Chapter Gaussian Elimination

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter Gaussian Elimination"

Transcription

1 Chapter Gaussia Elimiatio After readig this chapter, you should be able to:. solve a set of simultaeous liear equatios usig Naïve Gauss elimiatio,. lear the pitfalls of the Naïve Gauss elimiatio method,. uderstad the effect of roud-off error whe solvig a set of liear equatios with the Naïve Gauss elimiatio method, 4. lear how to modify the Naïve Gauss elimiatio method to the Gaussia elimiatio with partial pivotig method to avoid pitfalls of the former method, 5. fid the determiat of a square matrix usig Gaussia elimiatio, ad 6. uderstad the relatioship betwee the determiat of a coefficiet matrix ad the solutio of simultaeous liear equatios. How is a set of equatios solved umerically? Oe of the most popular techiques for solvig simultaeous liear equatios is the Gaussia elimiatio method. The approach is desiged to solve a geeral set of equatios ad ukows a x + a + ax a x b a x + a + ax a x b a x + a + ax ax b Gaussia elimiatio cosists of two steps. Forward Elimiatio of Ukows: I this step, the ukow is elimiated i each equatio startig with the first equatio. This way, the equatios are reduced to oe equatio ad oe ukow i each equatio.. Back Substitutio: I this step, startig from the last equatio, each of the ukows is foud. Forward Elimiatio of Ukows: I the first step of forward elimiatio, the first ukow, x is elimiated from all rows below the first row. The first equatio is selected as the pivot equatio to elimiate x. So,

2 Chapter to elimiate x i the secod equatio, oe divides the first equatio by a (hece called the pivot elemet) ad the multiplies it by a. This is the same as multiplyig the first equatio by a / a to give a a a a x + a a x b a a a Now, this equatio ca be subtracted from the secod equatio to give a a a a a... a a x b b a + + a a or a a x b where a a a a a a a a a a th This procedure of elimiatig x, is ow repeated for the third equatio to the equatio to reduce the set of equatios as a x + a + ax a x b a + a x a x b a + a x a x b a x + a x a x b This is the ed of the first step of forward elimiatio. Now for the secod step of forward elimiatio, we start with the secod equatio as the pivot equatio ad a as the pivot elemet. So, to elimiate x i the third equatio, oe divides the secod equatio by a (the pivot elemet) ad the multiply it by a. This is the same as multiplyig the secod equatio by a / a ad subtractig it from the third equatio. This makes the coefficiet of x zero i the third equatio. The same procedure is ow repeated for the fourth equatio till th the equatio to give a x + a + ax a x b a + a x a x b a x a x b a x a x b

3 Gaussia Elimiatio The ext steps of forward elimiatio are coducted by usig the third equatio as a pivot equatio ad so o. That is, there will be a total of steps of forward elimiatio. At the ed of steps of forward elimiatio, we get a set of equatios that look like ax + a + a x a x b a + a x a x b a x a x b ( ) a x ( b ) Back Substitutio: Now the equatios are solved startig from the last equatio as it has oly oe ukow. ( ) b x ( ) a th The the secod last equatio, that is the ( ) equatio, has two ukows: x ad x, th but x is already kow. This reduces the ( ) equatio also to oe ukow. Back substitutio hece ca be represeted for all equatios by the formula ad bi aij j i+ i ( i) aii ( i) ( i) x j x for i,,, x b ( ) ( ) a Example The upward velocity of a rocket is give at three differet times i Table. Table Velocity vs. time data. Time, t (s) Velocity, v (m/s) The velocity data is approximated by a polyomial as v ( t) at + at + a, 5 t The coefficiets a, a, ad a for the above expressio are give by

