1 of 6 9/5/2009 6:13 PM

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "1 of 6 9/5/2009 6:13 PM"

Transcription

1 1 of 6 9/5/2009 6:13 PM Chapter 1 Homework Due: 9:00am on Tuesday, September 1, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View] Consistency of Units In physics, every physical quantity is measured with respect to a unit. Time is measured in seconds, length is measured in meters, and mass is measured in kilograms. Knowing the units of physical quantities will help you solve problems in physics. Gravity causes objects to be attracted to one another. This attraction keeps our feet firmly planted on the ground and causes the moon to orbit the earth. The force of gravitational attraction is represented by the equation, where is the magnitude of the gravitational attraction on either body, and are the masses of the bodies, is the distance between them, and is the gravitational constant. In SI units, the units or force are, the units of mass are, and the units of distance are. For this equation to have consistent units, the units of must be which of the following? Hint A.1 How to approach the problem To solve this problem, we start with the equation. For each symbol whose units we know, we replace the symbol with those units. For example, we replace with. We now solve this equation for. One consequence of Einstein's theory of special relativity is that mass is a form of energy. This mass-energy relationship is perhaps the most famous of all physics equations:, where is mass, is the speed of the light, and is the energy. In SI units, the units of speed are. For the preceding equation to have consistent units (the same units on both sides of the equation), the units of must be which of the following? Hint B.1 How to approach the problem To solve the types of problems typified by these examples, we start with the given equation. For each symbol whose units we know, we replace the symbol with those units. For example, we replace with. We now solve this equation for the units of the unknown variable. Familiarity with SI units will aid your study of physics and all other sciences. Measurements in SI Units What is the approximate height of the average adult in centimeters? Hint A.1 Converting between feet and centimeters The distance from your elbow to your fingertips is typically about

2 2 of 6 9/5/2009 6:13 PM If you're not familiar with metric units of length, you can use your body to develop intuition for them. The average height of an adult is The distance from elbow to fingertips on the average adult is about 50. Ten (1 ) is about the width of this adult's little finger and 10 is about the width of the average hand. Approximately what is the mass of the average adult in kilograms? Hint B.1 Converting between pounds and kilograms Something that weighs 1 has a mass of about Something that weighs 1 has a mass of about. This is a useful conversion to keep in mind! Learning Goal: To learn how to change units of physical quantities. Converting Units: The Magic of 1 Quantities with physical dimensions like length or time must be measured with respect to a unit, a standard for quantities with this dimension. For example, length can be measured in units of meters or feet, time in seconds or years, and velocity in meters per second. When solving problems in physics, it is necessary to use a consistent system of units such as the International System (abbreviated SI, for the French Système International) or the more cumbersome English system. In the SI system, which is the preferred system in physics, mass is measured in kilograms, time in seconds, and length in meters. The necessity of using consistent units in a problem often forces you to convert some units from the given system into the system that you want to use for the problem. The key to unit conversion is to multiply (or divide) by a ratio of different units that equals one. This works because multiplying any quantity by one doesn't change it. To illustrate with length, if you know that, you can write. To convert inches to centimeters, you can multiply the number of inches times this fraction (since it equals one), cancel the inch unit in the denominator with the inch unit in the given length, and come up with a value for the length in centimeters. To convert centimeters to inches, you can divide by this ratio and cancel the centimeters. For all parts, notice that the units are already written after the answer box; don't try to write them in your answer also. How many centimeters are there in a length 625.8? Express your answer in centimeters to three significant figures Sometimes you will need to change units twice to get the final unit that you want. Suppose that you know how to convert from centimeters to inches and from inches to feet. By doing both, in order, you can convert from centimeters to feet. Suppose that a particular artillery piece has a range = Find its range in miles. Use the facts that and. Hint B.1 Convert yards to feet Express your answer in miles to three significant figures = 9.64 Often speed is given in miles per hour ( ), but in physics you will almost always work in SI units. Therefore, you must convert to meters per second ( ). What is the speed of a car going and. in SI units? Notice that you will need to change from miles to meters and from hours to seconds. You can do each conversion separately. Use the facts that Hint C.1 Hint C.2 Convert miles to meters Convert hours to seconds Express your answer in meters per second to three significant figures. = 0.447

