RESISTANCE & OHM S LAW (PART I

Save this PDF as:

Size: px
Start display at page:

Transcription

1 RESISTANCE & OHM S LAW (PART I and II) Objectives: To understand the relationship between potential and current in a resistor and to verify Ohm s Law. To understand the relationship between potential and current in a Light Emitting Diode. To understand simple parallel and series circuits and to use this understanding to determine the circuit connections of a hidden black box resistor network. To test the connection between resistance, current, voltage, and power dissipation. Equipment: Digital multi-meters(2 per group)(dmm for short), variable power supply (prefer 0-18 Volt), snap-on-circuit-board, 6V lamps, resistors, LED's of different colors. A multi-meter is a device that can be used as a voltmeter, an ammeter, or an ohmmeter. Background: Electric resistance, R, is defined by: R = V / I, (1) where V is the potential difference across the resistor and I is the current through it. The unit of resistance is the Ohm. ( Ω = Volt/Ampere = V/A). If R = 0 in a circuit, it is called a "short" circuit; if R =, it is called an open circuit. The product P = I V is the power dissipated in the resistor (of course P = I V = I 2 R = V 2 / R ). Ohm's Law: For many materials R is a constant, independent of I and V. The linear relationship between V and I, V = I R is called Ohm s Law. Materials obeying Ohm s Law are said to be "Ohmic" materials. (Simple light bulbs do NOT satisfy this Law). Equivalent Resistance: When several resistors are connected together, they can usually be replaced with a single resistor that will have the same potential drop and draw the same current as the combination of resistors. This resistance is called the equivalent resistance of the circuit. Resistors in Series: Figure 1. Series Connections When the same current flows through each of a number of resistors, they are said to be in series. The equivalent resistance R eq for resistors connected in series is Ohm 1

2 R eq = R i i (2) Note that R eq is larger than any of the individual resistances. Resistors in Parallel Figure 2. Parallel Connections When the same potential difference appears across each of a number of resistors, they are said to be in parallel. The equivalent resistance R eq for resistors connected in parallel is 1 1 = (3) Req R i i Note that Req is smaller than any of the individual resistances. Electrical Measurements: A voltmeter is a device to measure the potential drop across a circuit. It has a very large resistance so that the current through it is negligible, and it can be assumed that the potential drop across the resistor in Fig. 6a is the same whether or not the voltmeter is attached. A voltmeter is always connected in parallel with the circuit element whose potential difference is to be measured. An ammeter is a device to measure the current through a circuit element. It has a very small resistance so that the potential drop across is negligible, and it can be assumed that the current through the resistor in Fig. 6b is the same whether or not the ammeter is inserted in the circuit. An ammeter is always connected in series with circuit element whose current is to be measured. Ohm 2

3 Figure 6a Voltmeter Connection Figure 6b Ammeter Connection An ohmmeter is a device that measures resistance. It is connected in parallel across the resistance to measured. You should NOT measure the resistance of a resistor that is still part of a circuit. You will probably destroy the ohm-meter, certainly you will measure the wrong resistance. In practise first disconnect all leads of the resistor to be measured, so no electric current runs through the resistor, except for the current supplied by the battery inside the ohm-meter itself.. PART I Diagnostic Phase: You should always make a schematic drawing on paper before building anything! Make a simple circuit on the snap-on-circuit-board, consisting of three 6V lamps in series and a 18V power supply. Start at low power supply output and slowly turn up the power until the lamps start to glow. Switch the multi-meter to the Voltage Mode and measure the total voltage, then the voltage drop over each lamp. Switch the multi-meter to the Ampere Mode and measure the electric current flowing out of the power supply, then the current between each lamp. Since by now you have become an expert in electric circuits, put the lamps back in the box and let s start with the serious stuff. Activity 1: Ohms' Law. You will measure an unknown resistance in three ways and verify that Ohm s Law applies: A. (Easy way): Use an ohmmeter to measure the resistance. See if the measured resistance remains the same if the leads to the ohmmeter are reversed. B. (Fancy way): Connect an ammeter in series with the resistor and a voltmeter in parallel with it as shown below, i.e. use two multi-meters in the circuit. Use a variable output power supply to drive the circuit. As the output voltage is increased, measure I and V. To determine the resistance and verify Ohm s Law, use Graphical Analysis to plot I versus V for a number of different voltage settings, make a straight line fit to the data and obtain the correlation coefficient. From the slope you can obtain the resistance R. How? Ohm 3

