Formal Geometry S1 (#2215)


 Elvin Daniels
 2 years ago
 Views:
Transcription
1 Instructional Materials for WCSD Math Common Finals The Instructional Materials are for student and teacher use and are aligned to the Course Guides for the following course: Formal Geometry S1 (#2215) When used as test practice, success on the Instructional Materials does not guarantee success on the district math common final. Students can use these Instructional Materials to become familiar with the format and language used on the district common finals. Familiarity with standards and vocabulary as well as interaction with the types of problems included in the Instructional Materials can result in less anxiety on the part of the students. The length of the actual final exam may differ in length from the Instructional Materials. Teachers can use the Instructional Materials in conjunction with the course guides to ensure that instruction and content is aligned with what will be assessed. The Instructional Materials are not representative of the depth or full range of learning that should occur in the classroom. *Students will be allowed to use a nonprogrammable scientific calculator on Formal Geometry Semester 1 and Formal Geometry Semester 2 final exams.
2 Formal Geometry Reference Sheet Note: You may use these formulas throughout this entire test. Linear Quadratic Slope m = y 2 y 1 x 2 x 1 VertexForm y = a(x h) 2 + k Midpoint M = ( x 1 + x 2 2, y 1 + y 2 ) Standard Form y = ax 2 + bx + c 2 Distance d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 Intercept Form y = a(x p)(x q) SlopeIntercept Form y = mx + b Exponential Probability (h, k) Form y = ab x h + k P(A and B) = P(A) P(B) P(A and B) = P(A) P(B A) P(A or B) = P(A) + P(B) P(A and B) Volume and Surface Area V = πr 2 h SA = 2(πr 2 ) + h(2πr) V = 4 3 πr3 SA = 4πr 2 V = 1 3 πr2 h SA = πr (2πr l) 2 V = 1 3 Bh SA = B (Pl) Where B =base area and P =base perimeter
3 Multiple Choice: Identify the choice that best completes the statement or answers the question. Figures are not necessarily drawn to scale. 1. Identify which of the following is the best name for the figure formed by the coordinates: A( 1, 4), B(1, 1), C(2, 2). A. scalene triangle C. equilateral triangle B. isosceles triangle D. obtuse triangle 2. A pilot is flying an airplane on a straight path from Norfolk to Madison. On the trip, the pilot stops to refuel exactly halfway in between at Columbus and decides to program the autopilot for the rest of the trip. The pilot knows the coordinates for Norfolk are (36.9, 76.3) and the coordinates for Columbus are (39.9, 83.0). What coordinates should the pilot use for Madison? A. ( 1.5, 3.3) C. (33.9, 69.6) B. (61.5, 56.6) D. (42.9, 89.7) 3. In the diagram below, R is the midpoint of AB. T is the midpoint of AC. S is the midpoint of BC. Find the area of RST and AB. A. Area of RST = 4; AB 4 5 B. Area of RST = 8; AB 4 5 C. Area of RST = 4; AB 8 5 D. Area of RST = 8; AB 8 5
4 4. Given the coordinates below, compare RS and XY and determine which of the following statements is true: R( 2, 7) S(5, 1) X( 3, 3) Y(6, 1) A. The midpoints of RS and XY have the same xcoordinate. B. The midpoints of RS and XY have the same ycoordinate. C. The length of RS and the length of XY are the same. D. The length of RS is longer than the length of XY. 5. Given the following: B is a complement of A C is a supplement of B D is a supplement of C E is a complement of D F is a complement of E G is a supplement of F Then which angle is congruent to G? A. B C. E B. C D. F 6. Which diagram below shows a correct mathematical construction using only a compass and a straightedge to bisect an angle? A. C. B. D.
5 7. A line is constructed through point P parallel to a given line m. The following diagrams show the steps of the construction: Step 1 Step 2 Step 3 Step 4 Which of the following justifies the statement PS A. PS B. PS C. PS D. PS QR QR QR QR QR? because TPS and PQR are congruent corresponding angles. because TPS and PQR are congruent alternate interior angles. because PS does not intersect QR. because a line can be drawn through point P not on QR. 8. Find the values of x and y in the diagram below. A. x = 18, y = 94 B. x = 18, y = 118 C. x = 74, y = 94 D. x = 74, y = 88
6 9. Which of the following are logically equivalent? A. A conditional statement and its converse B. A conditional statement and its inverse C. A conditional statement and its contrapositive D. A conditional statement, its converse, its inverse and its contrapositive 10. Two lines that do NOT intersect are always parallel. Which of the following best describes a counterexample to the assertion above? A. coplanar lines B. parallel lines C. perpendicular lines D. skew lines 11. Determine which statement follows logically from the given statements. If I am absent on a test day, I will need to make up the test. Absent students take the test during their lunch time or after school. A. If I am absent, it is because I am sick. B. If I am absent, I will take the test at lunch time or after school. C. Some absent students take the test at lunch time. D. If I am not absent, the test will not be taken at lunch time or after school. 12. Determine whether the conjecture is true or false. Give a counterexample if the conjecture is false. Given: Two angles are supplementary. Conjecture: They are both acute angles. A. False; either both are right or they are adjacent. B. True C. False; either both are right or one is obtuse. D. False; they must be vertical angles.
