The first land plants: bryophytes ( non-vascular plants) 1. Traits shared by land plants, and lacking in the charophyceans

Size: px
Start display at page:

Download "The first land plants: bryophytes ( non-vascular plants) 1. Traits shared by land plants, and lacking in the charophyceans"

Transcription

1 Figure 29.1 Some highlights of plant evolution Figure 29.2x Chara Traits shared by charophyceans and land plants Very similar plastids (structurally similar, but especially similar chloroplast DNA) Very similar cellulose cell walls (cellulose is even produced by a similar rose-shaped structures) Anti-photorespiration enzymes packaged in peroxisomes Similar structure of flagellated sperm Similar structures during cell division (phragmoplasts) The first land plants: bryophytes ( non-vascular plants) 1. Traits shared by land plants, and lacking in the charophyceans 2. The earliest land plants: bryophytes (mosses, liverworts, hornworts) Figure 29.7 Land plant evolution. Figure 29.5 Land plant trait #1: Apical meristems, which are localized regions of cell division at the tips of shoots (left) and roots (right) 1

2 Figure 29.4 Land plant trait #2: Multicellular, dependent embryos, which develop from zygotes contained within tissues of the female parent. Parental tissues provide nutrients for the embryo. Land plants are also known as the embryophytes. Figure 29.6 Land plant trait #3: Alternation of generations life cycle, with two very different generations (one usually much larger & more prominent). Some algae also have alternation of generations, but not the charophyceans. Embryo Maternal tissue Figure 29.6 Land plant trait #4: Walled spores produced by a multicellular sporangium. A polymer called sporopollenin, the most durable organic material known, makes up the walls. Figure 29.5 Sporangium of a moss (a bryophyte) sporophyte Figure 29.5 Land plant trait #5: Gametangia, multicellular organs that produce gametes. Note: the most modern land plants, the flowering plants, do not have gametangia. Figure 29.9 Land plant trait #5: Gametangia, multicellular organs that produce gametes. Shown below are the Archegonium (egg-producing organ) of Marchantia (left), and the Antheridium (sperm-producing organ) of a hornwort (right). Note: the most modern land plants, the flowering plants, do not have gametangia. 2

3 Land plant trait #6: Specialized epidermis for water conservation, including a cuticle and stomata. Cuticle of a stem from Psilotum (a pteridophyte) is shown below. Figure Guard Cells regulate water loss through opening and closing of stomata. guard cell stomate Land plant trait #7: Adaptations for water transport, especially vascular tissue. Found in all land plants except for most bryophytes. The stem of Polypodium, a fern (a pteridophyte), is shown below. Note: true leaves, stems, and roots are defined by the presence of vascular tissues. Land plant trait #7: Adaptations for water transport, especially vascular tissue. Found in all land plants except for most bryophytes. The stem of Polypodium, a fern (a pteridophyte), is shown below. Note: true leaves, stems, and roots are defined by the presence of vascular tissues. true vascular tissues contain lignin Land plant trait #8: Secondary compounds: a diversity of chemicals with many functions related to living on land, including protection from UV radiation, signaling with symbiotic bacteria, deterring attack by pathogens or herbivores, and providing structural support. Quinine, a secondary compound produced by plants, is used by humans to help prevent malaria. Derived traits of land plants Apical meristems Plants move by growing Multicellular, dependent embryos thus Embryophytes Alternation of generations Heteromorphic 3

4 Derived traits of land plants Walled spores produced by multicellular sporangia Multicellular gametangia producing gametes Except in flowering plants (still have gametes) Spore vs. Gamete Spores grow directly into multicellular bodies Gametes need to undergo fertilization first Derived traits of land plants Epidermis for water conservation Cuticle, stomata Vascular tissues (except bryophytes) True vascular tissues have lignin True roots, stems, and leaves have vascular tissue Secondary compounds Protection, signaling, defense, support The first land plants: bryophytes ( non-vascular plants) Figure 29.1 Adaptation to living on land catalyzed a great deal of evolutionary diversification. Why? 1. Traits shared by land plants, and lacking in the charophyceans 2. The earliest land plants: bryophytes (mosses, liverworts, hornworts) Traits of bryophytes Figure 29.8 The life cycle of Polytrichum, a moss (Layer 3) Most lack true vascular tissue, which places limits on their thickness and height. In their alternation of generations life cycle, the gametophyte is the larger, conspicuous stage. The sporophyte is smaller, and when it grows, it is dependent on the gametophyte for nutrients. Liverworts have especially small sporophytes. Many mosses can live in extremely dry or cold habitats, because they can almost completely dry out without dying. 4

5 Figure 29.16x Stages of the moss life cycle. Key features of bryophyte life cycle Gametophyte is dominant generation Sporophyte is smaller, dependent on gametophyte (but still multicellular) Fertilization is dependent on free water carrying sperm from antheridia to archegonia Life Cycle of a bryophyte Life Cycle of a bryophyte Marchantia Polymorpha Marchantia Polymorpha Note the Male and female gametophytes Note the Male and female gametophytes Note the reduced sporophyte Note the reduced sporophyte Note antheridia and archegonia Note antheridia and archegonia Ecology of bryophytes Figure Sphagnum, or peat moss: Peat bog in Oneida County, Wisconsin (top), closeup of Sphagnum (bottom left), Sphagnum "leaf" (bottom right) All are photoautotrophs, primary producers Mostly live in moist habitats, although some mosses live in very cold and/or dry environments All need free water for fertilization, and this ultimately restricts their distribution 5