3 3 of 6 9/5/2009 6:13 PM Notice that by equating the two values for, you get remembering this relationship in the future, you can reduce this task to a single conversion.. It might be valuable to remember this, as you may frequently need to convert from miles per hour into more useful SI units. By Convert the following to SI units: Problem km 3420 mm 3420 m 3.42 m 47.0 cm/ms 470 cm/min 47.0 km/ms 470 m/s Part D 60.0 km/hour 16.7 m/s 60.0 m/min 16.7 mm/hour 60.0 mm/min Problem 1.54 The quantity called mass density is the mass per unit volume of a substance. Express the following mass densities in SI units. Aluminum, 2700 Alcohol, 810 Conceptual Question 1.8 Determine the sign (positive or negative) of the position for the particle in the figure in the textbook.

4 4 of 6 9/5/2009 6:13 PM Negative Positive Determine the sign (positive or negative) of the velocity for the particle in the figure. Positive Negative Determine the sign (positive or negative) of the acceleration for the particle in the figure. Negative Positive Learning Goal: To learn to use images of an object in motion to determine velocity and acceleration. Motion of Two Rockets Two toy rockets are traveling in the same direction (taken to be the x axis). A diagram is shown of a time-exposure image where a stroboscope has illuminated the rockets at the uniform time intervals indicated. At what time(s) do the rockets have the same velocity? Hint A.1 How to determine the velocity The diagram shows position, not velocity. You can't find instantaneous velocity from this diagram, but you can determine the average velocity between two times and :. Note that no position values are given in the diagram; you will need to estimate these based on the distance between successive positions of the rockets. at time only at time only at times and at some instant in time between at no time shown in the figure and At what time(s) do the rockets have the same x position? at time only at time only at times and at some instant in time between at no time shown in the figure and

5 5 of 6 9/5/2009 6:13 PM At what time(s) do the two rockets have the same acceleration? Hint C.1 How to determine the acceleration at time only at time only at times and at some instant in time between at no time shown in the figure and Part D The motion of the rocket labeled A is an example of motion with uniform (i.e., constant). and nonzero acceleration velocity displacement time Part E The motion of the rocket labeled B is an example of motion with uniform (i.e., constant). and nonzero acceleration velocity displacement time Part F At what time(s) is rocket A ahead of rocket B? Hint F.1 Use the diagram before only after only before and after between and at no time(s) shown in the figure Significant Figures To seven significant figures, the mass of a proton is. Which of the following choices demonstrates correct rounding? Check all that apply. The number is incorrect because when we round to four significant figures we get 1.673, not Similarly, is incorrect because when we round to six significant figures we get , not To eight significant figures, Avogadro's constant is. Which of the following choices demonstrates correct rounding? Check all that apply.

6 6 of 6 9/5/2009 6:13 PM All these options are correct; they represent different levels of precision, even though the numerical value is the same. Score Summary: Your score on this assignment is 99.2%. You received out of a possible total of 40 points.

2.2 Scientific Notation: Writing Large and Small Numbers

2.2 Scientific Notation: Writing Large and Small Numbers 2.2 Scientific Notation: Writing Large and Small Numbers A number written in scientific notation has two parts. A decimal part: a number that is between 1 and 10. An exponential part: 10 raised to an exponent,

More information

1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM 1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

One basic concept in math is that if we multiply a number by 1, the result is equal to the original number. For example,

One basic concept in math is that if we multiply a number by 1, the result is equal to the original number. For example, MA 35 Lecture - Introduction to Unit Conversions Tuesday, March 24, 205. Objectives: Introduce the concept of doing algebra on units. One basic concept in math is that if we multiply a number by, the result

More information

Unit Conversions. Ben Logan <ben.logan@gmail.com> Feb 10, 2005

Unit Conversions. Ben Logan <ben.logan@gmail.com> Feb 10, 2005 Unit Conversions Ben Logan Feb 0, 2005 Abstract Conversion between different units of measurement is one of the first concepts covered at the start of a course in chemistry or physics.