7 13. Write the statement in ifthen form. A counterexample invalidates a statement. A. If it invalidates the statement, then there is a counterexample. B. If there is a counterexample, then it invalidates the statement. C. If it is true, then there is a counterexample. D. If there is a counterexample, then it is true Which statement is true based on the figure? A. a b b B. b c C. a c a c D. d e d 120 e 15. In the diagram below, MQ = 30, MN = 5, MN = NO, and OP = PQ. Which of the following statements is not true? A. NP = MN + PQ C. MQ = 3 PQ B. MP = OQ D. NQ = MP
8 For #1617 use the following: Given: KM bisects JKL Prove: m 2 = m 3 Statements Reasons KM bisects JKL Given m 1 = m m 1 = m 3 m 2 = m Choose one of the following to complete the proof. Definition of Congruence Definition of Congruence Substitution Property of Equality A. Definition of angle bisector If a ray is an angle bisector, then it divides the angle into two congruent angles. B. Definition of opposite rays If a point on the line determines two rays are collinear, then the rays are opposite rays. C. Definition of ray If a line begins at an endpoint and extends infinitely, then it is ray. D. Definition of segment bisector If any segment, line, or plane intersects a segment at its midpoint then it is the segment bisector. 17. Choose one of the following to complete the proof. A. Definition of complementary angles If the angle measures add up to 90, then angles are supplementary B. Supplemental Angle Theorem If two angles are supplementary to a third angle then the two angles are congruent C. Definition of supplementary angles If the angles are supplementary, then the angle s measures add to 180. D. Vertical Angle Theorem If two angles are vertical angles, then they have congruent angle measures.
9 18. What are the coordinates of the point P that lies along the directed segment from L( 5, 7) to M(4, 8) and partitions the segment in the ratio of 1 to 4? A. ( 3.2, 4) C. (1.8, 3) B. ( 2.5, 3) D. (2, 5) 19. An 80 mile trip is represented on a gridded map by a directed line segment from point M(3, 2) to point N(9, 14). What point represents 50 miles into the trip? Round your answers to the nearest hundredth. A. (2.31, 4.62) C. (5.31, 6.62) B. (3.75, 7.50) D. (6.75, 9.50) 20. The equations of four lines are given. Identify which lines are parallel. I. 3x + 2y = 10 II. 9x 6y = 8 III. y + 1 = 3 (x 6) 2 IV. 5y = 7.5x A. I, II, and IV C. III and IV B. I and II D. None of the lines are parallel 21. Which equation of the line passes through (4, 7) and is perpendicular to the graph of the line that passes through the points(1, 3) and ( 2, 9)? A. y = 2x 1 C. y = 1 2 x 5 B. y = 1 2 x + 5 D. y = 2x + 15
10 22. Which equation of the line passes through (29, 8) and is perpendicular to the graph of the line y = 1 x + 17? 13 A. y = 385x C. y = 13x B. y = 1 13 x D. y = 13x Solve for x and y so that a b c. Round your answer to the nearest tenth if necessary. A. x = 17.6, y = 3.1 C. x = 54.3, y = 8.5 B. x = 17.6, y = 5.5 D. x = 54.3, y = 26.9
11 For #2425 use the following: Given: p q Prove: m 3 + m 6 = 180 Statements p q 24. m 3 = m 5 5 and 6 are supplementary Reasons Given m 5 + m 6 = m 3 + m 6 = 180 If two parallel lines are cut by a transversal, then each pair of alternate interior angles is congruent. Definition of Congruence If two angles form a linear pair, then they are supplementary. Substitution Property of Equality 24. Choose one of the following to complete the proof. A. 4 5 B. 2 8 C. 3 6 D Choose one of the following to complete the proof. A. Vertical Angle Theorem If two angles are vertical angles, then they have congruent angle measures B. Supplemental Angle Theorem If two angles are supplementary to a third angle then they are congruent C. Definition of supplementary angles If two angles are supplementary, then their angle measures add to 180. D. Definition of complementary angles If two angles are a complementary, then their angle measures add to 90
12 26. Line k is represented by the equation, y = 2x + 3. Which equation would you use to determine the distance between the line k and point (0, 0)? A. y = 2x C. y = 1 2 x + 3 B. y = 1 2 x D. y = 1 2 x 27. Which of the following is true? A. All triangles are congruent. B. All congruent figures have three sides. C. If two figures are congruent, there must be some sequence of rigid transformations that maps one to the other. D. If two triangles are congruent, then they must be right angles. 28. Describe the transformation M: ( 2, 5) ( 2, 5). A. A reflection across the yaxis B. A reflection across the xaxis C. A clockwise rotation of 270 with center of rotation (0, 0) D. A counterclockwise rotation of 90 with center of rotation (0, 0) 29. The endpoints of AB have coordinates A(1, 3) and B( 4, 5). After a translation A is mapped on to A ( 1, 7). What are the coordinates of B after the translation? A. ( 6, 1) C. ( 6, 1) B. (6, 1) D. (1, 6)