6 Figure 29.19x A peat moss bog in Norway. This landscape is probably similar to much of earth during the first 100 million years after land plants evolved: the only plants were short bryophytes. Why are bryophytes short? Peat (Sphagnum) bogs Cover nearly 1% of the Earth s land surface Dead peat resists decompostion, thus peat bogs store tremendous amounts of carbon (400 billion tons worldwide) Structure of peat moss is highly absorbent, making it useful to people Fuel Soil Conditioner Figure Sphagnum, or peat moss: Harvesting for human use Seedless Vascular Plants 1. Traits and adaptations of the first vascular plants: Pteridophytes 2. Two phyla of seedless vascular plants: Lycophyta (lycophytes) and Pterophyta (ferns & their relatives) 3. Overview of evolutionary transition to seed plants Figure 29.7 Land plant evolution. Figure 29.21x1 Lycophyte (club mosses) 6

7 Figure 29.21x2 Horsetail (Equisetum): Pterophyta Traits and adaptations of the first vascular plants Figure 29.23x1 A fern Figure Cooksonia, a vascular plant of the Silurian period. Note tall stature and large branched sporophyte with numerous sporangia. True lignified vascular tissue system (xylem and phloem), and thus true leaves, stems, and roots in most taxa Dominant sporophyte generation that is branched and becomes independent of the parental gametophyte No seeds Traits 1 & 2 are shared by the other two groups of vascular plants: gymnosperms and angiosperms Many adaptations to land inherited from bryophytelike ancestor (meristems, embryos, alt. of gen. life cycle, walled resistant spores, gametangia, specialized epidermis, secondary compounds) see previous lecture Figure Hypotheses for the evolution of leaves Microphylls, small (usually) leaves which have only a single strand of vascular tissue, are thought to have evolved from a small stem outgrowth or flap, into which a strand of vascular tissue grew. Megaphylls, large (usually) leaves with a branched vascular system, support more photosynthetic capacity than microphylls. They are thought to have evolved through the flattening and joining (via tissue webbing) of multiple branches. Rhizome (underground horizontal stem) Figure Hypotheses for the evolution of leaves Microphylls, small (usually) leaves which have only a single strand of vascular tissue, are thought to have evolved from a small stem outgrowth or flap, into which a strand of vascular tissue grew. Megaphylls, large (usually) leaves with a branched vascular system, support more photosynthetic capacity than microphylls. They are thought to have evolved through the flattening and joining (via tissue webbing) of multiple branches. 7

8 Note: some plants are homosporous and some are heterosporous. Sori Sporphylls - modified leaves that bear sporangia Strobili Homosporous Sporophyte Single type of spore Bisexual gametophyte (with both kinds of gametangia) Eggs & sperm Heterosporous Sporophyte Microspore Megaspore Male gametophyte Female gametophyte (inside the spore) Sperm Eggs The heterosporous life cycle was important in the evolution of the seed, which we ll discuss next week. Clusters of sporangia, usually on the underside of sporophylls Cones, usually on the tips of shoots/branches Seedless Vascular Plants 1. Traits and adaptations of the first vascular plants: Pteridophytes 2. Two phyla of seedless vascular plants: Lycophyta (lycophytes) and Pterophyta (ferns & their relatives) 3. Overview of evolutionary transition to seed plants Figure 29.7 Land plant evolution. Figure Pteridophytes (seedless vascular plants): Lycopodium (a club "moss, top left), Psilotum (a whisk fern, top right), Equisetum (a horsetail, bottom left), fern (bottom right). The latter three represent phylum Pterophyta, and Lycopodium represents phylum Lycophyta. Another genus in Lycophyta, which we will see in lab, is Selaginella. Figure Lycopodium (a club "moss ) in the phylum Lycophyta. Many grow on tropical trees as epiphytes Others grow on temperate forest floors Tiny gametophytes, sometimes underground Upright stems with many small leaves (microphylls) 8

9 Figure Selaginella (a spike "moss ) in the phylum Lycophyta. Figure Isoetes (a quillwort) in the phylum Lycophyta. Small, low to the ground Grow horizontally Represented today by a single genus Live in marshy areas Figure 29.7 Land plant evolution. Figure Equisetum (horsetail) in the phylum Pterophyta. Often have separate vegetative and fertile stems Jointed plants with rings of small leaves or branches at each joint Bulk of photosynthesis in stem Air canals carry oxygen to roots, which are often in waterlogged Soil Homosporous Modern Equisetum essentially identical to Equisetites from 300 mya. Equisetum may be the oldest surviving genus of plants on Earth. calamites were horsetails that grew into trees up to 18m tall and 45 cm thick during the Devonian (~300 mya) Figure Psilotum (whisk fern) in the phylum Pterophyta. Dichtomously branching stems, no roots (like first vascular plants) Stems have small scale-like outgrowths without vascular tissue - unclear if they predate leaves or are reduced leaves 9

10 Figure Polypodium (a fern) in the phylum Pterophyta. Figure The life cycle of a fern: note the dominant diploid (sporophyte) generation, and the reduced gametophyte FERNS ~12,000 species Most are in tropics Note megaphylls - fronds Most are homosporous Gametophytes shrivel and die Can produce LOTS of airborne spores Figure 29.23x2 Life cycle of a fern: sorus, a cluster of sporangia (~1 mm diam.) Figure 29.24c Closeup of a fern sorus. Note the sporangia. Figure 29.24b Underside of fern sporophyll, a leaf specialized for spore production. Note the numerous sori (clusters of sporangia) Figure 29.7 Land plant evolution. 10

