MGF 1107 CH 15 LECTURE NOTES Denson. Section 15.1

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "MGF 1107 CH 15 LECTURE NOTES Denson. Section 15.1"

Transcription

1 1 Section 15.1 Consider the house plan below. This graph represents the house. Consider the mail route below. This graph represents the mail route.

2 2 Definitions 1. Graph a structure that describes relationships. - Shows how objects are related. - Parts of a graph are: i. Vertices a finite set of points ii. Edge Line segment or curve that starts and ends at a vertex. iii. Loop An edge that starts and ends at the same vertex. 2. Degree of a Vertex the number of edges that meet at a particular vertex. - Count the number of line segments and cures attached to the vertex. 3. Even vertex a vertex with an even number of edges. 4. Odd vertex a vertex with an odd number of edges. 5. Adjacent vertices There is at least one edge connecting the two vertices. Example:

3 3 Example: Consider the state map below. Draw a graph where the vertices represent states and common borders represent edges. a) What is the degree of Washington? b) Is the degree of the vertex Idaho even or odd? c) Are Oregon and Wyoming adjacent vertices? d) Describe how to travel from Washington to Wyoming. 6. Path A sequence of adjacent vertices and edges connecting them. - Same vertex can be listed more than once. - Same edges can only be listed once. - Separate values with a comma. 7. Circuit A path that begins and ends at the same vertex. Example: You take a scenic vacation from WA through ID, MT, WY, OR, and then home. - All circuits are paths. - Not all paths are circuits.

4 4 8. Connected Graph There is at least one path connecting any two vertices on the graph. Example: 9. Disconnected path There is not at least one path connecting every vertex. Example: Example: 10. Components The separate pieces on a disconnected graph. 11. Bridge An edge that can be removed to leave a disconnected path. Example

5 5 12. Equivalent Graphs Two graphs with i. THE SAME NUMBER OF VERTICES, and ii. VERTICES THAT ARE CONNECTED IN THE SAME WAY. Example: Show that the two graphs are equivalent. Then draw a third equivalent graph.

6 6 Example: Draw a graph that models the city below. Create a path that allows the residents to walk across all bridges without crossing the same bridge twice.

7 7 Example: a) Draw a graph that models the connecting relationships in the floor plan. Use vertices to represent the rooms and the outside, and edges to represent the connecting doors. b) Use the graph to determine if it is possible to find a path that uses each door only once. If possible, trace out the route on the floor plan.

8 8 Example: The figure shows a map of a portion of New York City with the bridge and tunnel connections. Use a graph to determine if it is possible to visit Manhattan, Long Island, Staten Island, and New Jersey using each bridge tunnel only once.

9 9 Section 15.2 Euler Path A path that travels each edge only once. Euler Circuit An Euler path that begins and ends at the same vertex. Examples:

10 10 Euler s Theorem: 1. No odd vertices All vertices are even. There is at least one Euler Path. Start at any vertex. There is at least one Euler Circuit. 2. Two odd vertices There is at least one Euler Path. Start at the odd vertex, end at the other odd vertex. There is no Euler Circuit. 3. More than two odd vertices There is no Euler Path. There is no Euler Circuit.

11 11 Example: Label each vertex as even or odd. Then apply Euler s Theorem.

12 12 Fleury s Algorithm 1. Check that a Euler Path/Euler Circuit exists using Euler s Theorem. 2. Pick a starting point. All even vertices: Pick any vertex (Euler Circuit) Two odd vertices: Choose one of the two odd vertices (Euler Path) 3. Travel by an edge to another vertex. Choose edges that do not form bridges. Travel the bridges only if there is no other choice. Number the edges traveled. Erase traveled edges and replace them with dashed lines. Example: For each graph determine: a) Does the graph have a Euler Path, Euler Circuit, or neither? b) If so, trace the path using Fleury s Algorithm.

13 13 Example: The map shows the bridges and tunnels that connect in NYC. Use a graph to determine if you can visit Manhattan, Long Island, Staten Island, and New Jersey using each bridge/tunnel only once.

14 14 Example: Use Fleury s Algorithm to find an Euler circuit.

15 15 Section 15.3 Hamilton Path Path that passes through each vertex of a graph once. Hamilton Circuit A Hamilton path beginning and ending at the same vertex. Comment: A graph can have both an Euler and Hamilton path, neither, or just one of the two. Example a) Find a Hamilton path beginning at A and ending at D. b) Find a Hamilton circuit beginning at B.