13 30. Figure ABC is rotated 90 counterclockwise about the point ( 2, 3). What are the coordinates of A after the rotation? A. A ( 4, 5) B. A ( 1, 6) C. A ( 3, 0) D. A (4, 5) 31. Point A is reflected over the line BC. Which of the following is not true of line BC? A. line BC B. line BC C. line BC D. line BC is perpendicular to line AA is perpendicular to line AB bisects line segment AB bisects line segment AA 32. A graphic designer is creating a cover for a geometry textbook by reflecting a design across line p and then reflecting the image across line n. Describe a single transformation that moves the design from its starting position to its final position. A. clockwise rotation of 180 about the origin B. clockwise rotation of 90 about the origin C. translation along the line p = n D. reflection across the line p = n
14 33. What are the coordinates for the image of GHK after a rotation 90 clockwise about the origin and a translation of (x, y) (x + 3, y + 2)? A. G ( 3, 2), H ( 5, 1), K ( 1, 2) B. G (0, 4), H ( 2, 1), K (2, 0) C. G (1, 2), H (5, 1), K (2, 1) D. G (6, 0), H (8, 3), K (4, 5) 34. Which composition of transformations maps ABC into the third quadrant? A. Reflection across the line y = x and then a reflection across the yaxis. B. Clockwise rotation about the origin by 180 and then a reflection across the yaxis. C. Translation of (x 5, y) and then a counterclockwise rotation about the origin by 90. D. Clockwise rotation about the origin by 270 and then a translation of (x + 1, y). 35. The point P( 2, 5) is rotated 90 counterclockwise about the origin, and then the image is reflected across the line x = 3. What are the coordinates of the final image P? A. (1, 2) C. ( 2, 1) B. (11, 2) D. (2, 11)
15 36. Describe the rigid motion(s) that would map ABC on to XYC to satisfy the SAS congruence criteria. A. Rotation B. Translation C. Rotation and Reflection D. Translation and Reflection 37. In the figure below, DE = EH, GH DF, and F G. Is there enough information to conclude DEF HEG? If so, state the congruence postulate that supports the congruence statement. A. Yes, by SSA Postulate B. Yes, by SAS Postulate C. Yes, by AAS Theorem D. No, not enough information 38. If ABC DEF, which of the following is true? A. A D, BC EF, C F B. A D, AB DF C E C. A F, BC AC, C D D. A E, DF EF, C F 39. In the figure GAE LOD and AE DO. What information is needed to prove that AGE OLD by SAS? A. GE LD B. AG OL C. AGE OLD D. AEG ODL
16 40. You are given the following information about GHI and EFD. I. G E II. H F III. I D IV. GH EF V. GI ED Which combination cannot be used to prove that GHI EFD? A. V, IV, II B. II, III, V C. III, V, I D. All of the above prove GHI EFD 41. In the figure DE EH and GH DF. Which theorem can be used to conclude that DEF HEG? A. SSA B. AAA C. SAS D. HL 42. In the figure, ABC AFD. What is the m D? A. m D = 57 B. m D = 42 C. m D = 30 D. m D = 25
17 43. Given MNP, Anna is proving m 1 + m 2 = m 4. Which statement should be part of her proof? A. m 1 = m 2 B. m 1 = m 3 C. m 1 + m 3 = 180 D. m 3 + m 4 = 180 For #44 use the following: Given: Q is the midpoint of MN ; MQP NQP Prove: MQP NQP Statements Reasons Q is the midpoint of MN ; MQP NQP Given [1] Definition of Midpoint MQP NQP Given QP QP Reflexive property of congruence MQP NQP [2] 44. Choose one of the following to complete the proof. A. [1] MQ NQ [2] AAS Congruence B. [1] MP NP [2] Linear Pair Theorem C. [1] MQ NQ [2] SAS Congruence D. [[1] MN QP [2] SAS Congruence
18 45. In the figure, MON NPM. What is the value of y? A. y = 8 B. y = 10 C. y = 42 D. y = In the figure, AC AB. Find the value of y in terms of x. A. y = 3x B. y = 6x 140 C. y = 6x + 40 D. y = 3x
19 For #47 use the following: Given: AB AC and 1 2 Prove: BC ED Statements AB AC Reasons Given BC ED Given Transitive property of congruence If two coplanar lines are but by a transversal so that a pair of corresponding angles are congruent, then the two lines are parallel. 47. Choose one of the following to complete the proof. A. Isosceles Triangle Symmetry Theorem If the line contains the bisector of the vertex angle of an isosceles triangle, then it is a symmetry line for the triangle. B. Isosceles Triangle Coincidence Theorem If the bisector of the vertex angle of an isosceles triangle is also the perpendicular bisector of the base, then the median to the base is the same line C. Isosceles Triangle Base Angle Converse Theorem If two angles of a triangle are congruent, the sides opposite those angles are congruent D. Isosceles Triangle Base Angle Theorem If two sides of a triangle are congruent, then the angles opposite those sides are congruent 48. Which of the following best describes the shortest distance from a vertex of a triangle to the opposite side? A. altitude B. diameter C. median D. segment
