A COUNTEREXAMPLE FOR SUBADDITIVITY OF MULTIPLIER IDEALS ON TORIC VARIETIES

Size: px
Start display at page:

Download "A COUNTEREXAMPLE FOR SUBADDITIVITY OF MULTIPLIER IDEALS ON TORIC VARIETIES"

Transcription

1 Communications in Algebra, 40: , 2012 Copyright Taylor & Francis Group, LLC ISSN: print/ online DOI: / A COUNTEREXAMPLE FOR SUBADDITIVITY OF MULTIPLIER IDEALS ON TORIC VARIETIES Jen-Chieh Hsiao Department of Mathematics, Purdue University, West Lafayette, Indiana, USA Key Words: We construct a 3-dimensional complete intersection toric variety on which the subadditivity formula doesn t hold, answering negatively a question by Takagi and Watanabe. A combinatorial proof of the subadditivity formula on 2-dimensional normal toric varieties is also provided. Multiplier ideals; Subadditivity formula; Toric varieties Mathematics Subject Classification: 14F18; 14M INTRODUCTION D ly et al. [2] proved the subadditivity theorem for multiplier ideals on smooth complex varieties, which states This theorem is responsible for several applications of multiplier ideals in commutative algebra, in particular to symbolic powers [3] and Abhyankar valuations [4]. In a later article, Takagi and Watanabe [9] investigated the extent to which the subadditivity theorem remains true on singular varieties. They showed that on -Gorenstein normal surfaces, the subadditivity formula holds if and only if the variety is log terminal [9, Theorem 2.2]. Furthermore, they gave an example of a -Gorenstein normal toric threefold on which the formula is not satisfied [9, Example 3.2]. This led Takagi and Watanabe to ask the following question. Question 1.1. Let R be a Gorenstein toric ring and, be monomial ideals of R. Is it true that? Received August 17, 2010; Revised December 27, Communicated by I. Swanson. Address correspondence to Jen-Chieh Hsiao, Department of Mathematics, Purdue University, 150 N. University St., West Lafayette, IN 47907, USA; jhsiao@math.purdue.edu 1618

2 A COUNTEREXAMPLE FOR SUBADDITIVITY FORMULA 1619 The purpose of this article is to provide a counterexample to Question 1.1. We will also give, in Section 4, a combinatorial proof of the subadditivity formula on any 2-dimensional normal toric rings. The standard notation and facts in [5] will be used freely in the presentation. 2. MULTIPLIER IDEALS ON TORIC VARIETIES Let be a field and R = M be the coordinate ring of an affine normal Gorenstein toric variety. Denote X = Spec R. In this case, the canonical divisor K X of X is Cartier, so there exists a u 0 M such that u 0 n i = 1 where the n i s are the primitive generators of. For any monomial ideal of R, denote Newt the Newton polyhedron of and relint Newt the relative interior of Newt. The multiplier ideal of in R admits a combinatorial description. Proposition 2.1. = x w R w + u 0 relint Newt (2.1) This is a result by Hara and Yoshida [7, Theorem 4.8] which is generalized by Blickle [1] to arbitrary normal toric varieties. 3. THE EXAMPLE Consider the 3-dimensional normal semigroup ring R = x 2 y xy xy 2 z, a field. Notice that R is a complete intersection, and hence Gorenstein. Note also that Consider the following two ideals of R: u 0 = = x 2 y 4 x 10 y 6 z 2 = x 12 y 7 x 10 y 6 z 2 Then = x 14 y 11 x 12 y 10 z 2 x 22 y 13 z 2 x 20 y 12 z 4 Denote w 1 = w 2 = w 3 = w 4 = Observe that the lattice point v = relint Newt