11 Among the seedless plants: Figure Artist s conception of a Carboniferous forest, ~300 mya. Dead plants did not completely decompose, were later covered by seas and marine sediments, and then were transformed by heat and pressure into vast beds of coal. Mostly homosporous Spike mosses and quillworts (both Lycophytes) are heterosporous But, heterospory appears to have evolved independently in first seed plants (i.e., analogous), since seed plants appear more related to Pterophytes than Lycophytes Seedless Vascular Plants Figure 30.1 Three variations on gametophyte/sporophyte relationships. Note the progression in evolutionary time from left to right. 1. Traits and adaptations of the first vascular plants: Pteridophytes 2. Two phyla of seedless vascular plants: Lycophyta (lycophytes) and Pterophyta (ferns & their relatives) 3. Overview of evolutionary transition to seed plants Figure 30.3 From ovule to seed Advantages of the Seed Multicellular embryo gets a head start at the germination stage Stored food for embryo also allows a head start, and allows for extended dormancy Multicellular, larger and more complex than a spore = more resistant to harsh conditions Larger and more complex = increased capacity to develop dispersal adaptations 11

12 Disadvantage of the Seed Figure 30.2 From ovule to seed More energetically costly to produce To some extent, trade off quantity for quality Figure 30.3 Winged seed of a White Pine (Pinus strobus), a gymnosperm. Remember: Alternation of generations is thought to have evolved via delayed meiosis. What might be the advantage of this more complex life cycle, for living on land? Multicellular sporophyte = more than 4 spores produced by meiosis. Remember, algal sperm are flagellated, swim to eggs. This requires water. Harder to do on land. 12

BIOL 1030 TOPIC 5 LECTURE NOTES TOPIC 5: SEEDLESS VASCULAR PLANTS (CH. 29)

BIOL 1030 TOPIC 5 LECTURE NOTES TOPIC 5: SEEDLESS VASCULAR PLANTS (CH. 29) TOPIC 5: SEEDLESS VASCULAR PLANTS (CH. 29) I. Vascular Plants (overview) plants with xylem and phloem 7 or 9 living phyla, depending on who you talk to able to dominate most terrestrial habitats because

More information

The Nonvascular Plants & Seedless Vascular Plants

The Nonvascular Plants & Seedless Vascular Plants The Nonvascular Plants & Seedless Vascular Plants Laboratory 4 Introduction Members of kingdom Plantae are all multicellular organisms exhibiting cellulose cell walls, an alternation of generations life

More information

Introduction to Plants

Introduction to Plants Introduction to Plants Unity and Diversity of Life Q: What are the five main groups of plants, and how have four of these groups adapted to life on land? 22.1 What are of plants? WHAT I KNOW SAMPLE ANSWER:

More information

Flowers; Seeds enclosed in fruit

Flowers; Seeds enclosed in fruit Name Class Date Chapter 22 Plant Diversity Section Review 22-1 Reviewing Key Concepts Short Answer On the lines provided, answer the following questions. 1. Describe the main characteristics of plants.

More information

Kingdom Plantae Plant Diversity II

Kingdom Plantae Plant Diversity II Kingdom Plantae Plant Diversity II Professor Andrea Garrison Biology 3A Illustrations 2014 Cengage Learning unless otherwise noted Text 2014 Andrea Garrison Plant Diversity II 2 Plant Classification Bryophytes

More information

PLANT EVOLUTION DISPLAY Handout

PLANT EVOLUTION DISPLAY Handout PLANT EVOLUTION DISPLAY Handout Name: TA and Section time Welcome to UCSC Greenhouses. This sheet explains a few botanical facts about plant reproduction that will help you through the display and handout.

More information

Fungi and plants practice

Fungi and plants practice Name: Period: Date: Fungi and plants practice Multiple Choice Identify the choice that best completes the statement or answers the question. Indicate your answer choice with an UPPER CASE letter in the

More information

PLANT DIVERSITY. EVOLUTION OF LAND PLANTS KINGDOM: Plantae

PLANT DIVERSITY. EVOLUTION OF LAND PLANTS KINGDOM: Plantae PLANT DIVERSITY 1 EVOLUTION OF LAND PLANTS KINGDOM: Plantae Spores Leaf Ancestral green algae Flagellated sperm for reproduction Plenty of water Nutrients and CO 2 diffuse into tissues Holdfast Flagellated

More information

10B Plant Systems Guided Practice

10B Plant Systems Guided Practice 10B Plant Systems Guided Practice Reproduction Station 1 1. Observe Plant A. Locate the following parts of the flower: stamen, stigma, style, ovary. 2. Draw and label the parts of a flower (listed above)

More information

8. Study the cladogram underline the derived characteristics and circle the organisms that developed from them.

8. Study the cladogram underline the derived characteristics and circle the organisms that developed from them. Seed Plants: Gymnosperms and Angiosperms Answer the questions as you go through the power point, there are also paragraphs to read where you will need to hi-lite or underline as you read. 1. What are the

More information

And the Green Grass Grew All Around and Around, the Green Grass Grew All. Evolution of Plants

And the Green Grass Grew All Around and Around, the Green Grass Grew All. Evolution of Plants And the Green Grass Grew All Around and Around, the Green Grass Grew All Around Evolution of Plants Adapting to Terrestrial Living Plants are complex multicellular organisms that are autotrophs they feed

More information

Plant Form and Function

Plant Form and Function Part X Plant Form and Function Part Opener Title Text to come. Part opener figure 1 title. Figure legend. 733 Part opener figure 2 title. Figure legend. 734 Part X Plant Form and Function 37 Evolutionary

More information

Plant Classification, Structure, Growth and Hormones

Plant Classification, Structure, Growth and Hormones Biology SAT II Review Sheet Plants Plant Classification, Structure, Growth and Hormones Multicellular autotrophs (organisms that use the energy of inorganic materials to produce organic materials) Utilize

More information

Unit 10- Plants /Study Guide KEY

Unit 10- Plants /Study Guide KEY Plant Diversity Unit 10- Plants /Study Guide KEY Answer Key SECTION 20.1. ORIGINS OF PLANT LIFE 1. eukaryotic, photosynthetic, same types of chlorophyll, starch as storage product, cellulose in cell walls

More information

Biology 172L General Biology Lab II Lab 03: Plant Life Cycles and Adaptations II: Gymnosperms and Angiosperms