16 16 Complete Graph There is an edge between every vertex. Example Not an Example Every complete path with more than three vertices has a Hamilton circuit. There are (n-1)! Hamilton circuits in a complete graph with n vertices. Example: a) Modify the graph by adding the least number of edges so that the resulting graph is complete. b) How many Hamilton circuits are possible? c) Give two Hamilton circuits for the modified graph in part (a). d) Modify the given graph by removing the least number of edges so that the resulting graph has a Euler circuit.

17 17 Weights A number attached to the edge of a graph that often represents values such as distance, time, or cost. Example: You have three errands to run, in no particular order. You will start and end at your apartment. The table gives the distance, in miles, between any two of these locations. Apartment Best Buy Publix Sports Authority Apartment * Best Buy 2 * 3 4 Publix * 3.5 Sports Authority * a) Create a complete, weighted graph that models the information in the table. b) What is the distance to travel from your Apartment, to Best Buy, to Publix, to Sports Authority, and then back to your Apartment? c) How many Hamilton Circuits are possible?

18 18 Optimal Hamilton Circuit A complete, weighted graph whose sum is a minimum. There are Two Methods to find an optimal Hamilton Circuit: A. Brute Force Method 1. Model the problem with a complete, weighted graph. 2. List all possible Hamilton circuits. 3. Find the sum of weights of the edges for each Hamilton Circuit. 4. Choose the Hamilton circuit with minimal weight. B. Nearest Neighbor Method 1. Model the problem with a complete, weighted graph. 2. Pick the starting vertex. 3. From the current vertex, pick an edge with the smallest weight. Move to that vertex. 4. Repeat this process until all vertices are visited. 5. Return to the starting point.

19 19 Example: You have three errands to run, in no particular order. You will start and end at your apartment. The table gives the distance, in miles, between any two of these locations. d) Use the Brute Force method to find the shortest route. e) Use the Nearest Neighbor method to approximate the shortest distance.

20 20 Section 15.4 Tree A connected graph with no circuits. 1. There is only one path joining any two vertices. 2. Every edge is a bridge. 3. A tree with n vertices must have (n-1) edges. 4. NO CIRCUITS Example: Which graph is a tree? Explain why the other two graphs are not trees. a) b) c)

21 21 Subgraph A graph with the same vertices and some of the edges removed. Example: Which graph is a subgraph of the other? Spanning Tree A subgraph that: 1. Contains all of the connected graph s vertices. 2. Is connected. 3. Contains no circuits. Example: Find a spanning tree for the graph below.

22 22 Example: Find a spanning tree for the graph below. Minimum Spanning Tree for a weighted graph The spanning tree with the smallest possible total weight. To find, apply Kruskal s Algorithm: 1. Find the edge with the lowest weight. (If there is a tie, randomly pick one.) Mark this edge in red. 2. Find the next smallest. (If there is a tie, randomly choose an edge). Mark this edge in red. 3. Find the next smallest edge that does not create a circuit. (If there is a tie, randomly pick an edge). Mark this edge in red. 4. Repeat until all vertices are included.

23 23 Example: Apply Kruskal s Algorithm to each graph below. Give the total weight.

24 24 Example: Use Kruskal s Algorithm to find the minimum spanning tree. Give the total weight.

Chapter 6: Graph Theory

Chapter 6: Graph Theory Chapter 6: Graph Theory Graph theory deals with routing and network problems and if it is possible to find a best route, whether that means the least expensive, least amount of time or the least distance.

More information

Euler Paths and Euler Circuits

Euler Paths and Euler Circuits Euler Paths and Euler Circuits An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler path starts and

More information

Networks and Paths. The study of networks in mathematics began in the middle 1700 s with a famous puzzle called the Seven Bridges of Konigsburg.