3 1620 HSIAO To see this, consider the four points v 1 = w 1 = v 2 = w = v 3 = w = v 4 = 1 ( 2 w 3 + w 4 = ) 2 3 They are in Newt and do not lie on a plane, namely, they are affinely independent. Since v = 5 16 v v v v 4 it is in relint Newt. Now, since u 0 + v = , by (2.1) We claim that x 17 y 11 z x 17 y 11 z An element in is a finite sum of monomials of the form c x x where c k, M, + u 0 relint Newt, and + u 0 relint Newt. If x 17 y 11 z, then u 0 + v = + for some, as above. This means v = can be written as a sum of a lattice point + u 0 in relint Newt and a lattice point in u 0 + relint Newt. We check that this is not possible. Suppose and are lattice points satisfying + u 0 + = v = Write = + u 0 = a 1 a 2 a 3 and = b 1 b 2 b 3, so a 1 + b 1 a 2 + b 2 a 3 + b 3 = v = We will show that in each case either relint Newt or + u 0 relint Newt. First, note that the Newton polyhedron Newt is the intersection of halfspaces determined by the following five hyperplanes: 2x y = 0 x + 4y = 14 x + 2y = 2 x + 2y + 2z = 6 z= 0. So we have relint Newt = x y z M 2x y>0 x + 4y >14 x + 2y >2 x + 2y + 2z >6 z>0 (3.1)

4 A COUNTEREXAMPLE FOR SUBADDITIVITY FORMULA 1621 Also, Newt is the intersection of the halfspace determined by the following four hyperplanes: 2x y = 14 x + 2y = 2 4x 2y + 3z = 34 z= 0. We have relint Newt = x y z M 2x y>14 x + 2y >2 We consider the following cases: 4x 2y + 3z >34 z>0 (3.2) Case I: If a 1 7, then b 2 5 and + u 0 relint Newt. To see this, suppose + u 0 = b b b relint Newt. By (3.2), 2 b b >14 and b b >2. So 4 b > 2 b >14 + b and hence b 2 > 5, which is a contradiction. Case II. If a 2 4, then relint Newt. Indeed, suppose = a 1 a 2 a 3 relint Newt. By (3.1), 2a 1 a 2 > 0 and a 1 + 4a 2 > 14. So 8a 2 28 > 2a 1 >a 2 and hence a 2 > 4. Case III. Suppose a 2 = 5 and b 2 = 7. a) If a 1 6, then relint Newt. Indeed, suppose = a 1 a 2 a 3 relint Newt. By (3.1), a 1 + 4a 2 > 14 and hence a 1 < 4a 2 14 = 6. b) If a 1 5, then b This implies + u 0 relint Newt. Indeed, suppose + u 0 = b b b relint Newt. By (3.2), b b >2 and hence b 1 < 2 b = 13. Case IV: Suppose a 2 = b 2 6. a) If b 1 10, then + u 0 relint Newt. To see this, suppose + u 0 = b b b relint Newt. By (3.2) again, 2 b b >14 and b b >2. This forces b 1 = 10. b) If b 1 = 10, then = a 1 a 2 a 3 = 8 6 a 3 and = b 1 b 2 b 3 = 10 6 b 3. i) If a 3 0, then relint Newt by (3.1). ii) If a 3 > 2, then b 3 < 0. In this case, + u 0 relint Newt by (3.2). iii) If = a 1 a 2 a 3 = 8 6 1, then a 1 + 2a 2 + 2a 3 = 6. So relint Newt by (3.1). iv) If = a 1 a 2 a 3 = 8 6 2, then = b 1 b 2 b 3 = So 4 b b b = 33 < 34. Hence + u 0 relint Newt by (3.2). Remark 3.1. We briefly explain the idea behind the example. Recall that the integral closure I of a monomial ideal I in a normal toric ring R is determined by Newt I (see, for example, [8]): I = x w R w Newt I So Question 1.1 is closely related to the containment I J IJ for monomial ideals of R. Huneke and Swanson provide a trick to construct examples where the strict containment I J IJ occur (see [6, Example 1.4.9] and the remark after it). We repeat their construction here:

5 1622 HSIAO Choose a ring R and a pair of ideal I, J in R such that I + J I + J Pick an element r I + J \ I + J Set R = R Z for some variable Z over R and set I = I R + ZR J = J R + ZR Then I and J are integrally closed and rz IJ\I J This kind of construction doesn t always guarantee a counterexample to Question 1.1. However, a suitable choice of r, Z, R, I, and J will do. In our example, take R = x 2 y xy xy 2 r = x 8 y 6 I = x 2 y 4 J = x 12 y 7 Z = x 10 y 6 z 2 Then rz = x 18 y 12 z 2 is exactly the crucial point we considered in the example. 4. TWO-DIMENSIONAL CASE Let R = M, a field, be a 2-dimensional normal toric ring and denote X = Spec R. Then there exists a primitive lattice point w 0 M such that w 0 n i = r 0 where the n is are the primitive generators of. So the canonical divisor K X of X is -Cartier and R is -Gorenstein. Set u 0 = w 0 /r. By Theorem 4.8 in [7], for any monomial ideal in R = x w R w + u 0 relint Newt (4.1) The following theorem establishes the subadditivity formula on two-dimensional normal toric rings. Theorem 4.1. For any pair of monomial ideal, in R,

6 A COUNTEREXAMPLE FOR SUBADDITIVITY FORMULA 1623 Proof. Write = x a a A and = x b b B for some finite sets A and B in M. We assume that x a a A and x b b B are the sets of monomial minimal generators of and, respectively. Then = x a+b a A and b B. Let 1 k be the vertices of the Newton polyhedron Newt such that conv 1 2 conv k 1 k and k + 2 form the boundary of Newt, where 1 2 are the two rays of. Then k 1 Newt = conv i i+1 + i=1 Note also that the i s are of the form a i + b i for some a i A and b i B. Suppose that for some i 1 k 1, we have a i a i+1 and b i b i+1. Then a i + b i+1 = a i+1 + b i, lie on boundary segment conv i i+1, since otherwise they lie on different sides of conv i i+1 which is a contradiction. For any such i, we insert the point a i + b i+1 to the sequence 1 k. So we obtain a sequence, say 1 = a 1 + b 1 s = a s + b s, such that, for each i 1 s 1, either a i = a i+1 or b i = b i+1, and that Now, observe that s 1 Newt = conv i i+1 + i=1 s 1 relint Newt relint i where i = conv i i+1 +. If x p, then by (4.1) p + u 0 relint Newt and hence in relint i0 for some i 0. Without loss of generality, we may assume a i 0 = a i So p + u 0 relint i0 = a i 0 + relint conv b i 0 b i a i 0 + relint Newt Therefore, p a i 0 + u 0 + relint Newt Since a i 0 + u 0 relint Newt, by (4.1) we conclude that x p, as desired. i=1 Remark 4.2. As one can see in the proof of Theorem 4.1, the choice of i s is essential. For any x p we are able to choose a = Newt such that x a is in the set of monomial minimal generators of and that p + u 0 arelint Newt. This cannot be extended to the higher dimensional case. From the example in Section 3, x 17 y 11 z and u 0 = Newt is minimally generated by x 2 y 4 and x 10 y 6 z 2. But = and = are not in relint Newt by (3.2). Similarly, Newt is minimally generated by x 1 2y 7 and x 10 y 6 z 2. But = and = are not in relint Newt by (3.1).