Biology 172L General Biology Lab II Lab 03: Plant Life Cycles and Adaptations II: Gymnosperms and Angiosperms Biology 172L General Biology Lab II Lab 03: Plant Life Cycles and Adaptations II: Gymnosperms and Angiosperms Introduction Vascular seed-bearing plants, such as gymnosperms (cone-bearing plants) and angiosperms

More information

Unit 1: What is Biology? Unit 2: Ecology Unit 3: The Life of a Cell Unit 4: Genetics Unit 5: Change Through Time Unit 6: Viruses, Bacteria, Protists,

Unit 1: What is Biology? Unit 2: Ecology Unit 3: The Life of a Cell Unit 4: Genetics Unit 5: Change Through Time Unit 6: Viruses, Bacteria, Protists, Unit 1: What is Biology? Unit 2: Ecology Unit 3: The Life of a Cell Unit 4: Genetics Unit 5: Change Through Time Unit 6: Viruses, Bacteria, Protists, and Fungi Unit 7: Plants Unit 8: Invertebrates Unit

More information

Vascular Plants Bryophytes. Seedless Plants

Vascular Plants Bryophytes. Seedless Plants plant reproduction The Plants Vascular Plants Bryophytes Liverworts, Hornworts, Mosses lack roots and specialized tissues grow in moist, shady areas All have sieve cells and tracheids Seedless Plants Ferns

More information

Plants have organs composed of different tissues, which in turn are composed of different cell types

Plants have organs composed of different tissues, which in turn are composed of different cell types Plant Structure, Growth, & Development Ch. 35 Plants have organs composed of different tissues, which in turn are composed of different cell types A tissue is a group of cells consisting of one or more

More information

Section 24 1 Reproduction With Cones and Flowers (pages 609 616)

Section 24 1 Reproduction With Cones and Flowers (pages 609 616) Chapter 24 Reproduction of Seed Plants Section 24 1 Reproduction With Cones and Flowers (pages 609 616) This section describes the reproductive structures of gymnosperms and angiosperms. It also explains

More information

Lecture 7: Plant Structure and Function. I. Background

Lecture 7: Plant Structure and Function. I. Background Lecture 7: Plant Structure and Function I. Background A. Challenges for terrestrial plants 1. Habitat is divided a. Air is the source of CO2 for photosynthesis i. Sunlight cannot penetrate soil b. Soil

More information

Club Mosses, Ferns & Horsetails: the Seed-free Vascular Plants

Club Mosses, Ferns & Horsetails: the Seed-free Vascular Plants Club Mosses, Ferns & Horsetails: the Seed-free Vascular Plants Vascular Plants - a quick review Two unrelated groups within cryptogams seed free vascular plants are recognized as phyla: 1. Lycopodiophyta

More information

Pre-lab homework Lab 2: Reproduction in Protists, Fungi, Moss and Ferns

Pre-lab homework Lab 2: Reproduction in Protists, Fungi, Moss and Ferns Pre-lab homework Lab 2: Reproduction in Protists, Fungi, Moss and Ferns Lab Section: Name: 1. Last week in lab you looked at the reproductive cycle of the animals. This week s lab examines the cycles of

More information

Plant Structure, Growth, and Development. Chapter 35

Plant Structure, Growth, and Development. Chapter 35 Plant Structure, Growth, and Development Chapter 35 PLANTS developmental plasticity = ability of plant to alter form to respond to environment Biological heirarchy Cell basic unit of life Tissue group

More information

Section 24 1 Reproduction With Cones and Flowers (pages 609 616)

Section 24 1 Reproduction With Cones and Flowers (pages 609 616) Chapter 24 Reproduction of Seed Plants Section 24 1 Reproduction With Cones and Flowers (pages 609 616) Key Concepts What are the reproductive structures of gymnosperms and angiosperms? How does pollination

More information

Anatomy and Physiology of Leaves

Anatomy and Physiology of Leaves I. Leaf Structure and Anatomy Anatomy and Physiology of Leaves A. Structural Features of the Leaf Question: How do plants respire? Plants must take in CO 2 from the atmosphere in order to photosynthesize.

More information

Expt. How do flowering plants do it without flagella? The journey to find an egg. What causes pollen grain germination and tube growth?

Expt. How do flowering plants do it without flagella? The journey to find an egg. What causes pollen grain germination and tube growth? 1 Expt. How do flowering plants do it without flagella? The journey to find an egg. What causes pollen grain germination and tube growth? File: F12-07_pollen Modified from E. Moctezuma & others for BSCI

More information

Plantae: Bryophytes & Vascular Plants

Plantae: Bryophytes & Vascular Plants EXERCISE 9 Plantae: Bryophytes & Vascular Plants The Kingdom Plantae represents an extremely large group of mostly terrestrial organisms that are photosynthetic. Hence they provide the base of the food

More information

Plant Structure and Function Notes

Plant Structure and Function Notes For plants, when they made the transition from water to land, they had to make adaptations for obtaining water and prevent loss by desiccation (drying out) -water also needed for fertilization of eggs

More information

Chapter 38: Angiosperm Reproduction and Biotechnology

Chapter 38: Angiosperm Reproduction and Biotechnology Name Period Concept 38.1 Flowers, double fertilization, and fruits are unique features of the angiosperm life cycle This may be a good time for you to go back to Chapter 29 and review alternation of generation

More information

COWLEY COLLEGE & Area Vocational Technical School

COWLEY COLLEGE & Area Vocational Technical School COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR GENERAL BIOLOGY II BIO4135 5 Credit Hours Student Level: This course is open to students on the college level in either the freshman

More information

IGCSE and GCSE Biology. Answers to questions. Section 2. Flowering Plants. Chapters 6-9. Chapter 6 Plant structure and function

