# Determining If Two Graphs Are Isomorphic 1

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Determining If Two Graphs Are Isomorphic 1 Given two graphs, it is often really hard to tell if they ARE isomorphic, but usually easier to see if they ARE NOT isomorphic. Here is our first idea to help tell if two graphs are isomorphic. Theorem (Isomorphic Graphs Theorem 1) Suppose we have two graphs. In the first graph there are v 1 vertices and e 1 edges. In the second graph there are v 2 vertices and e 2 edges. Then in order for the two graphs to be isomorphic we must have: v 1 = v 2 e 1 = e 2 In words, isomorphic graphs must have the same number of vertices and edges. It is important to note that just having v 1 = v 2 and e 1 = e 2 is NOT a guarantee that two graphs will be isomorphic.

2 Degree of a Vertex Definition (Degree of Vertex) The degree of a vertex is the number of edges attached to that vertex. Example (Degree of Each Vertex Shown) We can use the idea of degree of a vertex to help us better understand when two graphs might be isomorphic.

3 Isomorphic or Not Isomorphic 3 Example (Isomorphic or Not Isomorphic 3) Draw the graph with vertices A, B, C, D and edge set {AB, AC, AD, BC, BD} Is your graph isomorphic to one of the graphs below? M N L O W Z Can you relabel the vertices of either pictured graph to match your graph?

4 Determining If Two Graphs Are Isomorphic 2 Theorem (Isomorphic Graphs Theorem 2) Suppose we have two graphs where each graph has the same number of vertices, v 1 = v 2 = n. Write the degrees of each vertex (with repeats) in ascending order for Graph 1. This gives a list of numbers that we can represent generally as d 1, d 2, d 3,..., d n. If the two graphs are isomorphic then when listing the degrees of Graph 2 in ascending order, we get the exact same list as above. In short, ISOMORPHIC GRAPHS HAVE THE SAME DEGREE LISTS. More useful though, IF THE DEGREE LISTS ARE DIFFERENT, THE TWO GRAPHS ARE NOT ISOMORPHIC. There are more sophisticated ways to determine if two graphs are isomorphic, but generally this is a VER HARD question to resolve.

5 Counting Connections 1 Example (Counting Connections 1) Consider the following graphs below: A B What is a reason(s) for why these graphs could be isomorphic? What is a reason(s) for why these graphs could NOT be isomorphic?

6 Counting Connections 2 Example (Counting Connections 2) Consider the following graphs below: B A C Z What is a reason(s) for why these graphs could be isomorphic? What is a reason(s) for why these graphs could NOT be isomorphic?

7 Graph Isomorphism The Determining If Two Graphs Are Isomorphic Theorems 1 & 2 are mostly useful for showing that two graphs are NOT isomorphic. Definition (Graph Isomorphism) If two graphs are isomorphic then there is a Graph Isomorphism that describes how they are the same. In practice this is: A relabeling of the vertices of Graph 1 so that each corresponds to the same vertex of Graph 2; This relabeling is done so that any edge of Graph 1 has a corresponding edge of Graph 2 under the new labels. To determine a graph isomorphism, a really good place to start is to find the degrees of the vertices of BOTH graphs.

8 Graph Isomorphism Procedure: Step 1 Example (Describing a Graph Isomorphism) C W B D V A E U F Z Step 1: List the degrees, in ascending order, of both graphs: Left Graph Right Graph 3 A, 3 W, 3 E, 3, 3 F, 3 Z, 4 B, 4 U, 4 C, 4, 5 D 5 V

9 Graph Isomorphism Procedure: Step 2 Example (Describing a Graph Isomorphism) C W B D V A E U F Z Step 2: Understand the connections of the vertices: In the Left Graph, vertices A, E, and F all connect with B, C, and D. These are their only connections. In the Right Graph, vertices W,, and Z all connect with U, V, and. These are their only connections. In the both graphs, Vertices of degree 4 connect with the one Vertex of Degree 5.

10 Graph Isomorphism Procedure: Step 3 Example (Describing a Graph Isomorphism) C W B D V A E U F Z Step 3: Define the isomorphism: Because of the types of connections, any vertex of degree 3 in the Left Graph is like any vertex of degree 3 in the Right Graph. The same is true for the vertices of degree 4. A \$ W, E \$, F \$ Z, B \$ U, C \$, D \$ V. We can check by redrawing the Right Graph with vertices in the positions given by the isomorphism.