More information

SPEED, VELOCITY, AND ACCELERATION

SPEED, VELOCITY, AND ACCELERATION reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration

More information

1. Metric system- developed in Europe (France) in 1700's, offered as an alternative to the British or English system of measurement.

1. Metric system- developed in Europe (France) in 1700's, offered as an alternative to the British or English system of measurement. GS104 Basics Review of Math I. MATHEMATICS REVIEW A. Decimal Fractions, basics and definitions 1. Decimal Fractions - a fraction whose deonominator is 10 or some multiple of 10 such as 100, 1000, 10000,

More information

b. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time.

b. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time. I. What is Motion? a. Motion - is when an object changes place or position. To properly describe motion, you need to use the following: 1. Start and end position? 2. Movement relative to what? 3. How far

More information

1 of 10 11/23/2009 6:37 PM

1 of 10 11/23/2009 6:37 PM hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction

More information

DIMENSIONAL ANALYSIS #2

DIMENSIONAL ANALYSIS #2 DIMENSIONAL ANALYSIS #2 Area is measured in square units, such as square feet or square centimeters. These units can be abbreviated as ft 2 (square feet) and cm 2 (square centimeters). For example, we

More information

Chapter 1 Units, Physical Quantities, and Vectors

Chapter 1 Units, Physical Quantities, and Vectors Chapter 1 Units, Physical Quantities, and Vectors 1 The Nature of Physics Physics is an experimental science. Physicists make observations of physical phenomena. They try to find patterns and principles

More information

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017 AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017 Dear Student: The AP physics course you have signed up for is designed to prepare you for a superior performance on the AP test. To complete material

More information

Student Outcomes. Lesson Notes. Classwork. Exercises 1 and 2 (3 minutes) Socratic Discussion (3 minutes)

Student Outcomes. Lesson Notes. Classwork. Exercises 1 and 2 (3 minutes) Socratic Discussion (3 minutes) Student Outcomes Students continue to practice working with very small and very large numbers expressed in scientific notation. Students read, write, and perform operations on numbers expressed in scientific

More information

Name DATE Per TEST REVIEW. 2. A picture that shows how two variables are related is called a.

Name DATE Per TEST REVIEW. 2. A picture that shows how two variables are related is called a. Name DATE Per Completion Complete each statement. TEST REVIEW 1. The two most common systems of standardized units for expressing measurements are the system and the system. 2. A picture that shows how

More information

EXERCISE # 1.Metric Measurement & Scientific Notation

EXERCISE # 1.Metric Measurement & Scientific Notation EXERCISE # 1.Metric Measurement & Scientific Notation Student Learning Outcomes At the completion of this exercise, students will be able to learn: 1. How to use scientific notation 2. Discuss the importance

More information

W i f(x i ) x. i=1. f(x i ) x = i=1

W i f(x i ) x. i=1. f(x i ) x = i=1 Work Force If an object is moving in a straight line with position function s(t), then the force F on the object at time t is the product of the mass of the object times its acceleration. F = m d2 s dt

More information

MEASUREMENT. Historical records indicate that the first units of length were based on people s hands, feet and arms. The measurements were:

MEASUREMENT. Historical records indicate that the first units of length were based on people s hands, feet and arms. The measurements were: MEASUREMENT Introduction: People created systems of measurement to address practical problems such as finding the distance between two places, finding the length, width or height of a building, finding

More information

DIMENSIONAL ANALYSIS #2

DIMENSIONAL ANALYSIS #2 DIMENSIONAL ANALYSIS #2 Area is measured in square units, such as square feet or square centimeters. These units can be abbreviated as ft 2 (square feet) and cm 2 (square centimeters). For example, we

More information

Version A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

Version A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. Physics Unit Exam, Kinematics 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. What is the magnitude of the gravitational force exerted by

More information

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc. Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

Physics Kinematics Model

Physics Kinematics Model Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous

More information

Lesson 8: Velocity. Displacement & Time

Lesson 8: Velocity. Displacement & Time Lesson 8: Velocity Two branches in physics examine the motion of objects: Kinematics: describes the motion of objects, without looking at the cause of the motion (kinematics is the first unit of Physics