4 Chapter a a a 79. Fid the values of a, a, ad a usig the Naïve Gauss elimiatio method. Fid the velocity at t 6, 7.5, 9, secods. Solutio Forward Elimiatio of Ukows Sice there are three equatios, there will be two steps of forward elimiatio of ukows. First step Divide Row by 5 ad the multiply it by 64, that is, multiply Row by 64/5.56. ([ 5 5 ] [ 06.8] ). 56 gives Row as [ ] [ 7.408] Subtract the result from Row [ ] [ 7.408] to get the resultig equatios as 5 5 a a a 79. Divide Row by 5 ad the multiply it by 44, that is, multiply Row by 44/ ([ 5 5 ] [ 06.8] ) gives Row as [ ] [ 65.68] Subtract the result from Row [ ] [ 65.68] to get the resultig equatios as 5 5 a a a Secod step We ow divide Row by 4.8 ad the multiply by 6.8, that is, multiply Row by 6.8/ ([ ] [ 96.08] ). 5 gives Row as [ ] [ 6.78] Subtract the result from Row

5 Gaussia Elimiatio [ ] [ 5.968] [ ] [ 6.78] to get the resultig equatios as 5 5 a a a 0.76 Back substitutio From the third equatio 0.7 a a Substitutig the value of a i the secod equatio, 4.8a.56a a a Substitutig the value of a ad a i the first equatio, 5a + 5a + a a a a Hece the solutio vector is a a a.0857 The polyomial that passes through the three data poits is the v ( t) at + at + a t t , 5 t Sice we wat to fid the velocity at t 6, 7.5, 9 ad secods, we could simply substitute each value of t i v ( t) t t ad fid the correspodig velocity. For example, at t 6

6 Chapter v ( 6) ( 6) ( 6) m/s However we could also fid all the eeded values of velocity at t 6, 7.5, 9, secods usig matrix multiplicatio. t v ( t) [ ] t So if we wat to fid v ( 6), v( 7.5), v( 9), v( ), it is give by [ v( 6) v( 7.5) v( 9) v( ) ] [ ] v ( 6) m/s v ( 7.5) m/s v ( 9) 0.88 m/s v ( ) 5.88 m/s 6 [ ] [ ] 8 9 Example Use Naïve Gauss elimiatio to solve 0x x 45 x x.75 5x + + x 9 Use six sigificat digits with choppig i your calculatios. Solutio Workig i the matrix form x x 9 Forward Elimiatio of Ukows First step Divide Row by 0 ad the multiply it by, that is, multiply Row by / ([ 0 5 0] [ 45] ) 0. 5 gives Row as

7 Gaussia Elimiatio Subtract the result from Row.49 7 [ ] [.75] [.5.5] [ 6.75] to get the resultig equatios as x x 9 Divide Row by 0 ad the multiply it by 5, that is, multiply Row by 5 / ([ 0 5 0] [ 45] ) 0. 5 gives Row as [ ] [.5] Subtract the result from Row 5 9 [ ] [.5] to get the resultig equatios as x x. 5 Secod step Now for the secod step of forward elimiatio, we will use Row as the pivot equatio ad elimiate Row : Colum. Divide Row by 0.00 ad the multiply it by.75, that is, multiply Row by.75/ ([ ] [ 8.50] ) 750 gives Row as [ ] [ 77.75] Rewritig withi 6 sigificat digits with choppig [ ] [ 77.7] Subtract the result from Row [ ] [ 77.7] Rewritig withi 6 sigificat digits with choppig [ ] [ 75.4] to get the resultig equatios as x x 75.4 This is the ed of the forward elimiatio steps.

8 Chapter Back substitutio We ca ow solve the above equatios by back substitutio. From the third equatio, 75.5 x 75.4 x Substitutig the value of x i the secod equatio 0.00x + 8.5x x Substitutig the value of x ad x i the first equatio, 0x x x x Hece the solutio is x [ X ] x Compare this with the exact solutio of

9 Gaussia Elimiatio [ X ] x x Are there ay pitfalls of the Naïve Gauss elimiatio method? Yes, there are two pitfalls of the Naïve Gauss elimiatio method. Divisio by zero: It is possible for divisio by zero to occur durig the begiig of the steps of forward elimiatio. For example 5x + 6x 4x x 6 9x + + x 5 will result i divisio by zero i the first step of forward elimiatio as the coefficiet of x i the first equatio is zero as is evidet whe we write the equatios i matrix form x x 5 But what about the equatios below: Is divisio by zero a problem? 5x x 8 0x + + x 5 0x x 56 Writte i matrix form, x x 56 there is o issue of divisio by zero i the first step of forward elimiatio. The pivot elemet is the coefficiet of x i the first equatio, 5, ad that is a o-zero umber. However, at the ed of the first step of forward elimiatio, we get the followig equatios i matrix form x x 6 Now at the begiig of the d step of forward elimiatio, the coefficiet of x i Equatio would be used as the pivot elemet. That elemet is zero ad hece would create the divisio by zero problem.