4 C. (Way for dummies): Read the commercial color coding of the resistor. Does it agree with A and B? V A + Activity 2: Light emitting diode(led) - non-ohmic behavior. As an example of a device which does not obey Ohm's law, you will investigate an LED (Light Emitting Diode). For a NON-Ohmic device there is no easy way to measure its resistance with an ohmmeter. Actually its resistance is not fixed, but an I versus V plot clarifies its response to an applied voltage. A. Make a circuit by connecting a 100 ~ 200 ohm resistor in series with an LED. The resistor is put in to prevent burning out the LED. Connect a voltmeter across the resistor and measure the voltage across the resistor for several values of the supply voltage setting (keep it to be less than 5V to prevent damage to the LED). Since V power source = V ps is known, and V resistor + V LED = V ps, an alternative is to measure V LED directly. To measure the current I you may add an ammeter to the circuit as you did in Activity 1, but instead you may also calculate each time the electric current I from the reading V resistor of the Voltmeter and the known value R of the resistor (V = I R for an Ohmic resistor). At what values of the current does the LED emit light, and at which values does it not emit light? Now reverse the leads from the power supply and repeat the measurement of current in the same range of voltage setting. Compare your observations with what you would expect for Ohmic behavior. B. Try another diode with a different color. ( Different materials have different electron energy gaps. As the electrons jump the gap this leads to emission of light of different colors. Available are LED s which emit red, green, yellow, or blue light.) Ohm 4

5 voltmeter resistor LED voltage supply PART II Activity 3: Back to Ohmic resistors. For this activity you will use three resistors -- two with the same resistance and one with a different resistance (10 kω, 10 kω, and 20 kω, for example). A. Determine all possible ways you can connect the resistors in series and/or parallel to give different equivalent resistances. Draw a diagram of each of these combinations, and calculate the theoretical equivalent resistance. B. Set up two of the circuits in A on the breadboard and measure the actual equivalent resistance with a ohmmeter and compare with your calculation. C. Calculate the power dissipated by each resistor in the two circuits in B if a 12 V power supply is connected across the circuit. Appendix: Resistors are coded with 4 colored stripes around the body of the resistor that allow easy determination of the resistance. The code for the first 3 colored bands is given below: RESISTOR COLOR CODES COLOR 1ST DIGIT 2ND DIGIT MULTIPLIER Silver Gold Black Brown Red Orange Yellow Green Blue Violet Gray White Ohm 5

6 The 4-th colored band gives the "tolerance," i. e., the uncertainty in the marked resistance, as follows: gold: 5% silver: 10% no color: 20% Example: Figure 8. A Color Coded Resistor Helpful Hint: Most people who get incorrect results in this experiment do so because they fail to use the multi-meter correctly. Make sure the multi-meter is reading ohms AND that the gain or sensitivity is at the maximum number of significant digits for that resistance. Change the sensitivity by trial and error the maximum number of digits. Ohm 6

7 RESISTANCE & OHM S LAW (preliminary questions) Names: Section: You have three identical light bulbs each with a constant (assume Ohmic) resistance of 150 Ω. Suppose you connect the circuits to a 12 V battery. (a) Draw diagrams showing all the 4 possible ways they can be connected in series and/or parallel. Rank the circuits as a whole in order of brightness (1 = brightest, 4 = dimmest). If ranking all 4 circuits is too difficult, just identify the 2 extremes, (which is the brightest, and which is dimmest). (c) Within each circuit, rank each of the 3 bulbs according to the relative brightness. (d) You can identify Power (= Energy per second) with the brightness. How is the current I passing through each bulb related to the brightness? Ohm 7