11 Counting Connections 3 Example (Counting Connections 3) Consider the following graphs below: B D V E F Z A C U W What is a reason(s) for why these graphs could be isomorphic? What is a reason(s) for why these graphs could NOT be isomorphic?

12 Using Vertex Degrees 1 Example (Using Vertex Degrees 1) Make a graph with 5 vertices labeled with the letters A, B, C, D, and E. Include 8 edges connecting the vertices. ou decide which connections to make! Is your graph isomorphic to this one? B C E A D

13 Using Vertex Degrees 2 Example (Using Vertex Degrees 2) Make another graph with 5 vertices labeled with the letters V, W,,, and Z. Connect the vertices so that the degrees are 2, 3, 3, 4, 4 Is your graph isomorphic to this one? W Z V

14 Using Vertex Degrees 3 Example (Using Vertex Degrees 3) Are the two graphs below isomorphic? B C E W Z A D V Are the two graphs below isomorphic? B C E W Z A D V

15 Compare With a Neighbor 1 Example (Compare With a Neighbor 1) Previously you made a graph with: 5verticeslabeledwiththeletterslettersA,B,C,D,andE, connected by 8 edges. Compare your graph with a neighbor s graph. Are your two graphs isomorphic? If not isomorphic, how can you tell? If they are isomorphic, find a correspondence between vertices.

16 Compare With a Neighbor 2 Example (Compare With a Neighbor 2) Previously you made a graph with: 5 vertices labeled with the letters V, W,,, and Z, connected so the degrees are 2, 3, 3, 4, 4. Compare your graph with a neighbor s graph. Are your two graphs isomorphic? If not isomorphic, how can you tell? If they are isomorphic, find a correspondence between vertices.

17 Sum of Degrees of Vertices Theorem Theorem (Sum of Degrees of Vertices Theorem) Suppose a graph has n vertices with degrees d 1, d 2, d 3,...,d n. Add together all degrees to get a new number d 1 + d 2 + d d n = D v.thend v =2e. In words, for any graph the sum of the degrees of the vertices equals twice the number of edges. Stated in a slightly di erent way, D v =2e says that D v is ALWAS an even number. Example (Using the Sum of Degrees of Vertices Theorem) It is impossible to make a graph with v =6wherethevertices have degrees 1, 2, 2, 3, 3, 4. This is because the sum of the degrees D v is D v = = 15 D v is always an even number but 15 is odd!

18 Using the Sum of the Degrees of Vertices Formula 1 Example (Using the Sum of the Degrees of Vertices Formula 1) Consider the following scenarios: A graph has 4 vertices with degrees 0, 0, 0, and 0. What does this graph look like? A graph has 1 vertex with degree 2. What does this graph look like? A graph has 4 vertices with degrees 2, 3, 3, and 4. How many edges are there? A graph has 4 vertices with degrees 2, 2, 2, and 4. Can you say what this graph looks like?

19 Using the Sum of the Degrees of Vertices Formula 2 Example (Using the Sum of the Degrees of Vertices Formula 2) Consider the following scenarios: Is it possible to have a graph with vertices of degrees: 1 and 1? Is it possible to have a graph with vertices of degrees: 1 and 2? Is it possible to have a graph with vertices of degrees: 1, 1, 2, 3? Is it possible to have a graph with vertices of degrees: 1, 1, 2, 3, 3?

### Sum of Degrees of Vertices Theorem

Sum of Degrees of Vertices Theorem Theorem (Sum of Degrees of Vertices Theorem) Suppose a graph has n vertices with degrees d 1, d 2, d 3,...,d n. Add together all degrees to get a new number d 1 + d 2

### Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902

Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler Different Graphs, Similar Properties

### Class One: Degree Sequences

Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of

### Euler Paths and Euler Circuits

Euler Paths and Euler Circuits An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler path starts and

### Online EFFECTIVE AS OF JANUARY 2013

2013 A and C Session Start Dates (A-B Quarter Sequence*) 2013 B and D Session Start Dates (B-A Quarter Sequence*) Quarter 5 2012 1205A&C Begins November 5, 2012 1205A Ends December 9, 2012 Session Break

### . 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9

Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a

### Just the Factors, Ma am

1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

### INTERSECTION MATH And more! James Tanton

INTERSECTION MATH And more! James Tanton www.jamestanton.com The following represents a sample activity based on the December 2006 newsletter of the St. Mark s Institute of Mathematics (www.stmarksschool.org/math).