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Chapter 2 Measurement and Problem Solving

Chapter 2 Measurement and Problem Solving Introductory Chemistry, 3 rd Edition Nivaldo Tro Measurement and Problem Solving Graph of global Temperature rise in 20 th Century. Cover page Opposite page 11. Roy Kennedy Massachusetts Bay Community

More information

Student Exploration: Gravitational Force

Student Exploration: Gravitational Force 5. Drag STUDENT PACKET # 7 Name: Date: Student Exploration: Gravitational Force Big Idea 13: Forces and Changes in Motion Benchmark: SC.6.P.13.1 Investigate and describe types of forces including contact

More information

A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents

A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents Appendix A. Exponents and Radicals A11 A. Exponents and Radicals What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of radicals. Simplify

More information

UNIT 1 MASS AND LENGTH

UNIT 1 MASS AND LENGTH UNIT 1 MASS AND LENGTH Typical Units Typical units for measuring length and mass are listed below. Length Typical units for length in the Imperial system and SI are: Imperial SI inches ( ) centimetres

More information

In order to describe motion you need to describe the following properties.

In order to describe motion you need to describe the following properties. Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.

More information

Wheels Diameter / Distance Traveled

Wheels Diameter / Distance Traveled Mechanics Teacher Note to the teacher On these pages, students will learn about the relationships between wheel radius, diameter, circumference, revolutions and distance. Students will use formulas relating

More information

Chapter 18 Electric Forces and Electric Fields. Key Concepts:

Chapter 18 Electric Forces and Electric Fields. Key Concepts: Chapter 18 Lectures Monday, January 25, 2010 7:33 AM Chapter 18 Electric Forces and Electric Fields Key Concepts: electric charge principle of conservation of charge charge polarization, both permanent

More information

Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009

Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Laws Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Imaginary Cannon Newton was familiar with Galileo s analysis of projectile motion, and decided to take it one step further. He imagined

More information

Newton s Laws of Motion

Newton s Laws of Motion Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first

More information

ACCELERATION DUE TO GRAVITY

ACCELERATION DUE TO GRAVITY EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities

More information

CH 304K Practice Problems

CH 304K Practice Problems 1 CH 304K Practice Problems Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. How many millimeters are there in 25 feet? a. 7.6 10 2 mm b.

More information

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives to verify how the distance of a freely-falling body varies with time to investigate whether the velocity

More information

2After completing this chapter you should be able to

2After completing this chapter you should be able to After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time

More information

4.5.1 The Metric System

4.5.1 The Metric System 4.5.1 The Metric System Learning Objective(s) 1 Describe the general relationship between the U.S. customary units and metric units of length, weight/mass, and volume. 2 Define the metric prefixes and

More information

STATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Introduction Lecture Notes: J. Walt Oler Texas Tech University Contents What is Mechanics? Fundamental

More information

Physical Quantities and Units

Physical Quantities and Units Physical Quantities and Units 1 Revision Objectives This chapter will explain the SI system of units used for measuring physical quantities and will distinguish between vector and scalar quantities. You

More information

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1. IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

More information

Measurement: Converting Distances

Measurement: Converting Distances Measurement: Converting Distances Measuring Distances Measuring distances is done by measuring length. You may use a different system to measure length differently than other places in the world. This

More information

Problem Set 1 Solutions

Problem Set 1 Solutions Problem Set 1 Solutions Chapter 1: Representing Motion Questions: 6, 10, 1, 15 Exercises & Problems: 7, 10, 14, 17, 24, 4, 8, 44, 5 Q1.6: Give an example of a trip you might take in your car for which

More information

Module 3: Understanding the Metric System

Module 3: Understanding the Metric System 3.1 The Metric System Module 3: Understanding the Metric System 1. Understand the Basic Units of Length used in Health Care Careers The metric system is the most commonly used system of measurement in

More information

Chapter 4 One Dimensional Kinematics

Chapter 4 One Dimensional Kinematics Chapter 4 One Dimensional Kinematics 41 Introduction 1 4 Position, Time Interval, Displacement 41 Position 4 Time Interval 43 Displacement 43 Velocity 3 431 Average Velocity 3 433 Instantaneous Velocity

More information

Orbital Mechanics. Angular Momentum

Orbital Mechanics. Angular Momentum Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely

More information

Measurement. Customary Units of Measure

Measurement. Customary Units of Measure Chapter 7 Measurement There are two main systems for measuring distance, weight, and liquid capacity. The United States and parts of the former British Empire use customary, or standard, units of measure.