Networks and Paths. The study of networks in mathematics began in the middle 1700 s with a famous puzzle called the Seven Bridges of Konigsburg. ame: Day: etworks and Paths Try This: For each figure,, and, draw a path that traces every line and curve exactly once, without lifting your pencil.... Figures,, and above are examples of ETWORKS. network

More information

Social Media Mining. Graph Essentials

Social Media Mining. Graph Essentials Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures

More information

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti

More information

Class One: Degree Sequences

Class One: Degree Sequences Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of

More information

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72. ADVANCED SUBSIDIARY GCE UNIT 4736/01 MATHEMATICS Decision Mathematics 1 THURSDAY 14 JUNE 2007 Afternoon Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1) Time: 1 hour 30 minutes INSTRUCTIONS

More information

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005 V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer

More information

Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902

Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902 Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler Different Graphs, Similar Properties

More information

136 CHAPTER 4. INDUCTION, GRAPHS AND TREES

136 CHAPTER 4. INDUCTION, GRAPHS AND TREES 136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics

More information

Jefferson s Method. Hamilton s Method is fair until the surplus allocation, and then some states get preferential treatment.

Jefferson s Method. Hamilton s Method is fair until the surplus allocation, and then some states get preferential treatment. 1 Jefferson s Method Hamilton s Method is fair until the surplus allocation, and then some states get preferential treatment. Remove issue of surplus seats. Jefferson s Method: Step 1: Modify divisor D

More information

Sum of Degrees of Vertices Theorem

Sum of Degrees of Vertices Theorem Sum of Degrees of Vertices Theorem Theorem (Sum of Degrees of Vertices Theorem) Suppose a graph has n vertices with degrees d 1, d 2, d 3,...,d n. Add together all degrees to get a new number d 1 + d 2

More information

1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT

1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT DECISION 1 Revision Notes 1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT Make sure you show comparisons clearly and label each pass First Pass 8 4 3 6 1 4 8 3 6 1 4 3 8 6 1 4 3 6 8 1

More information

Graph Theory Origin and Seven Bridges of Königsberg -Rhishikesh

Graph Theory Origin and Seven Bridges of Königsberg -Rhishikesh Graph Theory Origin and Seven Bridges of Königsberg -Rhishikesh Graph Theory: Graph theory can be defined as the study of graphs; Graphs are mathematical structures used to model pair-wise relations between

More information

Graph Theory Problems and Solutions

Graph Theory Problems and Solutions raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

More information

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Allen Dickson October 2006 1 The Königsberg Bridge Problem The city of Königsberg was located on the Pregel river in Prussia. The river divided the city into four separate

More information

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

More information

Arrangements And Duality

Arrangements And Duality Arrangements And Duality 3.1 Introduction 3 Point configurations are tbe most basic structure we study in computational geometry. But what about configurations of more complicated shapes? For example,

More information

CMPSCI611: Approximating MAX-CUT Lecture 20

CMPSCI611: Approximating MAX-CUT Lecture 20 CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to

More information

Chinese postman problem

Chinese postman problem PTR hinese postman problem Learning objectives fter studying this chapter, you should be able to: understand the hinese postman problem apply an algorithm to solve the problem understand the importance

More information

MATHEMATICAL THOUGHT AND PRACTICE. Chapter 7: The Mathematics of Networks The Cost of Being Connected

MATHEMATICAL THOUGHT AND PRACTICE. Chapter 7: The Mathematics of Networks The Cost of Being Connected MATHEMATICAL THOUGHT AND PRACTICE Chapter 7: The Mathematics of Networks The Cost of Being Connected Network A network is a graph that is connected. In this context the term is most commonly used when

More information

Midterm Practice Problems

Midterm Practice Problems 6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator

More information

CS311H. Prof: Peter Stone. Department of Computer Science The University of Texas at Austin

CS311H. Prof: Peter Stone. Department of Computer Science The University of Texas at Austin CS311H Prof: Department of Computer Science The University of Texas at Austin Good Morning, Colleagues Good Morning, Colleagues Are there any questions? Logistics Class survey Logistics Class survey Homework

More information

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92. Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure

More information

Analysis of Algorithms, I

Analysis of Algorithms, I Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications

More information

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.0, steen@cs.vu.nl Chapter 06: Network analysis Version: April 8, 04 / 3 Contents Chapter

More information

Small Maximal Independent Sets and Faster Exact Graph Coloring

Small Maximal Independent Sets and Faster Exact Graph Coloring Small Maximal Independent Sets and Faster Exact Graph Coloring David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science The Exact Graph Coloring Problem: Given an undirected

More information

Switches and Bridges. COS 461: Computer Networks Spring 2009 (MW 1:30-2:50 in COS 105) Guest Lecture Jennifer Rexford 1