IGCSE and GCSE Biology. Answers to questions. Section 2. Flowering Plants. Chapters 6-9. Chapter 6 Plant structure and function 1 IGCSE and GCSE Biology. Answers to questions Section 2. Flowering Plants. Chapters 6-9 Chapter 6 Plant structure and function Page 54 1. a Epidermis. Helps maintain shape, reduces evaporation, resists

More information

Plant Reproduction. 2. Evolutionarily, floral parts are modified A. stems B. leaves C. roots D. stolons E. suberins

Plant Reproduction. 2. Evolutionarily, floral parts are modified A. stems B. leaves C. roots D. stolons E. suberins Plant Reproduction 1. Angiosperms use temporary reproductive structures that are not present in any other group of plants. These structures are called A. cones B. carpels C. receptacles D. flowers E. seeds

More information

CELERY LAB - Structure and Function of a Plant

CELERY LAB - Structure and Function of a Plant CELERY LAB - Structure and Function of a Plant READ ALL INSTRUCTIONS BEFORE BEGINNING! YOU MAY WORK WITH A PARTNER ON THIS ACTIVITY, BUT YOU MUST COMPLETE YOUR OWN LAB SHEET! Plants are incredible organisms!

More information

Question Bank Five Kingdom Classification

Question Bank Five Kingdom Classification Question Bank Five Kingdom Classification 1. Who proposed Five Kingdom Classification? Give the bases of classification. Ans. Whittaker in 1969 proposed five kingdom classification based on :- (i) Cell

More information

WHAT ARE THE DIFFERENCES BETWEEN VASCULAR AND NON- VASCULAR PLANTS?

WHAT ARE THE DIFFERENCES BETWEEN VASCULAR AND NON- VASCULAR PLANTS? WHAT ARE THE DIFFERENCES BETWEEN VASCULAR AND NON- VASCULAR PLANTS? Let s take a closer look. What makes them different on the outside and inside? Learning Intentions To understand how vascular plant cells

More information

Functional Biology of Plants

Functional Biology of Plants Brochure More information from http://www.researchandmarkets.com/reports/2252012/ Functional Biology of Plants Description: Functional Biology of Plants provides students and researchers with a clearly

More information

Plants, like all other living organisms have basic needs: a source of nutrition (food),

Plants, like all other living organisms have basic needs: a source of nutrition (food), LEARNING FROM LEAVES: A LOOK AT LEAF SIZE Grades 3 6 I. Introduction Plants, like all other living organisms have basic needs: a source of nutrition (food), water, space in which to live, air, and optimal

More information

Chapter 3. Biology of Flowering Plants: Reproduction. Gametophytes, Fruits, Seeds, and Embryos

Chapter 3. Biology of Flowering Plants: Reproduction. Gametophytes, Fruits, Seeds, and Embryos BOT 3015L (Sherdan/Outlaw/Aghoram); Page 1 of 13 Chapter 3 Biology of Flowering Plants: Reproduction Gametophytes, Fruits, Seeds, and Embryos Objectives Angiosperms. Understand alternation of generations.

More information

Plant Growth & Development. Growth Stages. Differences in the Developmental Mechanisms of Plants and Animals. Development

Plant Growth & Development. Growth Stages. Differences in the Developmental Mechanisms of Plants and Animals. Development Plant Growth & Development Plant body is unable to move. To survive and grow, plants must be able to alter its growth, development and physiology. Plants are able to produce complex, yet variable forms

More information

CELERY LAB - Structure and Function of a Plant

CELERY LAB - Structure and Function of a Plant CELERY LAB - Structure and Function of a Plant READ ALL INSTRUCTIONS BEFORE BEGINNING! YOU MAY WORK WITH A PARTNER ON THIS ACTIVITY, BUT YOU MUST COMPLETE YOUR OWN LAB SHEET! Look at the back of this paper

More information

Angiosperms or Flowering Plants the phylum Magnoliophyta. Angiosperms - Flowering Plants. Land Plant Evolution: Algae to Angiosperms. Fungi?

Angiosperms or Flowering Plants the phylum Magnoliophyta. Angiosperms - Flowering Plants. Land Plant Evolution: Algae to Angiosperms. Fungi? Angiosperms or Flowering Plants the phylum Magnoliophyta The Importance of Plant Collections Land Plant Evolution: Algae to Angiosperms The greatest adaptive radiation... is the largest radiation of plants

More information

Biology 213 Angiosperms. Introduction

Biology 213 Angiosperms. Introduction Biology 213 Angiosperms Introduction The flowering plants, the angiosperms, are the most recent plants to evolve and quickly became the dominant plant life on this planet. They are also the most diverse

More information

2. Fill in the blank. The of a cell is like a leader, directing and telling the different parts of the cell what to do.

2. Fill in the blank. The of a cell is like a leader, directing and telling the different parts of the cell what to do. 1. Plant and animal cells have some similarities as well as differences. What is one thing that plant and animal cells have in common? A. cell wall B. chlorophyll C. nucleus D. chloroplasts 2. Fill in

More information

Photosynthesis. Chemical Energy (e.g. glucose) - They are the ultimate source of chemical energy for all living organisms: directly or indirectly.

Photosynthesis. Chemical Energy (e.g. glucose) - They are the ultimate source of chemical energy for all living organisms: directly or indirectly. Photosynthesis Light Energy transduction Chemical Energy (e.g. glucose) - Only photosynthetic organisms can do this (e.g. plants) - They are the ultimate source of chemical energy for all living organisms:

More information

Laboratory. Leaves: Specialized Plant Organs

Laboratory. Leaves: Specialized Plant Organs Laboratory 5 Leaves: Specialized Plant Organs 1 Laboratory 1: Leaves OBJECTIVES After completing this lab you will be able to: 1. Describe and name leaf patterns 2. Identify the structural differences

More information

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy Assessment Bank Matter and Energy in Living Things SC.8.L.18.4 1. What is energy? A. anything that takes up space B. anything that has mass C. the ability to conduct current D. the ability to do work 2.