8 Report -- RESISTANCE & OHM S LAW (Part I) Name: Section: Partners: Date: Part I Diagnostic Phase, building a circuit: On the snap-on-circuit-board construct a simple circuit of three 6V lightbubs in series and connections to the 18 Volt power supply. Starting at low voltage, slowly turn up the voltage output of the power supply until the lamps start to glow. DO NOT GO HIGHER. Put the multi-meter on DC Volts and measure the total voltage over the three lamps. [WITHIN THE DC-VOLT RANGES ON THE MULTI-METER ALWAYS START WITH THE HIGHEST RANGE. If the reading is too low, turn to a lower range.] Now measure the voltage drop over each lamp. Put the multi-meter on DC Ampere [again start at highest range] and measure the electric current that flows out of the power supply. (In order to do this step, you have to interrupt the circuit and insert the leads of the Amp-meter). Measure the current in between lamp 1 and lamp 2. Activity 1: Determine an unknown resistance in three ways and verifying Ohm s Law. a.) Direct from Ohm-meter: reading = R unknown = Note that the resistor R unknown at this point should be free-standing (not part of any circuit). b.) From I versus V graph: Draw a circuit of the unknown resistor and the power supply, and indicate where in this circuit you measure the current I and the voltage V. Construct the circuit you have just drawn. Include leads to the power supply, leads to the voltmeter, and leads to the current meter. Ohm 8

9 In this circuit vary the output voltage of the power supply and measure voltage and current at least for 12 settings in the range 0 18 V, (measure the voltage over R and the current passing through R). V I V I V I V I Make a clear graphical representation ( V on horizontal axis, I on vertical axis ) and include the graph with the report. (Don t forget labeling the axes and give it an appropriate title). How is the slope of the best fit line related to the resistance R? R unknown = correlation = Verify Ohmic behavior by checking if your data agree with Ohm s Law. c.) Resistance determined for the same unknown resistor from the color code: R unknown = ± How well does this value agree with your measured value? Ohm 9

10 Activity 2: Light emitting diode(led) - non-ohmic behavior. [Do not allow more than 10 ma of current to flow through the LED to prevent damage.] A. Draw a circuit connecting an LED and a 100 ~ 200 Ohm resistor in series with power source. Where in this circuit do you measure V and I? For simplicity, measure the voltage directly over the LED. Construct this circuit on the snap-on-circuit-board. B. The value of current I when the LED first lights up: ma C. The value of voltage over the LED, V LED when the LED first lights up: V Describe your observations that show non-ohmic behavior of the LED. Include a table of I versus V LED for the range 0 5 V for again at least 12 settings. Since current I may change rapidly, aim at steps of at most 0.5 ma for the current. Remember I-max = 10 ma!!! In addition, show several data points (steps of about 0.1 V) just above the voltage where the LED starts lighting up and the current is still small. What happens if you reverse the leads of the LED? (rotate the LED 180 degrees, leave everything else unchanged). V LED I V LED I V LED I V LED I Ohm 10

11 Make a graph showing I versus V LED. Include also the data for reversed leads in the same graph by extending the voltage axis to include also negative values. Include the graph in the final report. Comment on the several aspects of the behaviour shown in the graph. How is this non- Ohmic behavior different from Ohmic behavior B. OPTIONAL: What do you think determines the color of the LED? Ohm 11

12 Report -- RESISTANCE & OHM S LAW (Part II) Name: Section: Partners: Date: PART II Activity 3: Resistance combinations. Use the ohmmeter to measure the resistances of the three resistors you will use. Choose two of the resistances to be as closely the same value as possible and the other resistance to be at least twice as big. R 1 = R 2 = R 3 = A. Draw diagrams of all possible ways that you can connect these three resistances in series and/or parallel to give different equivalent resistances. For each diagram calculate the theoretical equivalent resistance (show your work) B. Set up two of the circuits and measure the actual value with an ohmmeter. C. Calculate the power dissipated by each resistor in the two circuits in B if a 12 V battery is connected across the circuit. [Not all entries are needed to be filled.] Circuit 1 R eq (theoretical) = R eq (experimental) = Power dissipated = diagram work Circuit 2 R eq (theoretical) = R eq (experimental) = Ohm 12

13 Power dissipated = diagram work Circuit 3 R eq (theoretical) = R eq (experimental) = Power dissipated = diagram work Circuit 4 R eq (theoretical) = R eq (experimental) = Power dissipated = diagram work Ohm 13