10 Chapter So it is importat to cosider that the possibility of divisio by zero ca occur at the begiig of ay step of forward elimiatio. Roud-off error: The Naïve Gauss elimiatio method is proe to roud-off errors. This is true whe there are large umbers of equatios as errors propagate. Also, if there is subtractio of umbers from each other, it may create large errors. See the example below. Example Remember Example where we used Naïve Gauss elimiatio to solve 0x x 45 x x.75 5x + + x 9 usig six sigificat digits with choppig i your calculatios? Repeat the problem, but ow use five sigificat digits with choppig i your calculatios. Solutio Writig i the matrix form x x 9 Forward Elimiatio of Ukows First step Divide Row by 0 ad the multiply it by, that is, multiply Row by / ([ 0 5 0] [ 45] ) 0. 5 gives Row as [.5.5] [ 6.75] Subtract the result from Row [.5.5] [ 6.75] to get the resultig equatios as x x 9 Divide Row by 0 ad the multiply it by 5, that is, multiply Row by 5 / ([ 0 5 0] [ 45] ) 0. 5 gives Row as [ ] [.5] Subtract the result from Row 5 9 [ ] [.5]

11 Gaussia Elimiatio to get the resultig equatios as x x. 5 Secod step Now for the secod step of forward elimiatio, we will use Row as the pivot equatio ad elimiate Row : Colum. Divide Row by 0.00 ad the multiply it by.75, that is, multiply Row by.75/ ([ ] [ 8.50] ) 750 gives Row as [ ] [ 77.75] Rewritig withi 5 sigificat digits with choppig [ ] [ 77] Subtract the result from Row [ ] [ 77] Rewritig withi 6 sigificat digits with choppig [ ] [ 74] to get the resultig equatios as x x 74 This is the ed of the forward elimiatio steps. Back substitutio We ca ow solve the above equatios by back substitutio. From the third equatio, 75x 74 x Substitutig the value of x i the secod equatio 0.00x + 8.5x x

12 Chapter Substitutig the value of x ad 0x x x x Hece the solutio is x [ X ] x Compare this with the exact solutio of x [ X ] x x i the first equatio, What are some techiques for improvig the Naïve Gauss elimiatio method? As see i Example, roud off errors were large whe five sigificat digits were used as opposed to six sigificat digits. Oe method of decreasig the roud-off error would be to use more sigificat digits, that is, use double or quad precisio for represetig the umbers. However, this would ot avoid possible divisio by zero errors i the Naïve Gauss elimiatio method. To avoid divisio by zero as well as reduce (ot elimiate) roud-off error, Gaussia elimiatio with partial pivotig is the method of choice.

13 Gaussia Elimiatio How does Gaussia elimiatio with partial pivotig differ from Naïve Gauss elimiatio? The two methods are the same, except i the begiig of each step of forward elimiatio, a row switchig is doe based o the followig criterio. If there are equatios, the there th are forward elimiatio steps. At the begiig of the k step of forward elimiatio, oe fids the maximum of a kk, a k +, k,, a k The if the maximum of these values is a pk i the th p row, k p, the switch rows p ad k. The other steps of forward elimiatio are the same as the Naïve Gauss elimiatio method. The back substitutio steps stay exactly the same as the Naïve Gauss elimiatio method. Example 4 I the previous two examples, we used Naïve Gauss elimiatio to solve 0x x 45 x x.75 5x + + x 9 usig five ad six sigificat digits with choppig i the calculatios. Usig five sigificat digits with choppig, the solutio foud was x [ X ] x This is differet from the exact solutio of [ ] x X x Fid the solutio usig Gaussia elimiatio with partial pivotig usig five sigificat digits with choppig i your calculatios. Solutio x x 9