### Congruence. Set 5: Bisectors, Medians, and Altitudes Instruction. Student Activities Overview and Answer Key

Instruction Goal: To provide opportunities for students to develop concepts and skills related to identifying and constructing angle bisectors, perpendicular bisectors, medians, altitudes, incenters, circumcenters,

### Graph Attack! So clearly there is no way to get from Earth to Mars.

Graph Attack! 1. In the distant future, cosmic liaisons have been established between various bodies in the solar system. Rockets travel along the following routes: Earth-Mercury, Moon-Venus, Earth-Moon,

### THE GOLDEN RATIO AND THE FIBONACCI SEQUENCE

/ 24 THE GOLDEN RATIO AND THE FIBONACCI SEQUENCE Todd Cochrane Everything is Golden 2 / 24 Golden Ratio Golden Proportion Golden Relation Golden Rectangle Golden Spiral Golden Angle Geometric Growth, (Exponential

### Simple Graphs Degrees, Isomorphism, Paths

Mathematics for Computer Science MIT 6.042J/18.062J Simple Graphs Degrees, Isomorphism, Types of Graphs Simple Graph this week Multi-Graph Directed Graph next week Albert R Meyer, March 10, 2010 lec 6W.1

### Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

### c 2008 Je rey A. Miron We have described the constraints that a consumer faces, i.e., discussed the budget constraint.

Lecture 2b: Utility c 2008 Je rey A. Miron Outline: 1. Introduction 2. Utility: A De nition 3. Monotonic Transformations 4. Cardinal Utility 5. Constructing a Utility Function 6. Examples of Utility Functions

### Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )

1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the

### Isosceles triangles. Key Words: Isosceles triangle, midpoint, median, angle bisectors, perpendicular bisectors

Isosceles triangles Lesson Summary: Students will investigate the properties of isosceles triangles. Angle bisectors, perpendicular bisectors, midpoints, and medians are also examined in this lesson. A

### Induction. Margaret M. Fleck. 10 October These notes cover mathematical induction and recursive definition

Induction Margaret M. Fleck 10 October 011 These notes cover mathematical induction and recursive definition 1 Introduction to induction At the start of the term, we saw the following formula for computing

### TIgeometry.com. Geometry. Angle Bisectors in a Triangle

Angle Bisectors in a Triangle ID: 8892 Time required 40 minutes Topic: Triangles and Their Centers Use inductive reasoning to postulate a relationship between an angle bisector and the arms of the angle.

### for the Bill Hanlon bill@hanlonmath.com

Strategies for Learning the Math Facts Bill Hanlon bill@hanlonmath.com The more sophisticated mental operations in mathematics of analysis, synthesis, and evaluation are impossible without rapid and accurate

### Maximizing Angle Counts for n Points in a Plane

Maximizing Angle Counts for n Points in a Plane By Brian Heisler A SENIOR RESEARCH PAPER PRESENTED TO THE DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE OF STETSON UNIVERSITY IN PARTIAL FULFILLMENT OF

### Spring 2007 Math 510 Hints for practice problems

Spring 2007 Math 510 Hints for practice problems Section 1 Imagine a prison consisting of 4 cells arranged like the squares of an -chessboard There are doors between all adjacent cells A prisoner in one

### A permutation can also be represented by describing its cycles. What do you suppose is meant by this?

Shuffling, Cycles, and Matrices Warm up problem. Eight people stand in a line. From left to right their positions are numbered,,,... 8. The eight people then change places according to THE RULE which directs

### Numerical integration of a function known only through data points

Numerical integration of a function known only through data points Suppose you are working on a project to determine the total amount of some quantity based on measurements of a rate. For example, you

### COMPRESSION SPRINGS: STANDARD SERIES (INCH)

: STANDARD SERIES (INCH) LC 014A 01 0.250 6.35 11.25 0.200 0.088 2.24 F F M LC 014A 02 0.313 7.94 8.90 0.159 0.105 2.67 F F M LC 014A 03 0.375 9.52 7.10 0.126 0.122 3.10 F F M LC 014A 04 0.438 11.11 6.00