More information

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE 1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

More information

Homework 4. problems: 5.61, 5.67, 6.63, 13.21

Homework 4. problems: 5.61, 5.67, 6.63, 13.21 Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find

More information

STEM Fuse GAME:IT Unit 2

STEM Fuse GAME:IT Unit 2 STEM Fuse GAME:IT Unit 2 Key formulas for math & physics calculations used in game development Definition of velocity Velocity is similar to speed but it has direction. Let's recap what a speed is. Speed

More information

8. Newton's Law of Gravitation

8. Newton's Law of Gravitation 2 8. Newton's Law Gravitation Rev.nb 8. Newton's Law of Gravitation Introduction and Summary There is one other major law due to Newton that will be used in this course and this is his famous Law of Universal

More information

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

More information

356 CHAPTER 12 Bob Daemmrich

356 CHAPTER 12 Bob Daemmrich Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

More information

= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C

= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.

More information

Imperial Length Measurements

Imperial Length Measurements Unit I Measuring Length 1 Section 2.1 Imperial Length Measurements Goals Reading Fractions Reading Halves on a Measuring Tape Reading Quarters on a Measuring Tape Reading Eights on a Measuring Tape Reading

More information

Chapter 2 Formulas and Decimals

Chapter 2 Formulas and Decimals Chapter Formulas and Decimals Section A Rounding, Comparing, Adding and Subtracting Decimals Look at the following formulas. The first formula (P = A + B + C) is one we use to calculate perimeter of a

More information

MATH FOR NURSING MEASUREMENTS. Written by: Joe Witkowski and Eileen Phillips

MATH FOR NURSING MEASUREMENTS. Written by: Joe Witkowski and Eileen Phillips MATH FOR NURSING MEASUREMENTS Written by: Joe Witkowski and Eileen Phillips Section 1: Introduction Quantities have many units, which can be used to measure them. The following table gives common units

More information

Graphing Motion. Every Picture Tells A Story

Graphing Motion. Every Picture Tells A Story Graphing Motion Every Picture Tells A Story Read and interpret motion graphs Construct and draw motion graphs Determine speed, velocity and accleration from motion graphs If you make a graph by hand it

More information

REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52

REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52 REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts which are taught in the specified math course.

More information

UNIT (1) MEASUREMENTS IN CHEMISTRY

UNIT (1) MEASUREMENTS IN CHEMISTRY UNIT (1) MEASUREMENTS IN CHEMISTRY Measurements are part of our daily lives. We measure our weights, driving distances, and gallons of gasoline. As a health professional you might measure blood pressure,

More information

Experiment 2 Free Fall and Projectile Motion

Experiment 2 Free Fall and Projectile Motion Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8

More information

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2 Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

More information

1.3.1 Position, Distance and Displacement

1.3.1 Position, Distance and Displacement In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an

More information

Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

More information

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left. The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

More information

Review Exercise Set 3

Review Exercise Set 3 Review Eercise Set 3 Eercise 1: The larger of two positive numbers is greater than the smaller. Find the two numbers if their product is 63. Eercise : The length of a rectangle is 4 inches less than twice

More information

Metric Units of Length

Metric Units of Length 7.2 Metric Units of Length 7.2 OBJECTIVES. Know the meaning of metric prefixes 2. Estimate metric units of length 3. Convert metric units of length NOTE Even in the United States, the metric system is

More information

Activity 5a Potential and Kinetic Energy PHYS 010. To investigate the relationship between potential energy and kinetic energy.