14 Chapter Forward Elimiatio of Ukows Now for the first step of forward elimiatio, the absolute value of the first colum elemets below Row is 0,, 5 or 0,, 5 So the largest absolute value is i the Row. So as per Gaussia elimiatio with partial pivotig, the switch is betwee Row ad Row to give x x 9 Divide Row by 0 ad the multiply it by, that is, multiply Row by / ([ 0 5 0] [ 45] ) 0. 5 gives Row as [.5.5] [ 6.75] Subtract the result from Row [.5.5] [ 6.75] to get the resultig equatios as x x 9 Divide Row by 0 ad the multiply it by 5, that is, multiply Row by 5 / ([ 0 5 0] [ 45] ) 0. 5 gives Row as [ ] [.5] Subtract the result from Row 5 9 [ ] [.5] to get the resultig equatios as x x x. 5 This is the ed of the first step of forward elimiatio. Now for the secod step of forward elimiatio, the absolute value of the secod colum elemets below Row is 0.00,. 75 or 0.00,.75

15 Gaussia Elimiatio So the largest absolute value is i Row. So Row is switched with Row to give x x 8.50 Divide Row by.75 ad the multiply it by 0.00, that is, multiply Row by 0.00/ ([ ] [.5] ) gives Row as [ ] [ ] Subtract the result from Row [ ] [ ] Rewritig withi 5 sigificat digits with choppig [ ] [ 8.500] to get the resultig equatios as x x Back substitutio x x Substitutig the value of x i Row.75x + 0.5x x Substitutig the value of x ad x i Row 0x x x x 0

16 Chapter So the solutio is x [ X ] x This, i fact, is the exact solutio. By coicidece oly, i this case, the roud-off error is fully removed. Ca we use Naïve Gauss elimiatio methods to fid the determiat of a square matrix? Oe of the more efficiet ways to fid the determiat of a square matrix is by takig advatage of the followig two theorems o a determiat of matrices coupled with Naïve Gauss elimiatio. Theorem : Let [A] be a matrix. The, if [B] is a matrix that results from addig or subtractig a multiple of oe row to aother row, the det( A ) det( B) (The same is true for colum operatios also). Theorem : Let [A] be a matrix that is upper triagular, lower triagular or diagoal, the det( A ) a a... a ii... a a ii i This implies that if we apply the forward elimiatio steps of the Naïve Gauss elimiatio method, the determiat of the matrix stays the same accordig to Theorem. The sice at the ed of the forward elimiatio steps, the resultig matrix is upper triagular, the determiat will be give by Theorem.

17 Gaussia Elimiatio Example 5 Fid the determiat of 5 5 [A] Solutio Remember i Example, we coducted the steps of forward elimiatio of ukows usig the Naïve Gauss elimiatio method o [A] to give 5 5 [ B ] Accordig to Theorem det( A ) det( B) 5 ( 4.8) What if I caot fid the determiat of the matrix usig the Naïve Gauss elimiatio method, for example, if I get divisio by zero problems durig the Naïve Gauss elimiatio method? Well, you ca apply Gaussia elimiatio with partial pivotig. However, the determiat of the resultig upper triagular matrix may differ by a sig. The followig theorem applies i additio to the previous two to fid the determiat of a square matrix. Theorem : Let [A] be a matrix. The, if [B] is a matrix that results from switchig oe row with aother row, the det( B) det( A). Example 6 Fid the determiat of [A] Solutio The ed of the forward elimiatio steps of Gaussia elimiatio with partial pivotig, we would obtai [B] det B ( ) 00