20 49. EB is the angle bisector of AEC. What is the value of x? A. x = 35 B. x = 51.5 C. x = 70.5 D. x = In DOG, line m is drawn such that it is perpendicular to DO at point X and DX OX. Which of the following best describes line m? A. altitude C. angle bisector B. median D. perpendicular bisector 51. Reflect point H across the line FG A. HF FG B. HF H G C. HG H G D. FG H G to form point H, which of the following is true? 52. The vertices of JKL are located at J( 5, 3), K(3, 9), and L(7, 2). If LM is an altitude of JKL, what are the coordinates of M? A. M(7, 3) C. M( 1, 3) B. M(1, 6) D. M( 2, 2)
21 53. On the graph below, PQR is reflected over QR PQP. What are the coordinates of P? so that QR is an angle bisector of A. P (5, 3) B. P (1, 5) C. P ( 9, 1) D. P (1, 7) 54. A segment has endpoints T( 4, 5) and U(6, 1). Find the equation of the perpendicular bisector of TU. A. x = 1 C. y = 5 2 x B. y = 2 5 x + 4 D. y = 5 2 x 21 2
22 For #5556 use the following: Given: GF is a median of isosceles GIJ with base IJ Prove: JGF IGF Statements GF is a median Reasons Given F is a midpoint of IJ 55. FI FJ Definition of midpoint 56. Definition of isosceles triangle FG FG Reflexive property of congruence JGF IGF SSS Congruence 55. Choose one of the following to complete the proof. A. Definition of angle bisector If a ray divides an angle into two congruent angles, then it is an angle bisector. B. Definition of segment bisector If any segment, line, or plane intersects a segment at its midpoint, then it is a segment bisector. C. Definition of isosceles triangle If a triangle has at least two congruent sides, then it is an isosceles triangle. D. Definition of median If a segment is a median, then it has endpoints at the vertex of a triangle and the midpoint of the opposite side. 56. Choose one of the following to complete the proof. A. GI GH B. GI GJ C. KG HG D. KI HJ
23 57. Which of the following indirect proofs is correct given the following? Given: ABC Prove: ABC has no more than one right angle Assume: ABC has more than one right angle A. Assume that A and B are both obtuse angles. So by definition of an obtuse angle, m A = 120 and m B = 120. According to the Triangle AngleSum Theorem, m A + m B + m C = 180. By substitution, m C = 180. Combining like terms give the equation m C = 180. Subtracting 240 from both sides of the equation gives m C = 60. This contradicts the fact that an angle in a triangle has to be more than 0. Therefore, the assumption ABC has more than one right angle is false. The statement ABC has no more than one right angle is true. B. Assume that A and B are both right angles. So by definition of a right angle, m A = 180 and m B = 180. According to the Triangle AngleSum Theorem, m A + m B + m C = 180. By substitution, m C = 180. Combining like terms give the equation m C = 180. Subtracting 360 from both sides of the equation gives m C = 180. This contradicts the fact that an angle in a triangle has to be more than 0. Therefore, the assumption ABC has more than one right angle is false. The statement ABC has no more than one right angle is true. C. Assume that A and B are both right angles. So by definition of a right angle, m A = 90 and m B = 90. According to the Triangle AngleSum Theorem, m A + m B + m C = 180. By substitution, m C = 180. Combining like terms give the equation m C = 180. Subtracting 180 from both sides of the equation gives m C = 0. This contradicts the fact that an angle in a triangle has to be more than 0. Therefore, the assumption ABC has more than one right angle is false. The statement ABC has no more than one right angle is true. D. Assume that A and B are both acute angles. So by definition of an acute angle, m A = 60 and m B = 60. According to the Triangle AngleSum Theorem, m A + m B + m C = 180. By substitution, m C = 180. Combining like terms give the equation m C = 180. Subtracting 120 from both sides of the equation gives m C = 60. This contradicts the fact that an angle in a triangle has to be 90. Therefore, the assumption ABC has more than one right angle is true.