7 1624 HSIAO ACKNOWLEDGMENTS The author was partially supported by NSF under grant DMS and DMS The author would like to thank his advisor, Uli Walther, for his encouragement during the preparation of this work. He is also grateful to the refree for the careful reading and useful suggestions. REFERENCES [1] Blickle, M. (2004). Multiplier ideals and modules on toric varieties. Math. Z. 248(1): [2] D ly, J.-P., Ein, L., Lazarsfeld, R. (2000). A subadditivity property of multiplier ideals. Michigan Math. J. 48: [3] Ein, L., Lazarsfeld, R., Smith, K. E. (2001). Uniform bounds and symbolic powers on smooth varieties. Invent. Math. 144(2): [4] Ein, L., Lazarsfeld, R., Smith, K. E. (2003). Uniform approximation of Abhyankar valuation ideals in smooth function fields. Amer. J. Math. 125(2): [5] Fulton, W. (1993). Introduction to Toric Varieties. Annals of Mathematics Studies, Vol Princeton, NJ: Princeton University Press. The William H. Roever Lectures in Geometry. [6] Huneke, C., Swanson, I. (2006). Integral Closure of Ideals, Rings, and Modules. London Mathematical Society Lecture Note Series, Vol Cambridge: Cambridge University Press. [7] Hara, N., Yoshida, K.-I. (2003). A generalization of tight closure and multiplier ideals. Trans. Amer. Math. Soc. 355(8): (electronic). [8] Teissier, B. (2004). Monomial Ideals, Binomial Ideals, Polynomial Ideals. Trends in Commutative Algebra, Math. Sci. Res. Inst. Publ., Vol. 51. Cambridge: Cambridge University Press, pp [9] Takagi, S., Watanabe, K.-I. (2004). When does the subadditivity theorem for multiplier ideals hold? Trans. Amer. Math. Soc. 356(10): (electronic).

Row Ideals and Fibers of Morphisms

Row Ideals and Fibers of Morphisms Michigan Math. J. 57 (2008) Row Ideals and Fibers of Morphisms David Eisenbud & Bernd Ulrich Affectionately dedicated to Mel Hochster, who has been an inspiration to us for many years, on the occasion

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

Max-Min Representation of Piecewise Linear Functions

Max-Min Representation of Piecewise Linear Functions Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 43 (2002), No. 1, 297-302. Max-Min Representation of Piecewise Linear Functions Sergei Ovchinnikov Mathematics Department,

More information

RECURSIVE ENUMERATION OF PYTHAGOREAN TRIPLES

RECURSIVE ENUMERATION OF PYTHAGOREAN TRIPLES RECURSIVE ENUMERATION OF PYTHAGOREAN TRIPLES DARRYL MCCULLOUGH AND ELIZABETH WADE In [9], P. W. Wade and W. R. Wade (no relation to the second author gave a recursion formula that produces Pythagorean

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 RAVI VAKIL CONTENTS 1. Discrete valuation rings: Dimension 1 Noetherian regular local rings 1 Last day, we discussed the Zariski tangent space, and saw that it

More information

MCS 563 Spring 2014 Analytic Symbolic Computation Wednesday 9 April. Hilbert Polynomials

MCS 563 Spring 2014 Analytic Symbolic Computation Wednesday 9 April. Hilbert Polynomials Hilbert Polynomials For a monomial ideal, we derive the dimension counting the monomials in the complement, arriving at the notion of the Hilbert polynomial. The first half of the note is derived from

More information

The positive minimum degree game on sparse graphs

The positive minimum degree game on sparse graphs The positive minimum degree game on sparse graphs József Balogh Department of Mathematical Sciences University of Illinois, USA jobal@math.uiuc.edu András Pluhár Department of Computer Science University

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

LOW-DEGREE PLANAR MONOMIALS IN CHARACTERISTIC TWO

LOW-DEGREE PLANAR MONOMIALS IN CHARACTERISTIC TWO LOW-DEGREE PLANAR MONOMIALS IN CHARACTERISTIC TWO PETER MÜLLER AND MICHAEL E. ZIEVE Abstract. Planar functions over finite fields give rise to finite projective planes and other combinatorial objects.