18 Chapter Sice rows were switched oce durig the forward elimiatio steps of Gaussia elimiatio with partial pivotig, det( A) det( B) Example 7 Prove Solutio det( A ) [ A][ A] det det det det ( A ) ( A A ) det ( I ) ( A) det( A ) ( A) [ I] det ( A ) matrix ad det( A ) 0 If [A] is a, what other statemets are equivalet to it?. [A] is ivertible.. [ A ] exists.. [ A ][ X ] [ C] has a uique solutio. 4. [ A ][ X ] [0] solutio is [ X ] [0]. 5. [ A][ A] [ I] [ A] [ A]. Key Terms: Naïve Gauss Elimiatio Partial Pivotig Determiat

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

Linear Algebra II. 4 Determinants. Notes 4 1st November Definition of determinant

Linear Algebra II. 4 Determinants. Notes 4 1st November Definition of determinant MTH6140 Liear Algebra II Notes 4 1st November 2010 4 Determiats The determiat is a fuctio defied o square matrices; its value is a scalar. It has some very importat properties: perhaps most importat is

More information

Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 )

Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 ) Chapter : Liear Equatios Chapter Liear Equatios Lie i coordiate geometr I Cartesia coordiate sstems ( 卡 笛 兒 坐 標 系 統 ), a lie ca be represeted b a liear equatio, i.e., a polomial with degree. But before

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Module 4: Mathematical Induction

Module 4: Mathematical Induction Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

Divide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015

Divide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015 CS125 Lecture 4 Fall 2015 Divide ad Coquer We have see oe geeral paradigm for fidig algorithms: the greedy approach. We ow cosider aother geeral paradigm, kow as divide ad coquer. We have already see a

More information

Section 6.1 Radicals and Rational Exponents

Section 6.1 Radicals and Rational Exponents Sectio 6.1 Radicals ad Ratioal Expoets Defiitio of Square Root The umber b is a square root of a if b The priciple square root of a positive umber is its positive square root ad we deote this root by usig

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

DEFINITION OF INVERSE MATRIX

DEFINITION OF INVERSE MATRIX Lecture. Iverse matrix. To be read to the music of Back To You by Brya dams DEFINITION OF INVERSE TRIX Defiitio. Let is a square matrix. Some matrix B if it exists) is said to be iverse to if B B I where

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

2-3 The Remainder and Factor Theorems

2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

Chapter 04.05 System of Equations

Chapter 04.05 System of Equations hpter 04.05 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

Solving Divide-and-Conquer Recurrences

Solving Divide-and-Conquer Recurrences Solvig Divide-ad-Coquer Recurreces Victor Adamchik A divide-ad-coquer algorithm cosists of three steps: dividig a problem ito smaller subproblems solvig (recursively) each subproblem the combiig solutios

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

The second difference is the sequence of differences of the first difference sequence, 2

The second difference is the sequence of differences of the first difference sequence, 2 Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

More information

Literal Equations and Formulas

Literal Equations and Formulas . Literal Equatios ad Formulas. OBJECTIVE 1. Solve a literal equatio for a specified variable May problems i algebra require the use of formulas for their solutio. Formulas are simply equatios that express

More information

Solving equations. Pre-test. Warm-up

Solving equations. Pre-test. Warm-up Solvig equatios 8 Pre-test Warm-up We ca thik of a algebraic equatio as beig like a set of scales. The two sides of the equatio are equal, so the scales are balaced. If we add somethig to oe side of the

More information

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern. 5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information

x(x 1)(x 2)... (x k + 1) = [x] k n+m 1

x(x 1)(x 2)... (x k + 1) = [x] k n+m 1 1 Coutig mappigs For every real x ad positive iteger k, let [x] k deote the fallig factorial ad x(x 1)(x 2)... (x k + 1) ( ) x = [x] k k k!, ( ) k = 1. 0 I the sequel, X = {x 1,..., x m }, Y = {y 1,...,

More information

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients 652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

1.3 Binomial Coefficients

1.3 Binomial Coefficients 18 CHAPTER 1. COUNTING 1. Biomial Coefficiets I this sectio, we will explore various properties of biomial coefficiets. Pascal s Triagle Table 1 cotais the values of the biomial coefficiets ( ) for 0to

More information

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

More information

5.3. Generalized Permutations and Combinations

5.3. Generalized Permutations and Combinations 53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible

More information

Arithmetic Sequences and Partial Sums. Arithmetic Sequences. Definition of Arithmetic Sequence. Example 1. 7, 11, 15, 19,..., 4n 3,...