### Pythagorean Theorem: Proof and Applications

Pythagorean Theorem: Proof and Applications Kamel Al-Khaled & Ameen Alawneh Department of Mathematics and Statistics, Jordan University of Science and Technology IRBID 22110, JORDAN E-mail: kamel@just.edu.jo,

### DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

### 3.4 Multiplying Polynomials

3.4 Multiplying Polynomials Let s turn our attention to the next basic operation on polynomials, multiplication. There are a number of ways to learn how to multiply polynomials, however, they all boil

### One advantage of this algebraic approach is that we can write down

. Vectors and the dot product A vector v in R 3 is an arrow. It has a direction and a length (aka the magnitude), but the position is not important. Given a coordinate axis, where the x-axis points out

### Outline 2.1 Graph Isomorphism 2.2 Automorphisms and Symmetry 2.3 Subgraphs, part 1

GRAPH THEORY LECTURE STRUCTURE AND REPRESENTATION PART A Abstract. Chapter focuses on the question of when two graphs are to be regarded as the same, on symmetries, and on subgraphs.. discusses the concept

### 1 Symmetries of regular polyhedra

1230, notes 5 1 Symmetries of regular polyhedra Symmetry groups Recall: Group axioms: Suppose that (G, ) is a group and a, b, c are elements of G. Then (i) a b G (ii) (a b) c = a (b c) (iii) There is an

### a) x 2 8x = 25 x 2 8x + 16 = (x 4) 2 = 41 x = 4 ± 41 x + 1 = ± 6 e) x 2 = 5 c) 2x 2 + 2x 7 = 0 2x 2 + 2x = 7 x 2 + x = 7 2

Solving Quadratic Equations By Square Root Method Solving Quadratic Equations By Completing The Square Consider the equation x = a, which we now solve: x = a x a = 0 (x a)(x + a) = 0 x a = 0 x + a = 0

### Lines That Pass Through Regions

: Student Outcomes Given two points in the coordinate plane and a rectangular or triangular region, students determine whether the line through those points meets the region, and if it does, they describe

### EXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS

To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires

### 25 The Law of Cosines and Its Applications

Arkansas Tech University MATH 103: Trigonometry Dr Marcel B Finan 5 The Law of Cosines and Its Applications The Law of Sines is applicable when either two angles and a side are given or two sides and an

### Inv 1 5. Draw 2 different shapes, each with an area of 15 square units and perimeter of 16 units.

Covering and Surrounding: Homework Examples from ACE Investigation 1: Questions 5, 8, 21 Investigation 2: Questions 6, 7, 11, 27 Investigation 3: Questions 6, 8, 11 Investigation 5: Questions 15, 26 ACE

### 6.3 Conditional Probability and Independence

222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

### a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

### Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

### MEASURES OF VARIATION

NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

### MATH 102 College Algebra

FACTORING Factoring polnomials ls is simpl the reverse process of the special product formulas. Thus, the reverse process of special product formulas will be used to factor polnomials. To factor polnomials

### Max Flow, Min Cut, and Matchings (Solution)

Max Flow, Min Cut, and Matchings (Solution) 1. The figure below shows a flow network on which an s-t flow is shown. The capacity of each edge appears as a label next to the edge, and the numbers in boxes

### GRAPH THEORY LECTURE 4: TREES

GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection

### ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

### We know a formula for and some properties of the determinant. Now we see how the determinant can be used.

Cramer s rule, inverse matrix, and volume We know a formula for and some properties of the determinant. Now we see how the determinant can be used. Formula for A We know: a b d b =. c d ad bc c a Can we

### CS311H. Prof: Peter Stone. Department of Computer Science The University of Texas at Austin

CS311H Prof: Department of Computer Science The University of Texas at Austin Good Morning, Colleagues Good Morning, Colleagues Are there any questions? Logistics Class survey Logistics Class survey Homework

### Unknown Angle Problems with Inscribed Angles in Circles

: Unknown Angle Problems with Inscribed Angles in Circles Student Outcomes Use the inscribed angle theorem to find the measures of unknown angles. Prove relationships between inscribed angles and central

### Topics Covered on Geometry Placement Exam

Topics Covered on Geometry Placement Exam - Use segments and congruence - Use midpoint and distance formulas - Measure and classify angles - Describe angle pair relationships - Use parallel lines and transversals

### If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

### Chapter 6: Graph Theory

Chapter 6: Graph Theory Graph theory deals with routing and network problems and if it is possible to find a best route, whether that means the least expensive, least amount of time or the least distance.

### MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.

9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

### Divisor graphs have arbitrary order and size

Divisor graphs have arbitrary order and size arxiv:math/0606483v1 [math.co] 20 Jun 2006 Le Anh Vinh School of Mathematics University of New South Wales Sydney 2052 Australia Abstract A divisor graph G

### Data Structures and Algorithms Written Examination

Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where

### Graph Theory Problems and Solutions

raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

### An Interesting Way to Combine Numbers

An Interesting Way to Combine Numbers Joshua Zucker and Tom Davis November 28, 2007 Abstract This exercise can be used for middle school students and older. The original problem seems almost impossibly

### Algebra Cheat Sheets

Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

### Exponential and Logarithmic Functions

Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

### Properties of Real Numbers

16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

### Inscribed Angle Theorem and Its Applications

: Student Outcomes Prove the inscribed angle theorem: The measure of a central angle is twice the measure of any inscribed angle that intercepts the same arc as the central angle. Recognize and use different

### Acquisition Lesson Planning Form Key Standards addressed in this Lesson: MM2A3d,e Time allotted for this Lesson: 4 Hours

Acquisition Lesson Planning Form Key Standards addressed in this Lesson: MM2A3d,e Time allotted for this Lesson: 4 Hours Essential Question: LESSON 4 FINITE ARITHMETIC SERIES AND RELATIONSHIP TO QUADRATIC

### Finding and counting given length cycles

Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected

### Pythagorean Triples. Chapter 2. a 2 + b 2 = c 2

Chapter Pythagorean Triples The Pythagorean Theorem, that beloved formula of all high school geometry students, says that the sum of the squares of the sides of a right triangle equals the square of the

### Short cycle covers of graphs with minimum degree three

Short cycle covers of graphs with minimum degree three Tomáš Kaiser, Daniel Král, Bernard Lidický and Pavel Nejedlý Department of Applied Math Charles University Cycles and Colourings 2008 - Tatranská

### The Product Property of Square Roots states: For any real numbers a and b, where a 0 and b 0, ab = a b.

Chapter 9. Simplify Radical Expressions Any term under a radical sign is called a radical or a square root expression. The number or expression under the the radical sign is called the radicand. The radicand

### Homework 5 Solutions

Homework 5 Solutions 4.2: 2: a. 321 = 256 + 64 + 1 = (01000001) 2 b. 1023 = 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = (1111111111) 2. Note that this is 1 less than the next power of 2, 1024, which

### 2.5 Zeros of a Polynomial Functions

.5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and

### 1. Write the number of the left-hand item next to the item on the right that corresponds to it.

1. Write the number of the left-hand item next to the item on the right that corresponds to it. 1. Stanford prison experiment 2. Friendster 3. neuron 4. router 5. tipping 6. small worlds 7. job-hunting

### Chapter 8. Quadratic Equations and Functions

Chapter 8. Quadratic Equations and Functions 8.1. Solve Quadratic Equations KYOTE Standards: CR 0; CA 11 In this section, we discuss solving quadratic equations by factoring, by using the square root property

### 5.1 Midsegment Theorem and Coordinate Proof

5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects

### 4. Prove the above theorem. 5. Prove the above theorem. 9. Prove the above corollary. 10. Prove the above theorem.

14 Perpendicularity and Angle Congruence Definition (acute angle, right angle, obtuse angle, supplementary angles, complementary angles) An acute angle is an angle whose measure is less than 90. A right

### Law of Cosines TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System

Math Objectives Students will be able to state the Law of Cosines Students will be able to apply the Law of Cosines to find missing sides and angles in a triangle Students will understand why the Law of

### AP CALCULUS AB 2009 SCORING GUIDELINES

AP CALCULUS AB 2009 SCORING GUIDELINES Question 5 x 2 5 8 f ( x ) 1 4 2 6 Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points in

### Part 2: Community Detection

Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection - Social networks -

### Graph Theory Origin and Seven Bridges of Königsberg -Rhishikesh

Graph Theory Origin and Seven Bridges of Königsberg -Rhishikesh Graph Theory: Graph theory can be defined as the study of graphs; Graphs are mathematical structures used to model pair-wise relations between