More information

Nilpotent Lie and Leibniz Algebras

Nilpotent Lie and Leibniz Algebras This article was downloaded by: [North Carolina State University] On: 03 March 2014, At: 08:05 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

More information

CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction

CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction Acta Math. Univ. Comenianae Vol. LXXXI, 1 (2012), pp. 71 77 71 CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC E. BALLICO Abstract. Here we study (in positive characteristic) integral curves

More information

The sum of digits of polynomial values in arithmetic progressions

The sum of digits of polynomial values in arithmetic progressions The sum of digits of polynomial values in arithmetic progressions Thomas Stoll Institut de Mathématiques de Luminy, Université de la Méditerranée, 13288 Marseille Cedex 9, France E-mail: stoll@iml.univ-mrs.fr

More information

Gröbner Bases and their Applications

Gröbner Bases and their Applications Gröbner Bases and their Applications Kaitlyn Moran July 30, 2008 1 Introduction We know from the Hilbert Basis Theorem that any ideal in a polynomial ring over a field is finitely generated [3]. However,

More information

INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

More information

Ideal Class Group and Units

Ideal Class Group and Units Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

More information

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers

More information

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9 Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a

More information

RESEARCH STATEMENT AMANDA KNECHT

RESEARCH STATEMENT AMANDA KNECHT RESEARCH STATEMENT AMANDA KNECHT 1. Introduction A variety X over a field K is the vanishing set of a finite number of polynomials whose coefficients are elements of K: X := {(x 1,..., x n ) K n : f i

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

ON THE COEFFICIENTS OF THE LINKING POLYNOMIAL

ON THE COEFFICIENTS OF THE LINKING POLYNOMIAL ADSS, Volume 3, Number 3, 2013, Pages 45-56 2013 Aditi International ON THE COEFFICIENTS OF THE LINKING POLYNOMIAL KOKO KALAMBAY KAYIBI Abstract Let i j T( M; = tijx y be the Tutte polynomial of the matroid

More information

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein) Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

arxiv:1203.1525v1 [math.co] 7 Mar 2012

arxiv:1203.1525v1 [math.co] 7 Mar 2012 Constructing subset partition graphs with strong adjacency and end-point count properties Nicolai Hähnle haehnle@math.tu-berlin.de arxiv:1203.1525v1 [math.co] 7 Mar 2012 March 8, 2012 Abstract Kim defined

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

Just the Factors, Ma am

Just the Factors, Ma am 1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

ON THE NUMBER OF REAL HYPERSURFACES HYPERTANGENT TO A GIVEN REAL SPACE CURVE

ON THE NUMBER OF REAL HYPERSURFACES HYPERTANGENT TO A GIVEN REAL SPACE CURVE Illinois Journal of Mathematics Volume 46, Number 1, Spring 2002, Pages 145 153 S 0019-2082 ON THE NUMBER OF REAL HYPERSURFACES HYPERTANGENT TO A GIVEN REAL SPACE CURVE J. HUISMAN Abstract. Let C be a

More information

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9 Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

ABSTRACT. For example, circle orders are the containment orders of circles (actually disks) in the plane (see [8,9]).

ABSTRACT. For example, circle orders are the containment orders of circles (actually disks) in the plane (see [8,9]). Degrees of Freedom Versus Dimension for Containment Orders Noga Alon 1 Department of Mathematics Tel Aviv University Ramat Aviv 69978, Israel Edward R. Scheinerman 2 Department of Mathematical Sciences

More information

On The Existence Of Flips

On The Existence Of Flips On The Existence Of Flips Hacon and McKernan s paper, arxiv alg-geom/0507597 Brian Lehmann, February 2007 1 Introduction References: Hacon and McKernan s paper, as above. Kollár and Mori, Birational Geometry

More information

ADDITIVE GROUPS OF RINGS WITH IDENTITY

ADDITIVE GROUPS OF RINGS WITH IDENTITY ADDITIVE GROUPS OF RINGS WITH IDENTITY SIMION BREAZ AND GRIGORE CĂLUGĂREANU Abstract. A ring with identity exists on a torsion Abelian group exactly when the group is bounded. The additive groups of torsion-free

More information

ON TORI TRIANGULATIONS ASSOCIATED WITH TWO-DIMENSIONAL CONTINUED FRACTIONS OF CUBIC IRRATIONALITIES.