Arithmetic Sequences and Partial Sums. Arithmetic Sequences. Definition of Arithmetic Sequence. Example 1. 7, 11, 15, 19,..., 4n 3,... 3330_090.qxd 1/5/05 11:9 AM Page 653 Sectio 9. Arithmetic Sequeces ad Partial Sums 653 9. Arithmetic Sequeces ad Partial Sums What you should lear Recogize,write, ad fid the th terms of arithmetic sequeces.

More information

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean 1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

More information

Algebra Vocabulary List (Definitions for Middle School Teachers)

Algebra Vocabulary List (Definitions for Middle School Teachers) Algebra Vocabulary List (Defiitios for Middle School Teachers) A Absolute Value Fuctio The absolute value of a real umber x, x is xifx 0 x = xifx < 0 http://www.math.tamu.edu/~stecher/171/f02/absolutevaluefuctio.pdf

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

Solving Inequalities

Solving Inequalities Solvig Iequalities Say Thaks to the Authors Click http://www.ck12.org/saythaks (No sig i required) To access a customizable versio of this book, as well as other iteractive cotet, visit www.ck12.org CK-12

More information

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows: Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

More information

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4 GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook A-level Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5

More information

Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51

Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51 Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

8.1 Arithmetic Sequences

8.1 Arithmetic Sequences MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first

More information

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

NUMBERS COMMON TO TWO POLYGONAL SEQUENCES

NUMBERS COMMON TO TWO POLYGONAL SEQUENCES NUMBERS COMMON TO TWO POLYGONAL SEQUENCES DIANNE SMITH LUCAS Chia Lake, Califoria a iteger, The polygoal sequece (or sequeces of polygoal umbers) of order r (where r is r > 3) may be defied recursively

More information

AQA STATISTICS 1 REVISION NOTES

AQA STATISTICS 1 REVISION NOTES AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Lesson 15 ANOVA (analysis of variance)

Lesson 15 ANOVA (analysis of variance) Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

More information

The Euler Totient, the Möbius and the Divisor Functions

The Euler Totient, the Möbius and the Divisor Functions The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship

More information

Gregory Carey, 1998 Linear Transformations & Composites - 1. Linear Transformations and Linear Composites

Gregory Carey, 1998 Linear Transformations & Composites - 1. Linear Transformations and Linear Composites Gregory Carey, 1998 Liear Trasformatios & Composites - 1 Liear Trasformatios ad Liear Composites I Liear Trasformatios of Variables Meas ad Stadard Deviatios of Liear Trasformatios A liear trasformatio

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

7.1 Finding Rational Solutions of Polynomial Equations

7.1 Finding Rational Solutions of Polynomial Equations 4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?

More information

Sequences II. Chapter 3. 3.1 Convergent Sequences

Sequences II. Chapter 3. 3.1 Convergent Sequences Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

Permutations, the Parity Theorem, and Determinants

Permutations, the Parity Theorem, and Determinants 1 Permutatios, the Parity Theorem, ad Determiats Joh A. Guber Departmet of Electrical ad Computer Egieerig Uiversity of Wiscosi Madiso Cotets 1 What is a Permutatio 1 2 Cycles 2 2.1 Traspositios 4 3 Orbits

More information

Quadratics - Revenue and Distance

Quadratics - Revenue and Distance 9.10 Quadratics - Reveue ad Distace Objective: Solve reveue ad distace applicatios of quadratic equatios. A commo applicatio of quadratics comes from reveue ad distace problems. Both are set up almost

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say

More information

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Span, linear independence, bases, and dimension Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

More information

Solving Logarithms and Exponential Equations

Solving Logarithms and Exponential Equations Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

More information

Elementary Theory of Russian Roulette

Elementary Theory of Russian Roulette Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

Complex Numbers. where x represents a root of Equation 1. Note that the ± sign tells us that quadratic equations will have