Activity 5a Potential and Kinetic Energy PHYS 010. To investigate the relationship between potential energy and kinetic energy. Name: Date: Partners: Purpose: To investigate the relationship between potential energy and kinetic energy. Materials: 1. Super-balls, or hard bouncy rubber balls. Metre stick and tape 3. calculator 4.

More information

LESSON 10 GEOMETRY I: PERIMETER & AREA

LESSON 10 GEOMETRY I: PERIMETER & AREA LESSON 10 GEOMETRY I: PERIMETER & AREA INTRODUCTION Geometry is the study of shapes and space. In this lesson, we will focus on shapes and measures of one-dimension and two-dimensions. In the next lesson,

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

Student Exploration: Unit Conversions

Student Exploration: Unit Conversions Name: Date: Student Exploration: Unit Conversions Vocabulary: base unit, cancel, conversion factor, dimensional analysis, metric system, prefix, scientific notation Prior Knowledge Questions (Do these

More information

Newton s Third Law. Newton s Third Law of Motion. Action-Reaction Pairs

Newton s Third Law. Newton s Third Law of Motion. Action-Reaction Pairs Section 4 Newton s Third Law Reading Preview Key Concepts What is Newton s third law of motion? How can you determine the momentum of an object? What is the law of conservation of momentum? Key Terms momentum

More information

2 The Structure of Atoms

2 The Structure of Atoms CHAPTER 4 2 The Structure of Atoms SECTION Atoms KEY IDEAS As you read this section, keep these questions in mind: What do atoms of the same element have in common? What are isotopes? How is an element

More information

Chapter 1 Lecture Notes: Science and Measurements

Chapter 1 Lecture Notes: Science and Measurements Educational Goals Chapter 1 Lecture Notes: Science and Measurements 1. Explain, compare, and contrast the terms scientific method, hypothesis, and experiment. 2. Compare and contrast scientific theory

More information

Section 1 Tools and Measurement

Section 1 Tools and Measurement Section 1 Tools and Measurement Key Concept Scientists must select the appropriate tools to make measurements and collect data, to perform tests, and to analyze data. What You Will Learn Scientists use

More information

Measurements 1. BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com. In this section we will look at. Helping you practice. Online Quizzes and Videos

Measurements 1. BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com. In this section we will look at. Helping you practice. Online Quizzes and Videos BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com Measurements 1 In this section we will look at - Examples of everyday measurement - Some units we use to take measurements - Symbols for units and converting

More information

3. KINEMATICS IN TWO DIMENSIONS; VECTORS.

3. KINEMATICS IN TWO DIMENSIONS; VECTORS. 3. KINEMATICS IN TWO DIMENSIONS; VECTORS. Key words: Motion in Two Dimensions, Scalars, Vectors, Addition of Vectors by Graphical Methods, Tail to Tip Method, Parallelogram Method, Negative Vector, Vector

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

Perimeter, Area, and Volume

Perimeter, Area, and Volume Perimeter is a measurement of length. It is the distance around something. We use perimeter when building a fence around a yard or any place that needs to be enclosed. In that case, we would measure the

More information

4 Gravity: A Force of Attraction

4 Gravity: A Force of Attraction CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

More information

Preparation for BioScience Academy Math Assessment Test

Preparation for BioScience Academy Math Assessment Test Preparation for BioScience Academy Math Assessment Test Math is an essential component of laboratory science and solid math skills are required for a successful career in this field. To be eligible for

More information

Measurement of Length, Mass, Volume and Density

Measurement of Length, Mass, Volume and Density Measurement of Length, Mass, Volume and Density Experimental Objective The objective of this experiment is to acquaint you with basic scientific conventions for measuring physical quantities. You will

More information

Focused Learning Lesson Science Grades 9-12 PS-H-E2

Focused Learning Lesson Science Grades 9-12 PS-H-E2 Focused Learning Lesson Science Grades 9-12 PS-H-E2 Overview: This lesson is designed to review the basic relationships of speed, velocity, and acceleration. During the lesson, students will review the

More information

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make

More information

Conversions. 12 in. 1 ft = 1.