Switches and Bridges. COS 461: Computer Networks Spring 2009 (MW 1:30-2:50 in COS 105) Guest Lecture Jennifer Rexford 1 Switches and Bridges COS 461: Computer Networks Spring 2009 (MW 1:30-2:50 in COS 105) Guest Lecture Jennifer Rexford 1 Goals of Todayʼs Lecture Devices that shuttle data at different layers Repeaters and

More information

The Clar Structure of Fullerenes

The Clar Structure of Fullerenes The Clar Structure of Fullerenes Liz Hartung Massachusetts College of Liberal Arts June 12, 2013 Liz Hartung (Massachusetts College of Liberal Arts) The Clar Structure of Fullerenes June 12, 2013 1 / 25

More information

12 Abstract Data Types

12 Abstract Data Types 12 Abstract Data Types 12.1 Source: Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: Define the concept of an abstract data type (ADT).

More information

UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE

UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE ANDREW LUM ADVISOR: DAVID GUICHARD ABSTRACT. L(2,1)-labeling was first defined by Jerrold Griggs [Gr, 1992] as a way to use graphs

More information

Data Structures in Java. Session 16 Instructor: Bert Huang

Data Structures in Java. Session 16 Instructor: Bert Huang Data Structures in Java Session 16 Instructor: Bert Huang http://www.cs.columbia.edu/~bert/courses/3134 Announcements Homework 4 due next class Remaining grades: hw4, hw5, hw6 25% Final exam 30% Midterm

More information

Connectivity and cuts

Connectivity and cuts Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every

More information

Answers to some of the exercises.

Answers to some of the exercises. Answers to some of the exercises. Chapter 2. Ex.2.1 (a) There are several ways to do this. Here is one possibility. The idea is to apply the k-center algorithm first to D and then for each center in D

More information

MATHEMATICS Unit Decision 1

MATHEMATICS Unit Decision 1 General Certificate of Education January 2008 Advanced Subsidiary Examination MATHEMATICS Unit Decision 1 MD01 Tuesday 15 January 2008 9.00 am to 10.30 am For this paper you must have: an 8-page answer

More information

Cpt S 223. School of EECS, WSU

Cpt S 223. School of EECS, WSU The Shortest Path Problem 1 Shortest-Path Algorithms Find the shortest path from point A to point B Shortest in time, distance, cost, Numerous applications Map navigation Flight itineraries Circuit wiring

More information

An Introduction to The A* Algorithm

An Introduction to The A* Algorithm An Introduction to The A* Algorithm Introduction The A* (A-Star) algorithm depicts one of the most popular AI methods used to identify the shortest path between 2 locations in a mapped area. The A* algorithm

More information

Divide-and-Conquer. Three main steps : 1. divide; 2. conquer; 3. merge.

Divide-and-Conquer. Three main steps : 1. divide; 2. conquer; 3. merge. Divide-and-Conquer Three main steps : 1. divide; 2. conquer; 3. merge. 1 Let I denote the (sub)problem instance and S be its solution. The divide-and-conquer strategy can be described as follows. Procedure

More information

On planar regular graphs degree three without Hamiltonian cycles 1

On planar regular graphs degree three without Hamiltonian cycles 1 On planar regular graphs degree three without Hamiltonian cycles 1 E. Grinbergs Computing Centre of Latvian State University Abstract. Necessary condition to have Hamiltonian cycle in planar graph is given.

More information

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis. Contents. Introduction. Maarten van Steen. Version: April 28, 2014

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis. Contents. Introduction. Maarten van Steen. Version: April 28, 2014 Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R.0, steen@cs.vu.nl Chapter 0: Version: April 8, 0 / Contents Chapter Description 0: Introduction

More information

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set

More information

Graph theory and network analysis. Devika Subramanian Comp 140 Fall 2008

Graph theory and network analysis. Devika Subramanian Comp 140 Fall 2008 Graph theory and network analysis Devika Subramanian Comp 140 Fall 2008 1 The bridges of Konigsburg Source: Wikipedia The city of Königsberg in Prussia was set on both sides of the Pregel River, and included

More information

Artificial Intelligence Methods (G52AIM)

Artificial Intelligence Methods (G52AIM) Artificial Intelligence Methods (G52AIM) Dr Rong Qu rxq@cs.nott.ac.uk Constructive Heuristic Methods Constructive Heuristics method Start from an empty solution Repeatedly, extend the current solution

