DI Christopher ZACH VRVis Research Center for Virtual Reality and Visualization, Virtual Habitat, Inffeldgasse

### Lecture L3 - Vectors, Matrices and Coordinate Transformations

S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

### Handbook of Robotics. Chapter 22 - Range Sensors

Handbook of Robotics Chapter 22 - Range Sensors Robert B. Fisher School of Informatics University of Edinburgh rbf@inf.ed.ac.uk Kurt Konolige Artificial Intelligence Center SRI International konolige@ai.sri.com