24 58. If a triangle has two sides with lengths of 8 cm and 14 cm. Which length below could not represent the length of the third side? A. 7 cm C. 15 cm B. 13 cm D. 22 cm 59. Find the range of values containing x. A. 2 < x < 5 B. x < 5 C. 0 < x < 9 D. x > The captain of a boat is planning to travel to three islands in a triangular pattern. What is the possible range for the number of miles round trip the boat will travel? A. between 32 and 75 miles B. between 43 and 107 miles C. between 139 and 182 miles D. between 150 and 214 miles
25 Formal Geometry Semester 1 Instructional Materials Answers 1. B 11. B 21. B 31. C 41. D 51. C 2. D 12. C 22. C 32. A 42. B 52. B 3. B 13. B 23. B 33. B 43. D 53. D 4. A 14. D 24. D 34. C 44. C 54. C 5. B 15. D 25. C 35. A 45. B 55. D 6. C 16. A 26. D 36. C 46. B 56. B 7. A 17. D 27. C 37. D 47. D 57. C 8. A 18. A 28. B 38. A 48. A 58. D 9. C 19. D 29. C 39. B 49. A 59. A 10. D 20. A 30. B 40. A 50. D 60. D
55 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 220 points.
Geometry Core Semester 1 Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which topics you need to review most carefully. The unit
More informationChapter 1: Essentials of Geometry
Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,
More information0810ge. Geometry Regents Exam 0810
0810ge 1 In the diagram below, ABC XYZ. 3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm. Which two statements identify
More information1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?
1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width
More informationStudent Name: Teacher: Date: District: MiamiDade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1
Student Name: Teacher: Date: District: MiamiDade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 1 Description: GEO Topic 1 Test: Tools of Geometry Form: 201 1. A student followed the
More informationSemester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question.
Semester Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Are O, N, and P collinear? If so, name the line on which they lie. O N M P a. No,
More informationGeometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.
Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of
More informationGeometry Regents Review
Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
More informationGeometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
More informationChapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.
Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.
More informationFinal Review Geometry A Fall Semester
Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over
More information/27 Intro to Geometry Review
/27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the
More informationPOTENTIAL REASONS: Definition of Congruence:
Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
More informationGEOMETRY CONCEPT MAP. Suggested Sequence:
CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
More informationShow all work for credit. Attach paper as needed to keep work neat & organized.
Geometry Semester 1 Review Part 2 Name Show all work for credit. Attach paper as needed to keep work neat & organized. Determine the reflectional (# of lines and draw them in) and rotational symmetry (order
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your
More information116 Chapter 6 Transformations and the Coordinate Plane
116 Chapter 6 Transformations and the Coordinate Plane Chapter 61 The Coordinates of a Point in a Plane Section Quiz [20 points] PART I Answer all questions in this part. Each correct answer will receive
More informationHow Do You Measure a Triangle? Examples
How Do You Measure a Triangle? Examples 1. A triangle is a threesided polygon. A polygon is a closed figure in a plane that is made up of segments called sides that intersect only at their endpoints,
More informationTopics Covered on Geometry Placement Exam
Topics Covered on Geometry Placement Exam  Use segments and congruence  Use midpoint and distance formulas  Measure and classify angles  Describe angle pair relationships  Use parallel lines and transversals
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, June 19, :15 a.m. to 12:15 p.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 19, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
More informationGeometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment
Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your
More information5.1 Midsegment Theorem and Coordinate Proof
5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle  A midsegment of a triangle is a segment that connects
More informationChapter 4 Study guide
Name: Class: Date: ID: A Chapter 4 Study guide Numeric Response 1. An isosceles triangle has a perimeter of 50 in. The congruent sides measure (2x + 3) cm. The length of the third side is 4x cm. What is
More informationABC is the triangle with vertices at points A, B and C
Euclidean Geometry Review This is a brief review of Plane Euclidean Geometry  symbols, definitions, and theorems. Part I: The following are symbols commonly used in geometry: AB is the segment from the
More informationGEOMETRY  QUARTER 1 BENCHMARK
Name: Class: _ Date: _ GEOMETRY  QUARTER 1 BENCHMARK Multiple Choice Identify the choice that best completes the statement or answers the question. Refer to Figure 1. Figure 1 1. What is another name
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name
More informationConjectures. Chapter 2. Chapter 3
Conjectures Chapter 2 C1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C2 Vertical Angles Conjecture If two angles are vertical
More informationTest to see if ΔFEG is a right triangle.