ON TORI TRIANGULATIONS ASSOCIATED WITH TWO-DIMENSIONAL CONTINUED FRACTIONS OF CUBIC IRRATIONALITIES. ON TORI TRIANGULATIONS ASSOCIATED WITH TWO-DIMENSIONAL CONTINUED FRACTIONS OF CUBIC IRRATIONALITIES. O. N. KARPENKOV Introduction. A series of properties for ordinary continued fractions possesses multidimensional

More information

ON THE EMBEDDING OF BIRKHOFF-WITT RINGS IN QUOTIENT FIELDS

ON THE EMBEDDING OF BIRKHOFF-WITT RINGS IN QUOTIENT FIELDS ON THE EMBEDDING OF BIRKHOFF-WITT RINGS IN QUOTIENT FIELDS DOV TAMARI 1. Introduction and general idea. In this note a natural problem arising in connection with so-called Birkhoff-Witt algebras of Lie

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

More information

So let us begin our quest to find the holy grail of real analysis.

So let us begin our quest to find the holy grail of real analysis. 1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

More information

Computing divisors and common multiples of quasi-linear ordinary differential equations

Computing divisors and common multiples of quasi-linear ordinary differential equations Computing divisors and common multiples of quasi-linear ordinary differential equations Dima Grigoriev CNRS, Mathématiques, Université de Lille Villeneuve d Ascq, 59655, France Dmitry.Grigoryev@math.univ-lille1.fr

More information

Associativity condition for some alternative algebras of degree three

Associativity condition for some alternative algebras of degree three Associativity condition for some alternative algebras of degree three Mirela Stefanescu and Cristina Flaut Abstract In this paper we find an associativity condition for a class of alternative algebras

More information

(Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties

(Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties Lecture 1 Convex Sets (Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties 1.1.1 A convex set In the school geometry

More information

LEARNING OBJECTIVES FOR THIS CHAPTER

LEARNING OBJECTIVES FOR THIS CHAPTER CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. Finite-Dimensional

More information

Mechanics 1: Vectors

Mechanics 1: Vectors Mechanics 1: Vectors roadly speaking, mechanical systems will be described by a combination of scalar and vector quantities. scalar is just a (real) number. For example, mass or weight is characterized

More information

THE BANACH CONTRACTION PRINCIPLE. Contents

THE BANACH CONTRACTION PRINCIPLE. Contents THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,

More information

FIXED POINT SETS OF FIBER-PRESERVING MAPS

FIXED POINT SETS OF FIBER-PRESERVING MAPS FIXED POINT SETS OF FIBER-PRESERVING MAPS Robert F. Brown Department of Mathematics University of California Los Angeles, CA 90095 e-mail: rfb@math.ucla.edu Christina L. Soderlund Department of Mathematics

More information

1. Introduction. PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1

1. Introduction. PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1 Publ. Mat. 45 (2001), 69 77 PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1 Bernard Coupet and Nabil Ourimi Abstract We describe the branch locus of proper holomorphic mappings between

More information

LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

More information

The degree, size and chromatic index of a uniform hypergraph

The degree, size and chromatic index of a uniform hypergraph The degree, size and chromatic index of a uniform hypergraph Noga Alon Jeong Han Kim Abstract Let H be a k-uniform hypergraph in which no two edges share more than t common vertices, and let D denote the

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

it is easy to see that α = a

it is easy to see that α = a 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

More information

The Australian Journal of Mathematical Analysis and Applications

The Australian Journal of Mathematical Analysis and Applications The Australian Journal of Mathematical Analysis and Applications Volume 7, Issue, Article 11, pp. 1-14, 011 SOME HOMOGENEOUS CYCLIC INEQUALITIES OF THREE VARIABLES OF DEGREE THREE AND FOUR TETSUYA ANDO

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact

More information

Non-unique factorization of polynomials over residue class rings of the integers

Non-unique factorization of polynomials over residue class rings of the integers Comm. Algebra 39(4) 2011, pp 1482 1490 Non-unique factorization of polynomials over residue class rings of the integers Christopher Frei and Sophie Frisch Abstract. We investigate non-unique factorization

More information

SECTION 10-2 Mathematical Induction

SECTION 10-2 Mathematical Induction 73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

More information

Classification of Cartan matrices

Classification of Cartan matrices Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms

More information

About the inverse football pool problem for 9 games 1

About the inverse football pool problem for 9 games 1 Seventh International Workshop on Optimal Codes and Related Topics September 6-1, 013, Albena, Bulgaria pp. 15-133 About the inverse football pool problem for 9 games 1 Emil Kolev Tsonka Baicheva Institute

More information

11 Ideals. 11.1 Revisiting Z

11 Ideals. 11.1 Revisiting Z 11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

More information

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).