14 Circuit 5 R eq (theoretical) = R eq (experimental) = Power dissipated = diagram work Ohm 14

Background: Electric resistance, R, is defined by:

RESISTANCE & OHM S LAW (PART I and II) - 8 Objectives: To understand the relationship between applied voltage and current in a resistor and to verify Ohm s Law. To understand the relationship between applied

R A _ + Figure 2: DC circuit to verify Ohm s Law. R is the resistor, A is the Ammeter, and V is the Voltmeter. A R _ +

Physics 221 Experiment 3: Simple DC Circuits and Resistors October 1, 2008 ntroduction n this experiment, we will investigate Ohm s Law, and study how resistors behave in various combinations. Along the

Lab 3 Ohm s Law and Resistors

` Lab 3 Ohm s Law and Resistors What You Need To Know: The Physics One of the things that students have a difficult time with when they first learn about circuits is the electronics lingo. The lingo and

Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament

Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament Name Partner Date Introduction Carbon resistors are the kind typically used in wiring circuits. They are made from a small cylinder of

Basic Ohm s Law & Series and Parallel Circuits

2:256 Let there be no compulsion in religion: Truth stands out clear from Error: whoever rejects evil and believes in Allah hath grasped the most trustworthy hand-hold that never breaks. And Allah heareth

Series and Parallel Resistive Circuits Physics Lab VIII

Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested

Lab 3 - DC Circuits and Ohm s Law

Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in

Electrical Measurements

Electrical Measurements Experimental Objective The objective of this experiment is to become familiar with some of the electrical instruments. You will gain experience by wiring a simple electrical circuit

Circuits and Resistivity

Circuits and Resistivity Look for knowledge not in books but in things themselves. W. Gilbert OBJECTIVES To learn the use of several types of electrical measuring instruments in DC circuits. To observe

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 1 - D.C. CIRCUITS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME - D.C. CIRCUITS Be able to use circuit theory to determine voltage, current and resistance in direct

very small Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: P31220 Lab

Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: Ohm s Law for electrical resistance, V = IR, states the relationship between

DC Circuits (Combination of resistances)

Name: Partner: Partner: Partner: DC Circuits (Combination of resistances) EQUIPMENT NEEDED: Circuits Experiment Board One Dcell Battery Wire leads Multimeter 100, 330, 1k resistors Purpose The purpose

Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance

Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance Objective: In this experiment you will learn to use the multi-meter to measure voltage, current and resistance. Equipment: Bread

Lab #2: Parallel and Series Resistors

Fall 2013 EELE 250 Circuits, Devices, and Motors Lab #2: Parallel and Series Resistors Scope: Use a multimeter to measure resistance, DC voltage, and current Use the color code for resistors. Use the prototype-board

Activity 1: Light Emitting Diodes (LEDs)

Activity 1: Light Emitting Diodes (LEDs) Time Required: 45 minutes Materials List Group Size: 2 Each pair needs: One each of the following: One Activity 1 bag containing: o Red LED o Yellow LED o Green

Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws

Physics 182 Spring 2013 Experiment #6 1 Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules

Name Period AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Dr. Campbell 1. Four 240 Ω light bulbs are connected in series. What is the total resistance of the circuit? What

`Ohm s Law III -- Resistors in Series and Parallel

`Ohm s Law III -- esistors in Series and Parallel by Dr. ames E. Parks Department of Physics and Astronomy 40 Nielsen Physics Building he University of ennessee Knoxville, ennessee 7996-00 Copyright August,

People s Physics Book

The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy

Fig. 1 Analogue Multimeter Fig.2 Digital Multimeter

ELECTRICAL INSTRUMENT AND MEASUREMENT Electrical measuring instruments are devices used to measure electrical quantities such as electric current, voltage, resistance, electrical power and energy. MULTIMETERS

Lab E1: Introduction to Circuits

E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter

Lab #2: Non-Ideal Sources and Renewable Energy Sources

Lab #2: Non-Ideal Sources and Renewable Energy Sources Theory & Introduction Goals for Lab #2 The goals for this lab are to introduce you to the limitations of real power sources and compare them to the

Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws

Physics 182 Summer 2013 Experiment #5 1 Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

Lab 5: Simple Electrical Circuits

Lab 5: Simple Electrical Circuits Introduction: In this laboratory you will explore simple DC (direct current) electrical circuits. The primary goal of the lab will be to develop a model for electricity.