More information

Section Summary. Introduction to Graphs Graph Taxonomy Graph Models

Section Summary. Introduction to Graphs Graph Taxonomy Graph Models Chapter 10 Chapter Summary Graphs and Graph Models Graph Terminology and Special Types of Graphs Representing Graphs and Graph Isomorphism Connectivity Euler and Hamiltonian Graphs Shortest-Path Problems

More information

Discrete Mathematics Problems

Discrete Mathematics Problems Discrete Mathematics Problems William F. Klostermeyer School of Computing University of North Florida Jacksonville, FL 32224 E-mail: wkloster@unf.edu Contents 0 Preface 3 1 Logic 5 1.1 Basics...............................

More information

8.1 Min Degree Spanning Tree

8.1 Min Degree Spanning Tree CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree

More information

Priority Based Enhancement of Online Power-Aware Routing in Wireless Sensor Network. Ronit Nossenson Jerusalem College of Technology

Priority Based Enhancement of Online Power-Aware Routing in Wireless Sensor Network. Ronit Nossenson Jerusalem College of Technology Priority Based Enhancement of Online Power-Aware Routing in Wireless Sensor Network Ronit Nossenson Jerusalem College of Technology COMCAS 2011 1 What are sensor networks? Infrastructure-less networks

More information

2.3 Scheduling jobs on identical parallel machines

2.3 Scheduling jobs on identical parallel machines 2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed

More information

Edges = communication links Vertices = computers, switches, routers, etc. For packet inbound at a particular vertex, determine what output edge to use

Edges = communication links Vertices = computers, switches, routers, etc. For packet inbound at a particular vertex, determine what output edge to use IP Routing Networks as Graphs Networks are graphs Edges = communication links Vertices = computers, switches, routers, etc For packet inbound at a particular vertex, determine what output edge to use Routers

More information

PROTOTYPE TO DESIGN A LEASED LINE TELEPHONE NETWORK CONNECTING LOCATIONS TO MINIMIZE THE INSTALLATION COST

PROTOTYPE TO DESIGN A LEASED LINE TELEPHONE NETWORK CONNECTING LOCATIONS TO MINIMIZE THE INSTALLATION COST PROTOTYPE TO DESIGN A LEASED LINE TELEPHONE NETWORK CONNECTING LOCATIONS TO MINIMIZE THE INSTALLATION COST Abstract ARCHANA SHARMA Research Scholar, Computer Science and Enginering Department,, NIMS University,

More information

Network Metrics, Planar Graphs, and Software Tools. Based on materials by Lala Adamic, UMichigan

Network Metrics, Planar Graphs, and Software Tools. Based on materials by Lala Adamic, UMichigan Network Metrics, Planar Graphs, and Software Tools Based on materials by Lala Adamic, UMichigan Network Metrics: Bowtie Model of the Web n The Web is a directed graph: n webpages link to other webpages

More information

Freight Sequencing to Improve Hub Operations in the Less-Than-Truckload Freight Transportation Industry

Freight Sequencing to Improve Hub Operations in the Less-Than-Truckload Freight Transportation Industry Freight Sequencing to Improve Hub Operations in the Less-Than-Truckload Freight Transportation Industry Xiangshang Tong, Ph.D. Menlo Worldwide Logistics Kimberly Ellis, Ph.D. Virginia Tech Amy Brown Greer

More information

GRAPH THEORY LECTURE 4: TREES

GRAPH THEORY LECTURE 4: TREES GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection

More information

Spring 2007 Math 510 Hints for practice problems

Spring 2007 Math 510 Hints for practice problems Spring 2007 Math 510 Hints for practice problems Section 1 Imagine a prison consisting of 4 cells arranged like the squares of an -chessboard There are doors between all adjacent cells A prisoner in one

More information

WOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology

WOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology First Name: Family Name: Student Number: Class/Tutorial: WOLLONGONG COLLEGE AUSTRALIA A College of the University of Wollongong Diploma in Information Technology Final Examination Spring Session 2008 WUCT121

More information

Examination paper for MA0301 Elementær diskret matematikk

Examination paper for MA0301 Elementær diskret matematikk Department of Mathematical Sciences Examination paper for MA0301 Elementær diskret matematikk Academic contact during examination: Iris Marjan Smit a, Sverre Olaf Smalø b Phone: a 9285 0781, b 7359 1750