More information

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly

More information

ON UNIQUE FACTORIZATION DOMAINS

ON UNIQUE FACTORIZATION DOMAINS ON UNIQUE FACTORIZATION DOMAINS JIM COYKENDALL AND WILLIAM W. SMITH Abstract. In this paper we attempt to generalize the notion of unique factorization domain in the spirit of half-factorial domain. It

More information

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce

More information

Mathematical Research Letters 1, 249 255 (1994) MAPPING CLASS GROUPS ARE AUTOMATIC. Lee Mosher

Mathematical Research Letters 1, 249 255 (1994) MAPPING CLASS GROUPS ARE AUTOMATIC. Lee Mosher Mathematical Research Letters 1, 249 255 (1994) MAPPING CLASS GROUPS ARE AUTOMATIC Lee Mosher Let S be a compact surface, possibly with the extra structure of an orientation or a finite set of distinguished

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information

The minimum number of distinct areas of triangles determined by a set of n points in the plane

The minimum number of distinct areas of triangles determined by a set of n points in the plane The minimum number of distinct areas of triangles determined by a set of n points in the plane Rom Pinchasi Israel Institute of Technology, Technion 1 August 6, 007 Abstract We prove a conjecture of Erdős,

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

Unique Factorization

Unique Factorization Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

More information

Factoring Dickson polynomials over finite fields

Factoring Dickson polynomials over finite fields Factoring Dickson polynomials over finite fiels Manjul Bhargava Department of Mathematics, Princeton University. Princeton NJ 08544 manjul@math.princeton.eu Michael Zieve Department of Mathematics, University

More information

FINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROS-SHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS

FINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROS-SHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS FINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROS-SHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS Abstract. It is shown that, for any field F R, any ordered vector space structure

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}. Walrasian Demand Econ 2100 Fall 2015 Lecture 5, September 16 Outline 1 Walrasian Demand 2 Properties of Walrasian Demand 3 An Optimization Recipe 4 First and Second Order Conditions Definition Walrasian

More information

arxiv:math/0606467v2 [math.co] 5 Jul 2006

arxiv:math/0606467v2 [math.co] 5 Jul 2006 A Conjectured Combinatorial Interpretation of the Normalized Irreducible Character Values of the Symmetric Group arxiv:math/0606467v [math.co] 5 Jul 006 Richard P. Stanley Department of Mathematics, Massachusetts

More information

International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013

International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013 FACTORING CRYPTOSYSTEM MODULI WHEN THE CO-FACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II Mohammedia-Casablanca,

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON

Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON John Burkardt Information Technology Department Virginia Tech http://people.sc.fsu.edu/ jburkardt/presentations/cg lab fem basis tetrahedron.pdf

More information

Introduction to Finite Fields (cont.)

Introduction to Finite Fields (cont.) Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

More information

Arithmetic complexity in algebraic extensions

Arithmetic complexity in algebraic extensions Arithmetic complexity in algebraic extensions Pavel Hrubeš Amir Yehudayoff Abstract Given a polynomial f with coefficients from a field F, is it easier to compute f over an extension R of F than over F?