Experiment #3, Ohm s Law

Experiment #3, Ohm s Law 1 Purpose Physics 182 - Summer 2013 - Experiment #3 1 To investigate the -oltage, -, characteristics of a carbon resistor at room temperature and at liquid nitrogen temperature,

Electrostatics. Electrostatics Version 2

1. A 150-watt lightbulb is brighter than a 60.-watt lightbulb when both are operating at a potential difference of 110 volts. Compared to the resistance of and the current drawn by the 150-watt lightbulb,

ElectronicsLab2.nb. Electronics Lab #2. Simple Series and Parallel Circuits

Electronics Lab #2 Simple Series and Parallel Circuits The definitions of series and parallel circuits will be given in this lab. Also, measurements in very simple series and parallel circuits will be

Q1. (a) The diagram shows the voltage-current graphs for three different electrical components.

Q. (a) The diagram shows the voltage-current graphs for three different electrical components. Which one of the components A, B or C could be a 3 volt filament lamp? Explain the reason for your choice...................

EXPERIMENT 7 OHM S LAW, RESISTORS IN SERIES AND PARALLEL

260 7- I. THEOY EXPEIMENT 7 OHM S LAW, ESISTOS IN SEIES AND PAALLEL The purposes of this experiment are to test Ohm's Law, to study resistors in series and parallel, and to learn the correct use of ammeters

Electrical Fundamentals Module 3: Parallel Circuits

Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module

Measuring Electric Phenomena: the Ammeter and Voltmeter

Measuring Electric Phenomena: the Ammeter and Voltmeter 1 Objectives 1. To understand the use and operation of the Ammeter and Voltmeter in a simple direct current circuit, and 2. To verify Ohm s Law for

Lab 1: DC Circuits. Student 1, student1@ufl.edu Partner : Student 2, student2@ufl.edu

Lab Date Lab 1: DC Circuits Student 1, student1@ufl.edu Partner : Student 2, student2@ufl.edu I. Introduction The purpose of this lab is to allow the students to become comfortable with the use of lab

Science AS90191 Describe Aspects of Physics.

Circuits and components Science AS90191 Describe Aspects of Physics. An electric current is the movement of electrons (negatively charged particles). A circuit is made up of components connected together

SIMPLE ELECTRIC CIRCUITS

-18- Preparatory Questions: (also read this guide sheet, which contains some of the answers!) 1. State Ohm s Law, defining every term in the equation. 2. If a bulb connected directly to a 6 V battery glows

Using Ohm s Law to Build a Voltage Divider

Using Ohm s Law to Build a Voltage Provided by TryEngineering - Lesson Focus Students will design, build, and characterize one of the basic circuits of electrical engineering, the voltage divider. These

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME LAB MEETING TIME Reference: C.W. Alexander and M.N.O Sadiku, Fundamentals

Lab 5 RC Circuits. What You Need To Know: Physics 226 Lab

Lab 5 R ircuits What You Need To Know: The Physics In the previous two labs you ve dealt strictly with resistors. In today s lab you ll be using a new circuit element called a capacitor. A capacitor consists

Using Ohm s Law to Build a Voltage Divider

Using Ohm s Law to Build a Voltage Provided by TryEngineering - Lesson Focus Students will design, build, and characterize one of the basic circuits of electrical engineering, the voltage divider. These

HOW TO USE MULTIMETER. COMPILE BY: Dzulautotech

HOW TO USE MULTIMETER COMPILE BY: Dzulautotech 1. GENERAL Electricity is absolutely necessary for an automobile. It is indispensable when the engine is started, the air fuel mixture is ignited and exploded,

Your Multimeter. The Arduino Uno 10/1/2012. Using Your Arduino, Breadboard and Multimeter. EAS 199A Fall 2012. Work in teams of two!