More information

Transport in Plants. Lab Exercise 25. Introduction. Objectives

Transport in Plants. Lab Exercise 25. Introduction. Objectives Lab Exercise Transport in Plants Objectives - Become familiar and be able to recognize the different types of cells found in the plant s vascular tissue. - Be able to describe root pressure and transpiration

More information

PLANET EARTH: Seasonal Forests

PLANET EARTH: Seasonal Forests PLANET EARTH: Seasonal Forests Teacher s Guide Grade Level: 6-8 Running Time: 42 minutes Program Description Investigate temperate forests and find some of the most elusive creatures and welladapted plant

More information

Germination is the process in which a

Germination is the process in which a The Germination Of a Bean Photographs and article By Lily C. Gerhardt LCG1603@rit.edu Germination is the process in which a seed, spore, or fungi sprouts, or begins growth. Seed germination can occur after

More information

I. PLANT CELL, CELL WALL Bot 404--Fall 2004

I. PLANT CELL, CELL WALL Bot 404--Fall 2004 I. PLANT CELL, CELL WALL Bot 404--Fall 2004 A. Review of General Anatomy 1. Major organs are stem, leaf, root. Flower is usually interpreted as a modified shoot, so sepals, petals, stamens and carpels

More information

Chapter 1 Structure of Living Things... 1 Chapter 2 Plant Structures and Functions... 21 Chapter 3 Human Body Systems... 41

Chapter 1 Structure of Living Things... 1 Chapter 2 Plant Structures and Functions... 21 Chapter 3 Human Body Systems... 41 Contents Life Science Chapter 1 Structure of Living Things............................. 1 Chapter 2 Plant Structures and Functions........................ 21 Chapter 3 Human Body Systems................................

More information

Plant Growth - Light and Shade

Plant Growth - Light and Shade Science Unit: Lesson 5: Plants Plant Growth - Light and Shade School year: 2004/2005 Developed for: Developed by: Grade level: Duration of lesson: Notes: Queen Alexandra Elementary School, Vancouver School

More information

Photosynthesis: Harvesting Light Energy

Photosynthesis: Harvesting Light Energy Photosynthesis: Harvesting Light Energy Importance of Photosynthesis A. Ultimate source of energy for all life on Earth 1. All producers are photosynthesizers 2. All consumers and decomposers are dependent

More information

Figure 1: Seagrass structural detail. Differences in leaf shapes, leaf sheaths etc. are characteristics for taxonomic distinction.

Figure 1: Seagrass structural detail. Differences in leaf shapes, leaf sheaths etc. are characteristics for taxonomic distinction. Marine Angiosperms There are a wide variety of marine angiosperms some, such an the mangals, saltmarsh grasses and seagrasses that will either partly or entirely submerged (or submerged dependent on the

More information

Problem Set 5 BILD10 / Winter 2014 Chapters 8, 10-12

Problem Set 5 BILD10 / Winter 2014 Chapters 8, 10-12 Chapter 8: Evolution and Natural Selection 1) A population is: a) a group of species that shares the same habitat. b) a group of individuals of the same species that lives in the same general location

More information

Photosynthesis (Life from Light)

Photosynthesis (Life from Light) Photosynthesis Photosynthesis (Life from Light) Energy needs of life All life needs a constant input of energy o Heterotrophs (consumers) Animals, fungi, most bacteria Get their energy from other organisms

More information

Protists and Fungi. What color are the cells in the living culture?

Protists and Fungi. What color are the cells in the living culture? Protists and Fungi Objectives 1. Recognize and identify (to genus) the organisms covered in lab. 2. Describe the characteristics of each organism. 3. Correctly classify the organisms. I. Protists The protists

More information

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A.

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A. Earth s Cycles 1. Models are often used to explain scientific knowledge or experimental results. A model of the carbon cycle is shown below. Which of the following can be determined based on this model?

More information

Ecosystems and Food Webs

Ecosystems and Food Webs Ecosystems and Food Webs How do AIS affect our lakes? Background Information All things on the planet both living and nonliving interact. An Ecosystem is defined as the set of elements, living and nonliving,

More information

Evolution (18%) 11 Items Sample Test Prep Questions

Evolution (18%) 11 Items Sample Test Prep Questions Evolution (18%) 11 Items Sample Test Prep Questions Grade 7 (Evolution) 3.a Students know both genetic variation and environmental factors are causes of evolution and diversity of organisms. (pg. 109 Science

More information

Photosynthesis and (Aerobic) Respiration. Photosynthesis

Photosynthesis and (Aerobic) Respiration. Photosynthesis Photosynthesis and (Aerobic) Respiration These two processes have many things in common. 1. occur in organelles that seem to be descended from bacteria (endosymbiont theory): chloroplasts and mitochondria

More information

Chapter 1 Structure of Living Things... 1 Chapter 2 Plant Structures and Functions... 21 Chapter 3 Human Body Systems... 41

Chapter 1 Structure of Living Things... 1 Chapter 2 Plant Structures and Functions... 21 Chapter 3 Human Body Systems... 41 Teacher s Guide Contents Life Science Chapter 1 Structure of Living Things 1 Chapter 2 Plant Structures and Functions 21 Chapter 3 Human Body Systems 41 Earth Science Chapter 4 Earth s Water 71 Chapter

More information

Seed plants are well adapted to the demands of life on land,

Seed plants are well adapted to the demands of life on land, 24 1 Reproduction With Cones and Flowers Seed plants are well adapted to the demands of life on land, especially in how they reproduce. The gametes of seedless plants, such as ferns and mosses, need water

More information

nucleus cytoplasm membrane wall A cell is the smallest unit that makes up living and nonliving things.