1. Copy the figure shown, and draw the common tangents. If no common tangent exists, state no common tangent. Every tangent drawn to the small circle will intersect the larger circle in two points. Every
More informationCentroid: The point of intersection of the three medians of a triangle. Centroid
Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:
More informationGEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT!
GEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT! FINDING THE DISTANCE BETWEEN TWO POINTS DISTANCE FORMULA (x₂x₁)²+(y₂y₁)² Find the distance between the points ( 3,2) and
More informationChapter 5: Relationships within Triangles
Name: Chapter 5: Relationships within Triangles Guided Notes Geometry Fall Semester CH. 5 Guided Notes, page 2 5.1 Midsegment Theorem and Coordinate Proof Term Definition Example midsegment of a triangle
More informationGeometry Chapter 1 Vocabulary. coordinate  The real number that corresponds to a point on a line.
Chapter 1 Vocabulary coordinate  The real number that corresponds to a point on a line. point  Has no dimension. It is usually represented by a small dot. bisect  To divide into two congruent parts.
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXMINTION GEOMETRY Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name
More informationCurriculum Map by Block Geometry Mapping for Math Block Testing 20072008. August 20 to August 24 Review concepts from previous grades.
Curriculum Map by Geometry Mapping for Math Testing 20072008 Pre s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)
More informationDefinitions, Postulates and Theorems
Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven
More informationCumulative Test. 161 Holt Geometry. Name Date Class
Choose the best answer. 1. P, W, and K are collinear, and W is between P and K. PW 10x, WK 2x 7, and PW WK 6x 11. What is PK? A 2 C 90 B 6 D 11 2. RM bisects VRQ. If mmrq 2, what is mvrm? F 41 H 9 G 2
More information2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?
MATH 206  Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of
More information51 Perpendicular and Angle Bisectors
51 Perpendicular and Angle Bisectors 51 Perpendicular and Angle Bisectors Warm Up Lesson Presentation Lesson Quiz Holt 51 Perpendicular and Angle Bisectors Warm Up Construct each of the following. 1.
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, January 26, 2016 1:15 to 4:15 p.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, January 26, 2016 1:15 to 4:15 p.m., only Student Name: School Name: The possession or use of any communications
More informationGeometry Honors: Circles, Coordinates, and Construction Semester 2, Unit 4: Activity 24
Geometry Honors: Circles, Coordinates, and Construction Semester 2, Unit 4: ctivity 24 esources: Springoard Geometry Unit Overview In this unit, students will study formal definitions of basic figures,
More informationThis is a tentative schedule, date may change. Please be sure to write down homework assignments daily.
Mon Tue Wed Thu Fri Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Introductions, Expectations, Course Outline and Carnegie Review summer packet Topic: (11) Points, Lines, & Planes Topic: (12) Segment Measure Quiz
More informationVector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.
1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called
More informationLesson 2: Circles, Chords, Diameters, and Their Relationships
Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct
More information51 Perpendicular and Angle Bisectors
51 Perpendicular and Angle Bisectors Warm Up Lesson Presentation Lesson Quiz Geometry Warm Up Construct each of the following. 1. A perpendicular bisector. 2. An angle bisector. 3. Find the midpoint and
More informationSelected practice exam solutions (part 5, item 2) (MAT 360)
Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On
More informationConjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)
Mathematical Sentence  a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement
More informationFind the measure of each numbered angle, and name the theorems that justify your work.
Find the measure of each numbered angle, and name the theorems that justify your work. 1. The angles 2 and 3 are complementary, or adjacent angles that form a right angle. So, m 2 + m 3 = 90. Substitute.