Using Your Arduino, Breadboard and Multimeter Work in teams of two! EAS 199A Fall 2012 pincer clips good for working with breadboard wiring (push these onto probes) Your Multimeter probes leads Turn knob

Lab 2: Resistance, Current, and Voltage

2 Lab 2: Resistance, Current, and Voltage I. Before you come to la.. A. Read the following chapters from the text (Giancoli): 1. Chapter 25, sections 1, 2, 3, 5 2. Chapter 26, sections 1, 2, 3 B. Read

Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits 7. Introduction...7-7. Electromotive Force...7-3 7.3 Resistors in Series and in Parallel...7-5 7.4 Kirchhoff s Circuit Rules...7-7 7.5 Voltage-Current Measurements...7-9

Analog and Digital Meters

Analog and Digital Meters Devices and Measurements Objective At the conclusion of this presentation the student will describe and identify: Safety precautions when using test equipment Analog Multimeters

Kirchhoff's Rules and Applying Them

[ Assignment View ] [ Eðlisfræði 2, vor 2007 26. DC Circuits Assignment is due at 2:00am on Wednesday, February 21, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.

Chapter 11- Electricity

Chapter 11- Electricity Course Content Definition of Electricity Circuit Diagrams Series and Parallel Circuits Calculating total resistances Measurement of Electricity Ammeters and Voltmeters Ohm s Law

RESISTOR COLOR CODE GUIDE

RESISTOR COLOR CODE GUIDE - Band Code. KΩ % st th nd rd Color st Band st nd Band rd Band nd rd Decimal Multiplier K, K, K, M,, M,,,,,,,.. th th % % % % % - Band Code Ω % Resistor Lead Left Calculation

Kirchhoff s Voltage Law and RC Circuits

Kirchhoff s oltage Law and RC Circuits Apparatus 2 1.5 batteries 2 battery holders DC Power Supply 1 multimeter 1 capacitance meter 2 voltage probes 1 long bulb and 1 round bulb 2 sockets 1 set of alligator

Experiment: Series and Parallel Circuits

Phy203: General Physics Lab page 1 of 6 Experiment: Series and Parallel Circuits OBJECTVES MATERALS To study current flow and voltages in series and parallel circuits. To use Ohm s law to calculate equivalent

Student Exploration: Circuits

Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these

Experiment #4, Ohmic Heat

Experiment #4, Ohmic Heat 1 Purpose Physics 18 - Fall 013 - Experiment #4 1 1. To demonstrate the conversion of the electric energy into heat.. To demonstrate that the rate of heat generation in an electrical

PHYSICS 326 LAB #2: The Voltage Divider Page 1

PHYSICS 326 LAB #2: The Voltage Divider Page 1 PURPOSES: to gain some experience with soldering to introduce the concept and jargon of voltage dividers to introduce the use of the Thevenin equivalent method

Maximum value. resistance. 1. Connect the Current Probe to Channel 1 and the Differential Voltage Probe to Channel 2 of the interface.

Series and Parallel Circuits Computer 23 Components in an electrical circuit are in series when they are connected one after the other, so that the same current flows through both of them. Components are

Circuit Analyses. Laboration 1 how to measure Current and Voltage and Resistance

Circuit Analyses. Laboration 1 how to measure Current and Voltage and Resistance This booklet, signed by the teacher, serves as a receipt for passing the lab. Each student must have a booklet of his own

Physics Worksheet Electric Circuits Section: Name: Series Circuits

Do Now: (1) What is electric circuit? (2) Convert the following picture into schematic diagram. Series Circuits 4. Label every component of the circuit; identify each of the voltage and current. 5. Relation

RC CIRCUIT. THEORY: Consider the circuit shown below in Fig. 1: a S. V o FIGURE 1

RC CIRCUIT OBJECTIVE: To study the charging and discharging process for a capacitor in a simple circuit containing an ohmic resistance, R, and a capacitance, C. THEORY: Consider the circuit shown below

Discovering Ohm s Law. Original: Revision: 17 October 2003 11 July 2007 George Wolfe, Alison Shull, Martin Alderman

Title: Discovering Ohm s Law Original: Revision: Authors: Appropriate Level: Abstract: Time Required: NY Standards Met: Special Notes: 17 October 2003 11 July 2007 George Wolfe, Alison Shull, Martin Alderman

Chapter 13: Electric Circuits

Chapter 13: Electric Circuits 1. A household circuit rated at 120 Volts is protected by a fuse rated at 15 amps. What is the maximum number of 100 watt light bulbs which can be lit simultaneously in parallel