More information

Week_11: Network Models

Week_11: Network Models Week_11: Network Models 1 1.Introduction The network models include the traditional applications of finding the most efficient way to link a number of locations directly or indirectly, finding the shortest

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

Mathematics for Algorithm and System Analysis

Mathematics for Algorithm and System Analysis Mathematics for Algorithm and System Analysis for students of computer and computational science Edward A. Bender S. Gill Williamson c Edward A. Bender & S. Gill Williamson 2005. All rights reserved. Preface

More information

SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH

SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH CHAPTER 3 SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH ABSTRACT This chapter begins with the notion of block distances in graphs. Using block distance we defined the central tendencies of a block, like B-radius

More information

Seminar. Path planning using Voronoi diagrams and B-Splines. Stefano Martina stefano.martina@stud.unifi.it

Seminar. Path planning using Voronoi diagrams and B-Splines. Stefano Martina stefano.martina@stud.unifi.it Seminar Path planning using Voronoi diagrams and B-Splines Stefano Martina stefano.martina@stud.unifi.it 23 may 2016 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

More information

Extremal Wiener Index of Trees with All Degrees Odd

Extremal Wiener Index of Trees with All Degrees Odd MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 70 (2013) 287-292 ISSN 0340-6253 Extremal Wiener Index of Trees with All Degrees Odd Hong Lin School of

More information

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH 31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

More information

Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees

Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in

More information

BOUNDARY EDGE DOMINATION IN GRAPHS

BOUNDARY EDGE DOMINATION IN GRAPHS BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 0-4874, ISSN (o) 0-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 5(015), 197-04 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA

More information

Decision Mathematics 1 TUESDAY 22 JANUARY 2008

Decision Mathematics 1 TUESDAY 22 JANUARY 2008 ADVANCED SUBSIDIARY GCE 4736/01 MATHEMATICS Decision Mathematics 1 TUESDAY 22 JANUARY 2008 Additional materials: Answer Booklet (8 pages) Graph paper Insert for Questions 3 and 4 List of Formulae (MF1)

More information

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9 Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a

More information

Finding and counting given length cycles

Finding and counting given length cycles Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected

More information

Network (Tree) Topology Inference Based on Prüfer Sequence

Network (Tree) Topology Inference Based on Prüfer Sequence Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 vanniarajanc@hcl.in,

More information

NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University

NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University NP-Completeness CptS 223 Advanced Data Structures Larry Holder School of Electrical Engineering and Computer Science Washington State University 1 Hard Graph Problems Hard means no known solutions with

More information

MATHEMATICS Unit Decision 1

MATHEMATICS Unit Decision 1 General Certificate of Education January 2007 Advanced Subsidiary Examination MATHEMATICS Unit Decision 1 MD01 Tuesday 16 January 2007 9.00 am to 10.30 am For this paper you must have: an 8-page answer

More information

Data Structures. Chapter 8

Data Structures. Chapter 8 Chapter 8 Data Structures Computer has to process lots and lots of data. To systematically process those data efficiently, those data are organized as a whole, appropriate for the application, called a

More information

SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM

SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM ALEX WRIGHT 1. Intoduction A fixed point of a function f from a set X into itself is a point x 0 satisfying f(x 0 ) = x 0. Theorems which establish the

More information

SCAN: A Structural Clustering Algorithm for Networks

SCAN: A Structural Clustering Algorithm for Networks SCAN: A Structural Clustering Algorithm for Networks Xiaowei Xu, Nurcan Yuruk, Zhidan Feng (University of Arkansas at Little Rock) Thomas A. J. Schweiger (Acxiom Corporation) Networks scaling: #edges connected

More information

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact

More information

3. Eulerian and Hamiltonian Graphs

3. Eulerian and Hamiltonian Graphs 3. Eulerian and Hamiltonian Graphs There are many games and puzzles which can be analysed by graph theoretic concepts. In fact, the two early discoveries which led to the existence of graphs arose from

More information

Problem Set 7 Solutions

Problem Set 7 Solutions 8 8 Introduction to Algorithms May 7, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Handout 25 Problem Set 7 Solutions This problem set is due in

More information

Systems and Algorithms for Big Data Analytics

Systems and Algorithms for Big Data Analytics Systems and Algorithms for Big Data Analytics YAN, Da Email: yanda@cse.cuhk.edu.hk My Research Graph Data Distributed Graph Processing Spatial Data Spatial Query Processing Uncertain Data Querying & Mining