More information1.1 Identify Points, Lines, and Planes
1.1 Identify Points, Lines, and Planes Objective: Name and sketch geometric figures. Key Vocabulary Undefined terms  These words do not have formal definitions, but there is agreement aboutwhat they mean.
More informationCongruence of Triangles
Congruence of Triangles You've probably heard about identical twins, but do you know there's such a thing as mirror image twins? One mirror image twin is righthanded while the other is lefthanded. And
More informationUnit 2  Triangles. Equilateral Triangles
Equilateral Triangles Unit 2  Triangles Equilateral Triangles Overview: Objective: In this activity participants discover properties of equilateral triangles using properties of symmetry. TExES Mathematics
More information65 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure.
ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. 1. If, find. A rhombus is a parallelogram with all four sides congruent. So, Then, is an isosceles triangle. Therefore, If a parallelogram
More informationPROVING STATEMENTS IN GEOMETRY
CHAPTER PROVING STATEMENTS IN GEOMETRY After proposing 23 definitions, Euclid listed five postulates and five common notions. These definitions, postulates, and common notions provided the foundation for
More informationA. 3y = 2x + 1. y = x + 3. y = x  3. D. 2y = 3x + 3
Name: Geometry Regents Prep Spring 2010 Assignment 1. Which is an equation of the line that passes through the point (1, 4) and has a slope of 3? A. y = 3x + 4 B. y = x + 4 C. y = 3x  1 D. y = 3x + 1
More informationTesting for Congruent Triangles Examples
Testing for Congruent Triangles Examples 1. Why is congruency important? In 1913, Henry Ford began producing automobiles using an assembly line. When products are massproduced, each piece must be interchangeable,
More informationEquation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1
Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows : gradient = vertical horizontal horizontal A B vertical
More informationGeometry in a Nutshell
Geometry in a Nutshell Henry Liu, 26 November 2007 This short handout is a list of some of the very basic ideas and results in pure geometry. Draw your own diagrams with a pencil, ruler and compass where
More informationGEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd:
GEOMETRY Chapter 1: Foundations for Geometry Name: Teacher: Pd: Table of Contents Lesson 1.1: SWBAT: Identify, name, and draw points, lines, segments, rays, and planes. Pgs: 14 Lesson 1.2: SWBAT: Use
More informationSeattle Public Schools KEY to Review Questions for the Washington State Geometry End of Course Exam
Seattle Public Schools KEY to Review Questions for the Washington State Geometry End of ourse Exam 1) Which term best defines the type of reasoning used below? bdul broke out in hives the last four times
More informationAngles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
More informationMathematics Geometry Unit 1 (SAMPLE)
Review the Geometry sample yearlong scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This
More informationChapter 5.1 and 5.2 Triangles
Chapter 5.1 and 5.2 Triangles Students will classify triangles. Students will define and use the Angle Sum Theorem. A triangle is formed when three noncollinear points are connected by segments. Each
More informationhttp://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4
of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the
More informationChapter Two. Deductive Reasoning
Chapter Two Deductive Reasoning Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply
More informationLesson 10.1 Skills Practice
Lesson 0. Skills Practice Name_Date Location, Location, Location! Line Relationships Vocabulary Write the term or terms from the box that best complete each statement. intersecting lines perpendicular
More informationNew York State Student Learning Objective: Regents Geometry
New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students
More informationGeometry. Higher Mathematics Courses 69. Geometry
The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and
More informationVocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture.
CHAPTER Vocabulary The table contains important vocabulary terms from Chapter. As you work through the chapter, fill in the page number, definition, and a clarifying example. biconditional statement conclusion
More informationConjectures for Geometry for Math 70 By I. L. Tse
Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:
More informationDEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.
DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent
More informationLesson 18: Looking More Carefully at Parallel Lines
Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using
More informationGeometry Chapter 2: Geometric Reasoning Lesson 1: Using Inductive Reasoning to Make Conjectures Inductive Reasoning:
Geometry Chapter 2: Geometric Reasoning Lesson 1: Using Inductive Reasoning to Make Conjectures Inductive Reasoning: Conjecture: Advantages: can draw conclusions from limited information helps us to organize
More informationGeometry Enduring Understandings Students will understand 1. that all circles are similar.