Lab 4 Series and Parallel Resistors

Lab 4 Series and Parallel Resistors What You Need To Know: (a) (b) R 3 FIGURE - Circuit diagrams. (a) and are in series. (b) and are not in series. The Physics Last week you examined how the current and

CIRCUIT DIAGRAMS AND COMPONENT DRAWINGS

CIRCUIT DIAGRAMS AND COMPONENT DRAWINGS Dr. Victor Giurgiutiu Page 70 1/17/01 BASIC MULTIMIETER OPERATION BASIC MULTIMETER INFORMATION Multimeter is a measuring instrument. It can be used to measure voltage,

Basic voltmeter use. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Basic voltmeter use This worksheet and all related files are licensed under the Creative Commons ttribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

Lab 6: Transformers in parallel and 3-phase transformers.

Lab 6: Transformers in parallel and 3-phase transformers. Objective: to learn how to connect transformers in parallel; to determine the efficiency of parallel connected transformers; to connect transformers

Students will need about 30 minutes to complete these constructed response tasks.

Electric Title of Circuits Concept Constructed Response Teacher Guide Students will need about 30 minutes to complete these constructed response tasks. Objectives assessed: Understand the functions of

Solutions to Bulb questions

Solutions to Bulb questions Note: We did some basic circuits with bulbs in fact three main ones I can think of I have summarized our results below. For the final exam, you must have an understanding of

Dr. Julie J. Nazareth

Name: Dr. Julie J. Nazareth Lab Partner(s): Physics: 133L Date lab performed: Section: Capacitors Parts A & B: Measurement of capacitance single, series, and parallel combinations Table 1: Voltage and

STUDY MATERIAL FOR CLASS 10+2 - Physics- CURRENT ELECTRICITY. The flow of electric charges in a particular direction constitutes electric current.

Chapter : 3 Current Electricity Current Electricity The branch of Physics which deals with the study of electric charges in motion is called current electricity. Electric current The flow of electric charges

Experiment NO.3 Series and parallel connection

Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.

Chapter 18: Circuits and Circuit Elements 1. Schematic diagram: diagram that depicts the construction of an electrical apparatus

Chapter 18: Circuits and Circuit Elements 1 Section 1: Schematic Diagrams and Circuits Schematic Diagrams Schematic diagram: diagram that depicts the construction of an electrical apparatus Uses symbols

Capacitors & RC Circuits

Capacitors & C Circuits Name: EQUIPMENT NEEDED: Circuits Experiment Board One D-cell Battery Wire leads Multimeter Capacitors(100 F, 330 F) esistors(1k, 4.7k ) Logger Pro Software, ULI Purpose The purpose

Essential Electrical Concepts

Essential Electrical Concepts Introduction Modern vehicles incorporate many electrical and electronic components and systems: Audio Lights Navigation Engine control Transmission control Braking and traction

Experiment 4 ~ Resistors in Series & Parallel

Experiment 4 ~ Resistors in Series & Parallel Objective: In this experiment you will set up three circuits: one with resistors in series, one with resistors in parallel, and one with some of each. You

EE 1202 Experiment #2 Resistor Circuits

EE 1202 Experiment #2 Resistor Circuits 1. ntroduction and Goals: Demonstrates the voltage-current relationships in DC and AC resistor circuits. Providing experience in using DC power supply, digital multimeter,

TOPIC 3.1: ELECTRIC CIRCUITS

TOPIC 3.1: ELECTRIC CIRCUITS S4P-3-1 S4P-3-2 S4P-3-3 S4P-3-4 S4P-3-5 S4P-3-6 Describe the origin of conventional current and relate its direction to the electron flow in a conductor. Describe the historical

The diagram shows a negatively charged plastic rod held near to a thin stream of water. The water is attracted towards the rod.