Conversions. 12 in. 1 ft = 1. Conversions There are so many units that you can use to express results that you need to become proficient at converting from one to another. Fortunately, there is an easy way to do this and it works every

More information

Speed, velocity and acceleration

Speed, velocity and acceleration Chapter Speed, velocity and acceleration Figure.1 What determines the maximum height that a pole-vaulter can reach? 1 In this chapter we look at moving bodies, how their speeds can be measured and how

More information

hp calculators HP 35s Unit Conversions Metric units and Imperial units Conversion keys Practice working problems involving conversions

hp calculators HP 35s Unit Conversions Metric units and Imperial units Conversion keys Practice working problems involving conversions Metric units and Imperial units Conversion keys Practice working problems involving conversions Performing conversions that are not built in Special considerations for temperature conversions Metric units

More information

2-1 Position, Displacement, and Distance

2-1 Position, Displacement, and Distance 2-1 Position, Displacement, and Distance In describing an object s motion, we should first talk about position where is the object? A position is a vector because it has both a magnitude and a direction:

More information

Activity Standard and Metric Measuring

Activity Standard and Metric Measuring Activity 1.3.1 Standard and Metric Measuring Introduction Measurements are seen and used every day. You have probably worked with measurements at home and at school. Measurements can be seen in the form

More information

STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws

STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

Exemplar Problems Physics

Exemplar Problems Physics Chapter Eight GRAVITATION MCQ I 8.1 The earth is an approximate sphere. If the interior contained matter which is not of the same density everywhere, then on the surface of the earth, the acceleration

More information

Fractions, Ratios, and Proportions Work Sheets. Contents

Fractions, Ratios, and Proportions Work Sheets. Contents Fractions, Ratios, and Proportions Work Sheets The work sheets are grouped according to math skill. Each skill is then arranged in a sequence of work sheets that build from simple to complex. Choose the

More information

Revision Notes Adult Numeracy Level 2

Revision Notes Adult Numeracy Level 2 Revision Notes Adult Numeracy Level 2 Place Value The use of place value from earlier levels applies but is extended to all sizes of numbers. The values of columns are: Millions Hundred thousands Ten thousands

More information

Measurement and Measurement Error

Measurement and Measurement Error 1 Measurement and Measurement Error PHYS 1301 F99 Prof. T.E. Coan Version: 8 Sep 99 Introduction Physics makes both general and detailed statements about the physical universe. These statements are organized

More information

Speed, acceleration, friction, inertia, force, gravity 11/13/15

Speed, acceleration, friction, inertia, force, gravity 11/13/15 Speed, acceleration, friction, inertia, force, gravity 11/13/15 Sarah starts at a positive position along the x- axis. She then undergoes a negative displacement. Her final position A. is positive. B.

More information

Lab 2: Vector Analysis

Lab 2: Vector Analysis Lab 2: Vector Analysis Objectives: to practice using graphical and analytical methods to add vectors in two dimensions Equipment: Meter stick Ruler Protractor Force table Ring Pulleys with attachments

More information

2. Length, Area, and Volume

2. Length, Area, and Volume Name Date Class TEACHING RESOURCES BASIC SKILLS 2. In 1960, the scientific community decided to adopt a common system of measurement so communication among scientists would be easier. The system they agreed

More information

Why Go Metric? Robert Lipsett, Engineering Manager Thomson Industries, Inc. Wood Dale, IL 540-633-3549 www.thomsonlinear.com

Why Go Metric? Robert Lipsett, Engineering Manager Thomson Industries, Inc. Wood Dale, IL 540-633-3549 www.thomsonlinear.com Why Go Metric? Robert Lipsett, Engineering Manager Thomson Industries, Inc. Wood Dale, IL 540-633-3549 www.thomsonlinear.com The U.S. is a multi-lingual country, in its measurement units as well as its

More information

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight 1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled

More information

circular motion & gravitation physics 111N

circular motion & gravitation physics 111N circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

More information

Overview for Families

Overview for Families unit: Ratios and Rates Mathematical strand: Number The following pages will help you to understand the mathematics that your child is currently studying as well as the type of problems (s)he will solve

More information