### 4. Binomial Expansions

4. Binomial Expansions 4.. Pascal's Triangle The expansion of (a + x) 2 is (a + x) 2 = a 2 + 2ax + x 2 Hence, (a + x) 3 = (a + x)(a + x) 2 = (a + x)(a 2 + 2ax + x 2 ) = a 3 + ( + 2)a 2 x + (2 + )ax 2 +

### Pick s Theorem. Tom Davis Oct 27, 2003

Part I Examples Pick s Theorem Tom Davis tomrdavis@earthlink.net Oct 27, 2003 Pick s Theorem provides a method to calculate the area of simple polygons whose vertices lie on lattice points points with

### Network Flow I. Lecture 16. 16.1 Overview. 16.2 The Network Flow Problem

Lecture 6 Network Flow I 6. Overview In these next two lectures we are going to talk about an important algorithmic problem called the Network Flow Problem. Network flow is important because it can be

### Lecture 7: NP-Complete Problems

IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 7: NP-Complete Problems David Mix Barrington and Alexis Maciel July 25, 2000 1. Circuit

### MODERN APPLICATIONS OF PYTHAGORAS S THEOREM

UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented

### Planar Graphs. Complement to Chapter 2, The Villas of the Bellevue

Planar Graphs Complement to Chapter 2, The Villas of the Bellevue In the chapter The Villas of the Bellevue, Manori gives Courtel the following definition. Definition A graph is planar if it can be drawn

### CHAPTER 3 Numbers and Numeral Systems

CHAPTER 3 Numbers and Numeral Systems Numbers play an important role in almost all areas of mathematics, not least in calculus. Virtually all calculus books contain a thorough description of the natural,

### 2.2 Derivative as a Function

2.2 Derivative as a Function Recall that we defined the derivative as f (a) = lim h 0 f(a + h) f(a) h But since a is really just an arbitrary number that represents an x-value, why don t we just use x

### How Do You Measure a Triangle? Examples

How Do You Measure a Triangle? Examples 1. A triangle is a three-sided polygon. A polygon is a closed figure in a plane that is made up of segments called sides that intersect only at their endpoints,

### Representation of functions as power series

Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions

### S on n elements. A good way to think about permutations is the following. Consider the A = 1,2,3, 4 whose elements we permute with the P =

Section 6. 1 Section 6. Groups of Permutations: : The Symmetric Group Purpose of Section: To introduce the idea of a permutation and show how the set of all permutations of a set of n elements, equipped

### Scheduling a Tournament

Scheduling a Tournament Dalibor Froncek University of Minnesota Duluth February 9, 00 Abstract We present several constructions for scheduling round robin tournaments. We explain how to schedule a tournament

### 136 CHAPTER 4. INDUCTION, GRAPHS AND TREES

136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics

### Lesson 18: Looking More Carefully at Parallel Lines

Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using

### Unit 3: Triangle Bisectors and Quadrilaterals

Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties

### I Perimeter, Area, Learning Goals 304

U N I T Perimeter, Area, Greeting cards come in a variety of shapes and sizes. You can buy a greeting card for just about any occasion! Learning Goals measure and calculate perimeter estimate, measure,

### Geometry Module 4 Unit 2 Practice Exam

Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

### Foundations of Geometry 1: Points, Lines, Segments, Angles

Chapter 3 Foundations of Geometry 1: Points, Lines, Segments, Angles 3.1 An Introduction to Proof Syllogism: The abstract form is: 1. All A is B. 2. X is A 3. X is B Example: Let s think about an example.

### MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL 3 - NUMERICAL INTEGRATION METHODS

MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL - NUMERICAL INTEGRATION METHODS This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle

### Solution Guide for Chapter 6: The Geometry of Right Triangles

Solution Guide for Chapter 6: The Geometry of Right Triangles 6. THE THEOREM OF PYTHAGORAS E-. Another demonstration: (a) Each triangle has area ( ). ab, so the sum of the areas of the triangles is 4 ab

### COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact

### A convex polygon is a polygon such that no line containing a side of the polygon will contain a point in the interior of the polygon.

hapter 7 Polygons A polygon can be described by two conditions: 1. No two segments with a common endpoint are collinear. 2. Each segment intersects exactly two other segments, but only on the endpoints.

### Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

### What is inversive geometry?

What is inversive geometry? Andrew Krieger July 18, 2013 Throughout, Greek letters (,,...) denote geometric objects like circles or lines; small Roman letters (a, b,... ) denote distances, and large Roman