nucleus cytoplasm membrane wall A cell is the smallest unit that makes up living and nonliving things. 1 In nature there are living things and nonliving things. Living things depend on three basic life processes: nutrition, sensitivity and reproduction. Living things are made up of cells. 1. Match the two

More information

Leaf Structure and Transpiration

Leaf Structure and Transpiration 10 LESSON Leaf Structure and Transpiration INTRODUCTION Have you wondered what happens to all that water that disappears from the reservoir of your growing system? Although some might have evaporated from

More information

Plant Parts and Their Function

Plant Parts and Their Function Science Unit: Lesson 6: Plants Plant Parts and Their Function School year: 2004/2005 Developed for: Developed by: Grade level: Duration of lesson: Queen Alexandra Elementary School, Vancouver School District

More information

Water movement in the xylem Water moves from roots to leaves through the xylem. But how? Hypotheses: 1. Capillary action - water will move upward in

Water movement in the xylem Water moves from roots to leaves through the xylem. But how? Hypotheses: 1. Capillary action - water will move upward in Transport in Plants Two Transport Processes Occur in Plants 1. Carbohydrates carried from leaves (or storage organs) to where they are needed (from sources to sinks) 2. Water transported from roots to

More information

www.irishseedsavers.ie Natural surface water on earth includes lakes, ponds, streams, rivers, estuaries, seas and oceans.

www.irishseedsavers.ie Natural surface water on earth includes lakes, ponds, streams, rivers, estuaries, seas and oceans. www.irishseedsavers.ie POND LIFE FACT SHEET Natural surface water on earth includes lakes, ponds, streams, rivers, estuaries, seas and oceans. A pond is a small body of fresh water shallow enough for sunlight

More information

Introduction to Ecology

Introduction to Ecology Introduction to Ecology Ecology is the scientific study of the interactions between living organisms and their environment. Scientists who study ecology are called ecologists. Because our planet has many

More information

Matter and Energy in Ecosystems

Matter and Energy in Ecosystems Matter and Energy in Ecosystems The interactions that take place among biotic and abiotic factors lead to transfers of energy and matter. Every species has a particular role, or niche, in an ecosystem.

More information

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes?

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes? Chapter 13: Meiosis and Sexual Life Cycles 1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes? 2. Define: gamete zygote meiosis homologous chromosomes diploid haploid

More information

REVIEW UNIT 10: ECOLOGY SAMPLE QUESTIONS

REVIEW UNIT 10: ECOLOGY SAMPLE QUESTIONS Period Date REVIEW UNIT 10: ECOLOGY SAMPLE QUESTIONS A. Sample Multiple Choice Questions Complete the multiple choice questions to review this unit. 1. All of the following are density-dependent factors

More information

Topic 3: Nutrition, Photosynthesis, and Respiration

Topic 3: Nutrition, Photosynthesis, and Respiration 1. Base your answer to the following question on the chemical reaction represented below and on your knowledge of biology. If this reaction takes place in an organism that requires sunlight to produce

More information

LAB 24 Transpiration

LAB 24 Transpiration Name: AP Biology Lab 24 LAB 24 Transpiration Objectives: To understand how water moves from roots to leaves in terms of the physical/chemical properties of water and the forces provided by differences

More information

IDENTIFICATION OF ORGANISMS

IDENTIFICATION OF ORGANISMS reflect Take a look at the pictures on the right. Think about what the two organisms have in common. They both need food and water to survive. They both grow and reproduce. They both have similar body

More information

Cells, tissues and organs

Cells, tissues and organs Chapter 8: Cells, tissues and organs Cells: building blocks of life Living things are made of cells. Many of the chemical reactions that keep organisms alive (metabolic functions) take place in cells.

More information

Respiration occurs in the mitochondria in cells.

Respiration occurs in the mitochondria in cells. B3 Question Which process occurs in the mitochondria in cells? Why do the liver and muscle cells have large number of mitochondria? What is the function of the ribosomes? Answer Respiration occurs in the

More information

1.2 The Biosphere and Energy

1.2 The Biosphere and Energy 1.2 The Biosphere and Energy All activities require a source of energy a fuel. For example, to sustain a campfire, you need to keep it supplied with wood. To reach a destination by car, you need to have

More information

The content assessed by the examination papers and the type of questions are unchanged.

The content assessed by the examination papers and the type of questions are unchanged. www.xtremepapers.com Location Entry Codes From the June 2007 session, as part of CIE s continual commitment to maintaining best practice in assessment, CIE has begun to use different variants of some question

More information

The Seed Plants. We have now reached the bottom of our key to the plant kingdom:

The Seed Plants. We have now reached the bottom of our key to the plant kingdom: The Seed Plants Final Review of the Kingdom Plantae. We have now reached the bottom of our key to the plant kingdom: A Plant is nonvascular Mosses, liverworts, hornworts A' Plant has vascular tissue B

More information

AS Biology Unit 2 Key Terms and Definitions. Make sure you use these terms when answering exam questions!

AS Biology Unit 2 Key Terms and Definitions. Make sure you use these terms when answering exam questions! AS Biology Unit 2 Key Terms and Definitions Make sure you use these terms when answering exam questions! Chapter 7 Variation 7.1 Random Sampling Sampling a population to eliminate bias e.g. grid square

More information

Chapter 36: Resource Acquisition & Transport in Vascular Plants

Chapter 36: Resource Acquisition & Transport in Vascular Plants Chapter 36: Resource Acquisition & Transport in Vascular Plants 1. Overview of Transport in Plants 2. Transport of Water & Minerals 3. Transport of Sugars 1. Overview of Transport in Plants H 2 O CO 2

More information

How To Understand Plant Biology

How To Understand Plant Biology SECOND GRADE PLANT LIFE 2 weeks LESSON PLANS AND ACTIVITIES LIFE CYCLE OVERVIEW OF SECOND GRADE ORGANISMS WEEK 1. PRE: Distinguishing characteristics of vertebrates. LAB: Discovering characteristics of

More information

Key Idea 2: Ecosystems

Key Idea 2: Ecosystems Key Idea 2: Ecosystems Ecosystems An ecosystem is a living community of plants and animals sharing an environment with non-living elements such as climate and soil. An example of a small scale ecosystem

More information

Cellular Energy. 1. Photosynthesis is carried out by which of the following?