High School  Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,
More informationA summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:
summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of midpoint and segment bisector M If a line intersects another line segment
More informationcircle the set of all points that are given distance from a given point in a given plane
Geometry Week 19 Sec 9.1 to 9.3 Definitions: section 9.1 circle the set of all points that are given distance from a given point in a given plane E D Notation: F center the given point in the plane radius
More informationHon Geometry Midterm Review
Class: Date: Hon Geometry Midterm Review Multiple Choice Identify the choice that best completes the statement or answers the question. Refer to Figure 1. Figure 1 1. Name the plane containing lines m
More informationGeometry Honors. District Midterm
Geometry Honors District Midterm Geometry EOC Appendix G Algebra 1 EndofCourse and Geometry EndofCourse Assessments Reference Sheet b base A area h height B area of base w width C circumference d diameter
More informationThe midsegment of a triangle is a segment joining the of two sides of a triangle.
5.1 and 5.4 Perpendicular and Angle Bisectors & Midsegment Theorem THEOREMS: 1) If a point lies on the perpendicular bisector of a segment, then the point is equidistant from the endpoints of the segment.
More informationGEOMETRY (Common Core)
GEOMETRY (COMMON CORE) The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY (Common Core) Wednesday, August 12, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The
More information100 Math Facts 6 th Grade
100 Math Facts 6 th Grade Name 1. SUM: What is the answer to an addition problem called? (N. 2.1) 2. DIFFERENCE: What is the answer to a subtraction problem called? (N. 2.1) 3. PRODUCT: What is the answer
More informationSOLVED PROBLEMS REVIEW COORDINATE GEOMETRY. 2.1 Use the slopes, distances, line equations to verify your guesses
CHAPTER SOLVED PROBLEMS REVIEW COORDINATE GEOMETRY For the review sessions, I will try to post some of the solved homework since I find that at this age both taking notes and proofs are still a burgeoning
More informationFoundations of Geometry 1: Points, Lines, Segments, Angles
Chapter 3 Foundations of Geometry 1: Points, Lines, Segments, Angles 3.1 An Introduction to Proof Syllogism: The abstract form is: 1. All A is B. 2. X is A 3. X is B Example: Let s think about an example.
More information1. point, line, and plane 2a. always 2b. always 2c. sometimes 2d. always 3. 1 4. 3 5. 1 6. 1 7a. True 7b. True 7c. True 7d. True 7e. True 8.
1. point, line, and plane 2a. always 2b. always 2c. sometimes 2d. always 3. 1 4. 3 5. 1 6. 1 7a. True 7b. True 7c. True 7d. True 7e. True 8. 3 and 13 9. a 4, c 26 10. 8 11. 20 12. 130 13 12 14. 10 15.
More informationTips for doing well on the final exam
Name Date Block The final exam for Geometry will take place on May 31 and June 1. The following study guide will help you prepare for the exam. Everything we have covered is fair game. As a reminder, topics
More informationIntermediate Math Circles October 10, 2012 Geometry I: Angles
Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,
More information4. Prove the above theorem. 5. Prove the above theorem. 9. Prove the above corollary. 10. Prove the above theorem.
14 Perpendicularity and Angle Congruence Definition (acute angle, right angle, obtuse angle, supplementary angles, complementary angles) An acute angle is an angle whose measure is less than 90. A right
More informationUse the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition.
Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition. 1. measures less than By the Exterior Angle Inequality Theorem, the exterior angle ( ) is larger than
More informationMathematics Task Arcs
Overview of Mathematics Task Arcs: Mathematics Task Arcs A task arc is a set of related lessons which consists of eight tasks and their associated lesson guides. The lessons are focused on a small number
More informationName: Chapter 4 Guided Notes: Congruent Triangles. Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester
Name: Chapter 4 Guided Notes: Congruent Triangles Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester CH. 4 Guided Notes, page 2 4.1 Apply Triangle Sum Properties triangle polygon
More informationGeometry CP Lesson 51: Bisectors, Medians and Altitudes Page 1 of 3
Geometry CP Lesson 51: Bisectors, Medians and Altitudes Page 1 of 3 Main ideas: Identify and use perpendicular bisectors and angle bisectors in triangles. Standard: 12.0 A perpendicular bisector of a
More informationof surface, 569571, 576577, 578581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433
Absolute Value and arithmetic, 730733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property
More informationMath 3372College Geometry
Math 3372College Geometry Yi Wang, Ph.D., Assistant Professor Department of Mathematics Fairmont State University Fairmont, West Virginia Fall, 2004 Fairmont, West Virginia Copyright 2004, Yi Wang Contents
More informationGeometry Unit 10 Notes Circles. Syllabus Objective: 10.1  The student will differentiate among the terms relating to a circle.
Geometry Unit 0 Notes ircles Syllabus Objective: 0.  The student will differentiate among the terms relating to a circle. ircle the set of all points in a plane that are equidistant from a given point,
More information