Current electricity exam qs C grade Madeley High School Q.(a) The diagram shows a negatively charged plastic rod held near to a thin stream of water. The water is attracted towards the rod. Which one of

Objectives 200 CHAPTER 4 RESISTANCE

Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys

Question Bank. Electric Circuits, Resistance and Ohm s Law

Electric Circuits, Resistance and Ohm s Law. Define the term current and state its SI unit. Ans. The rate of flow of charge in an electric circuit is called current. Its SI unit is ampere. 2. (a) Define

SERIES-PARALLEL DC CIRCUITS

Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills

Unit 7: Electric Circuits

Multiple Choice Portion 1. The diagram below shows part of an electrical circuit. Unit 7: Electric Circuits 4. A 12 V battery supplies a 5.0 A current to two light bulbs as shown below. What are the magnitude

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.

Circuit symbol. Each of the cells has a potential difference of 1.5 volts. Figure 1. Use the correct answer from the box to complete the sentence.

Q.(a) Draw one line from each circuit symbol to its correct name. Circuit symbol Name Diode Light-dependent resistor (LDR) Lamp Light-emitting diode (LED) (3) Figure shows three circuits. The resistors

Resistors in Series and Parallel Circuits

69 Resistors in Series and Parallel Circuits E&M: Series and parallel circuits Equipment List DataStudio file: Not Required Qty s Part Numbers 1 C/DC Electronics Lab EM-8656 2 D cell 1.5 volt Introduction

Experiment 6 Parallel Circuits

Experiment 6 Parallel Circuits EL 111 - DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives: 1. For the student to investigate

Solar Energy Discovery Lab

Solar Energy Discovery Lab Objective Set up circuits with solar cells in series and parallel and analyze the resulting characteristics. Introduction A photovoltaic solar cell converts radiant (solar) energy

How do you measure voltage and current in electric circuits? Materials

20A Electricity How do you measure voltage and current in electric circuits? Electricity Investigation 20A We use electricity every day, nearly every minute! In this Investigation you will build circuits

Capacitors. Goal: To study the behavior of capacitors in different types of circuits.

Capacitors Goal: To study the behavior of capacitors in different types of circuits. Lab Preparation A capacitor stores electric charge. A simple configuration for a capacitor is two parallel metal plates.

Experiment A5. Hysteresis in Magnetic Materials

HYSTERESIS IN MAGNETIC MATERIALS A5 1 Experiment A5. Hysteresis in Magnetic Materials Objectives This experiment illustrates energy losses in a transformer by using hysteresis curves. The difference betwen

Ohm's Law and Circuits

2. Conductance, Insulators and Resistance A. A conductor in electricity is a material that allows electrons to flow through it easily. Metals, in general, are good conductors. Why? The property of conductance

Experiment 8 RC Circuits

Experiment 8 ircuits Nature, to be commanded, must be obeyed. F. Bacon (1561-1626) OBJETIVE To study a simple circuit that has time-dependent voltages and current. THEOY ircuits with steady currents and

Parallel DC circuits

Parallel DC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND

Physics 260 Calculus Physics II: E&M. RC Circuits

RC Circuits Object In this experiment you will study the exponential charging and discharging of a capacitor through a resistor. As a by-product you will confirm the formulas for equivalent capacitance

Experiment 4 Series Circuits

Experiment 4 Series Circuits EL 111 - DC Fundamentals By:Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives: 1. For the student to investigate the

Charge and Discharge of a Capacitor

Charge and Discharge of a Capacitor INTRODUCTION Capacitors 1 are devices that can store electric charge and energy. Capacitors have several uses, such as filters in DC power supplies and as energy storage

7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A

1. Compared to the number of free electrons in a conductor, the number of free electrons in an insulator of the same volume is less the same greater 2. Most metals are good electrical conductors because

Physics 42 Lab 4 Fall 2012 Cathode Ray Tube (CRT)

Physics 42 Lab 4 Fall 202 Cathode Ray Tube (CRT) PRE-LAB Read the background information in the lab below and then derive this formula for the deflection. D = LPV defl 2 SV accel () Redraw the diagram

How Does it Flow? Electricity, Circuits, and Motors

How Does it Flow? Electricity, Circuits, and Motors Introduction In this lab, we will investigate the behavior of some direct current (DC) electrical circuits. These circuits are the same ones that move

Electricity Review-Sheet

Name: ate: 1. The unit of electrical charge in the MKS system is the. volt. ampere. coulomb. mho 2. Which sketch best represents the charge distribution around a neutral electroscope when a positively