Complex Numbers. where x represents a root of Equation 1. Note that the ± sign tells us that quadratic equations will have Comple Numbers I spite of Calvi s discomfiture, imagiar umbers (a subset of the set of comple umbers) eist ad are ivaluable i mathematics, egieerig, ad sciece. I fact, i certai fields, such as electrical

More information

A Guide to the Pricing Conventions of SFE Interest Rate Products

A Guide to the Pricing Conventions of SFE Interest Rate Products A Guide to the Pricig Covetios of SFE Iterest Rate Products SFE 30 Day Iterbak Cash Rate Futures Physical 90 Day Bak Bills SFE 90 Day Bak Bill Futures SFE 90 Day Bak Bill Futures Tick Value Calculatios

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

INVESTMENT PERFORMANCE COUNCIL (IPC)

INVESTMENT PERFORMANCE COUNCIL (IPC) INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks

More information

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu> (March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1

More information

Distributions of Order Statistics

Distributions of Order Statistics Chapter 2 Distributios of Order Statistics We give some importat formulae for distributios of order statistics. For example, where F k: (x)=p{x k, x} = I F(x) (k, k + 1), I x (a,b)= 1 x t a 1 (1 t) b 1

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets BENEIT-CST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal - Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts

More information

Chapter 9: Correlation and Regression: Solutions

Chapter 9: Correlation and Regression: Solutions Chapter 9: Correlatio ad Regressio: Solutios 9.1 Correlatio I this sectio, we aim to aswer the questio: Is there a relatioship betwee A ad B? Is there a relatioship betwee the umber of emploee traiig hours

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

Systems Design Project: Indoor Location of Wireless Devices

Systems Design Project: Indoor Location of Wireless Devices Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 698-5295 Email: bcm1@cec.wustl.edu Supervised

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

Recursion and Recurrences

Recursion and Recurrences Chapter 5 Recursio ad Recurreces 5.1 Growth Rates of Solutios to Recurreces Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer. Cosider, for example,

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

TAYLOR SERIES, POWER SERIES

TAYLOR SERIES, POWER SERIES TAYLOR SERIES, POWER SERIES The followig represets a (icomplete) collectio of thigs that we covered o the subject of Taylor series ad power series. Warig. Be prepared to prove ay of these thigs durig the

More information

Problem Solving with Mathematical Software Packages 1

Problem Solving with Mathematical Software Packages 1 C H A P T E R 1 Problem Solvig with Mathematical Software Packages 1 1.1 EFFICIENT PROBLEM SOLVING THE OBJECTIVE OF THIS BOOK As a egieerig studet or professioal, you are almost always ivolved i umerical

More information

Lecture 7: Stationary Perturbation Theory

Lecture 7: Stationary Perturbation Theory Lecture 7: Statioary Perturbatio Theory I most practical applicatios the time idepedet Schrödiger equatio Hψ = Eψ (1) caot be solved exactly ad oe has to resort to some scheme of fidig approximate solutios,

More information

The Field Q of Rational Numbers

The Field Q of Rational Numbers Chapter 3 The Field Q of Ratioal Numbers I this chapter we are goig to costruct the ratioal umber from the itegers. Historically, the positive ratioal umbers came first: the Babyloias, Egyptias ad Grees

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers

{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers . Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2 4. Basic feasible solutios ad vertices of polyhedra Due to the fudametal theorem of Liear Programmig, to solve ay LP it suffices to cosider the vertices (fiitely may) of the polyhedro P of the feasible

More information

Hypergeometric Distributions

Hypergeometric Distributions 7.4 Hypergeometric Distributios Whe choosig the startig lie-up for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you

More information

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

Using Excel to Construct Confidence Intervals

Using Excel to Construct Confidence Intervals OPIM 303 Statistics Ja Stallaert Usig Excel to Costruct Cofidece Itervals This hadout explais how to costruct cofidece itervals i Excel for the followig cases: 1. Cofidece Itervals for the mea of a populatio

More information

Lecture 4: Cheeger s Inequality

Lecture 4: Cheeger s Inequality Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

More information