More information

Biinterpretability up to double jump in the degrees

Biinterpretability up to double jump in the degrees Biinterpretability up to double jump in the degrees below 0 0 Richard A. Shore Department of Mathematics Cornell University Ithaca NY 14853 July 29, 2013 Abstract We prove that, for every z 0 0 with z

More information

MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

More information

Stationary random graphs on Z with prescribed iid degrees and finite mean connections

Stationary random graphs on Z with prescribed iid degrees and finite mean connections Stationary random graphs on Z with prescribed iid degrees and finite mean connections Maria Deijfen Johan Jonasson February 2006 Abstract Let F be a probability distribution with support on the non-negative

More information

Number Sense and Operations

Number Sense and Operations Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

More information

Surface bundles over S 1, the Thurston norm, and the Whitehead link

Surface bundles over S 1, the Thurston norm, and the Whitehead link Surface bundles over S 1, the Thurston norm, and the Whitehead link Michael Landry August 16, 2014 The Thurston norm is a powerful tool for studying the ways a 3-manifold can fiber over the circle. In

More information

Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Copyrighted Material. Chapter 1 DEGREE OF A CURVE Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

More information

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents DIFFERENTIABILITY OF COMPLEX FUNCTIONS Contents 1. Limit definition of a derivative 1 2. Holomorphic functions, the Cauchy-Riemann equations 3 3. Differentiability of real functions 5 4. A sufficient condition

More information

26 Integers: Multiplication, Division, and Order

26 Integers: Multiplication, Division, and Order 26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I. Ronald van Luijk, 2012 Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

More information

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE J.M. CALABUIG, J. RODRÍGUEZ, AND E.A. SÁNCHEZ-PÉREZ Abstract. Let m be a vector measure taking values in a Banach space X. We prove that

More information

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS Bull Austral Math Soc 77 (2008), 31 36 doi: 101017/S0004972708000038 COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS IGOR V EROVENKO and B SURY (Received 12 April 2007) Abstract We compute

More information

Analytic cohomology groups in top degrees of Zariski open sets in P n

Analytic cohomology groups in top degrees of Zariski open sets in P n Analytic cohomology groups in top degrees of Zariski open sets in P n Gabriel Chiriacescu, Mihnea Colţoiu, Cezar Joiţa Dedicated to Professor Cabiria Andreian Cazacu on her 80 th birthday 1 Introduction

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

FACTORIZATION OF TROPICAL POLYNOMIALS IN ONE AND SEVERAL VARIABLES. Nathan B. Grigg. Submitted to Brigham Young University in partial fulfillment

FACTORIZATION OF TROPICAL POLYNOMIALS IN ONE AND SEVERAL VARIABLES. Nathan B. Grigg. Submitted to Brigham Young University in partial fulfillment FACTORIZATION OF TROPICAL POLYNOMIALS IN ONE AND SEVERAL VARIABLES by Nathan B. Grigg Submitted to Brigham Young University in partial fulfillment of graduation requirements for University Honors Department

More information

ON SELF-INTERSECTIONS OF IMMERSED SURFACES

ON SELF-INTERSECTIONS OF IMMERSED SURFACES PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 12, December 1998, Pages 3721 3726 S 0002-9939(98)04456-6 ON SELF-INTERSECTIONS OF IMMERSED SURFACES GUI-SONG LI (Communicated by Ronald

More information

SECRET sharing schemes were introduced by Blakley [5]

SECRET sharing schemes were introduced by Blakley [5] 206 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 1, JANUARY 2006 Secret Sharing Schemes From Three Classes of Linear Codes Jin Yuan Cunsheng Ding, Senior Member, IEEE Abstract Secret sharing has

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

MATH 22. THE FUNDAMENTAL THEOREM of ARITHMETIC. Lecture R: 10/30/2003

MATH 22. THE FUNDAMENTAL THEOREM of ARITHMETIC. Lecture R: 10/30/2003 MATH 22 Lecture R: 10/30/2003 THE FUNDAMENTAL THEOREM of ARITHMETIC You must remember this, A kiss is still a kiss, A sigh is just a sigh; The fundamental things apply, As time goes by. Herman Hupfeld

More information

Degree Hypergroupoids Associated with Hypergraphs

Degree Hypergroupoids Associated with Hypergraphs Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information