Cellular Energy. 1. Photosynthesis is carried out by which of the following? Cellular Energy 1. Photosynthesis is carried out by which of the following? A. plants, but not animals B. animals, but not plants C. bacteria, but neither animals nor plants D. all living organisms 2.

More information

THE WATER CYCLE. Ecology

THE WATER CYCLE. Ecology THE WATER CYCLE Water is the most abundant substance in living things. The human body, for example, is composed of about 70% water, and jellyfish are 95% water. Water participates in many important biochemical

More information

Plant Leaves: Holly Spines vs. Height

Plant Leaves: Holly Spines vs. Height Plant Leaves: Holly Spines vs. Height SC Academic Standards: 4.L.5A; 5.L.4A- B; 6.L.4A; 6.L.5B; 7.L.3B; 7.EC.5B; H.B.2B; H.B.6A NGSS DCI: 4- LS1.A; 5- LS2.A- B; MS- LS1- A- C; MS- LS2.A- C; MS- PS3.D;

More information

ECOSYSTEM 1. SOME IMPORTANT TERMS

ECOSYSTEM 1. SOME IMPORTANT TERMS ECOSYSTEM 1. SOME IMPORTANT TERMS ECOSYSTEM:- A functional unit of nature where interactions of living organisms with physical environment takes place. STRATIFICATION:- Vertical distribution of different

More information

Angiosperm Reproduction: Flowers, Fruits, and Seeds Overview Objectives bold Part I Floral Anatomy . calyx sepals corolla, petals, stamens, filament

Angiosperm Reproduction: Flowers, Fruits, and Seeds Overview Objectives bold Part I Floral Anatomy . calyx sepals corolla, petals, stamens, filament Angiosperm Reproduction: Flowers, Fruits, and Seeds Overview In this lab you will observe assorted flowers, fruits, and seeds to better understand the unique adaptations of and the life cycle of angiosperms.

More information

Beth Campbell Western Michigan University Senior, College of Education. April, 2006

Beth Campbell Western Michigan University Senior, College of Education. April, 2006 Beth Campbell Western Michigan University Senior, College of Education April, 2006 Participant in Research Experience for Teachers (RET) Workshop at Western Michigan University 2005-06 Academic Year But

More information

pathway that involves taking in heat from the environment at each step. C.

pathway that involves taking in heat from the environment at each step. C. Study Island Cell Energy Keystone Review 1. Cells obtain energy by either capturing light energy through photosynthesis or by breaking down carbohydrates through cellular respiration. In both photosynthesis

More information

Use this diagram of a food web to answer questions 1 through 5.

Use this diagram of a food web to answer questions 1 through 5. North arolina Testing Program EO iology Sample Items Goal 4 Use this diagram of a food web to answer questions 1 through 5. coyotes 3. If these organisms were arranged in a food pyramid, which organism

More information

ENVIRONMENTAL CHANGES

ENVIRONMENTAL CHANGES reflect How do you respond to environmental changes? Maybe you wear different types of clothes in different seasons. Maybe you only ride your bike during certain times of the year. What if you moved to

More information

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers 5090 BIOLOGY. 5090/22 Paper 2 (Theory), maximum raw mark 80

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers 5090 BIOLOGY. 5090/22 Paper 2 (Theory), maximum raw mark 80 www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level MARK SCHEME for the May/June 2012 question paper for the guidance of teachers 5090 BIOLOGY 5090/22 Paper 2 (Theory),

More information

Exemplar for Internal Achievement Standard. Biology Level 2

Exemplar for Internal Achievement Standard. Biology Level 2 Exemplar for internal assessment resource Biology for Achievement Standard 91160 Exemplar for Internal Achievement Standard Biology Level 2 This exemplar supports assessment against: Achievement Standard

More information

5.1 Ecosystems, Energy, and Nutrients

5.1 Ecosystems, Energy, and Nutrients CHAPTER 5 ECOSYSTEMS 5.1 Ecosystems, Energy, and Nutrients Did anyone ever ask you the question: Where do you get your energy? Energy enters our world from the Sun but how does the Sun s energy become

More information

by Erik Lehnhoff, Walt Woolbaugh, and Lisa Rew

by Erik Lehnhoff, Walt Woolbaugh, and Lisa Rew Designing the Perfect Plant Activities to Investigate Plant Ecology Plant ecology is an important subject that often receives little attention in middle school, as more time during science classes is devoted

More information

Break down material outside their body and then absorb the nutrients. Most are single-celled organisms Usually green. Do not have nuclei

Break down material outside their body and then absorb the nutrients. Most are single-celled organisms Usually green. Do not have nuclei Name Date Class CHAPTER 9 REINFORCEMENT WORKSHEET Keys to the Kingdom Complete this worksheet after you have finished reading Chapter 9, Section 2. Patty dropped her notes while she was studying the six

More information

The animals at higher levels are more competitive, so fewer animals survive. B.

The animals at higher levels are more competitive, so fewer animals survive. B. Energy Flow in Ecosystems 1. The diagram below shows an energy pyramid. Which of the following best explains why the number of organisms at each level decreases while moving up the energy pyramid? The

More information

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage? Energy Transport Study Island 1. During the process of photosynthesis, plants use energy from the Sun to convert carbon dioxide and water into glucose and oxygen. These products are, in turn, used by the

More information