More information

Data Structures and Algorithms Written Examination

Data Structures and Algorithms Written Examination Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where

More information

angle Definition and illustration (if applicable): a figure formed by two rays called sides having a common endpoint called the vertex

angle Definition and illustration (if applicable): a figure formed by two rays called sides having a common endpoint called the vertex angle a figure formed by two rays called sides having a common endpoint called the vertex area the number of square units needed to cover a surface array a set of objects or numbers arranged in rows and

More information

Computational Approach for Assessment of Critical Infrastructure in Network Systems

Computational Approach for Assessment of Critical Infrastructure in Network Systems Computational Approach for Assessment of Critical Infrastructure in Network Systems EMIL KELEVEDJIEV 1 Institute of Mathematics and Informatics Bulgarian Academy of Sciences ABSTRACT. Methods of computational

More information

On the independence number of graphs with maximum degree 3

On the independence number of graphs with maximum degree 3 On the independence number of graphs with maximum degree 3 Iyad A. Kanj Fenghui Zhang Abstract Let G be an undirected graph with maximum degree at most 3 such that G does not contain any of the three graphs

More information

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and Hyeong-Ah Choi Department of Electrical Engineering and Computer Science George Washington University Washington,

More information

Solutions to Homework 6

Solutions to Homework 6 Solutions to Homework 6 Debasish Das EECS Department, Northwestern University ddas@northwestern.edu 1 Problem 5.24 We want to find light spanning trees with certain special properties. Given is one example

More information

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

More information

Optimal 3D Angular Resolution for Low-Degree Graphs

Optimal 3D Angular Resolution for Low-Degree Graphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 17, no. 3, pp. 173 200 (2013) DOI: 10.7155/jgaa.00290 Optimal 3D Angular Resolution for Low-Degree Graphs David Eppstein 1 Maarten Löffler

More information

Simple Graphs Degrees, Isomorphism, Paths

Simple Graphs Degrees, Isomorphism, Paths Mathematics for Computer Science MIT 6.042J/18.062J Simple Graphs Degrees, Isomorphism, Types of Graphs Simple Graph this week Multi-Graph Directed Graph next week Albert R Meyer, March 10, 2010 lec 6W.1

More information

Pythagorean Theorem: Proof and Applications

Pythagorean Theorem: Proof and Applications Pythagorean Theorem: Proof and Applications Kamel Al-Khaled & Ameen Alawneh Department of Mathematics and Statistics, Jordan University of Science and Technology IRBID 22110, JORDAN E-mail: kamel@just.edu.jo,

More information

Exponential time algorithms for graph coloring

Exponential time algorithms for graph coloring Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].

More information

Geometry and Measurement

Geometry and Measurement The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for

More information

B AB 5 C AC 3 D ABGED 9 E ABGE 7 F ABGEF 8 G ABG 6 A BEDA 3 C BC 1 D BCD 2 E BE 1 F BEF 2 G BG 1

B AB 5 C AC 3 D ABGED 9 E ABGE 7 F ABGEF 8 G ABG 6 A BEDA 3 C BC 1 D BCD 2 E BE 1 F BEF 2 G BG 1 p.9 9.5 a. Find the shortest path from A to all other vertices for the graph in Figure 9.8. b. Find the shortest unweighted path from B to all other vertices for the graph in Figure 9.8. A 5 B C 7 7 6

More information

CSE331: Introduction to Networks and Security. Lecture 8 Fall 2006

CSE331: Introduction to Networks and Security. Lecture 8 Fall 2006 CSE331: Introduction to Networks and Security Lecture 8 Fall 2006 Announcements Reminders: Project I is due on Monday, Sept. 25th. Homework 1 is due on Friday, Sept. 29th. CSE331 Fall 2004 2 Internet Protocol

More information

Area of Parallelograms, Triangles, and Trapezoids (pages 314 318)

Area of Parallelograms, Triangles, and Trapezoids (pages 314 318) Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base

More information

Lines That Pass Through Regions

Lines That Pass Through Regions : Student Outcomes Given two points in the coordinate plane and a rectangular or triangular region, students determine whether the line through those points meets the region, and if it does, they describe

More information

Social Media Mining. Network Measures

Social Media Mining. Network Measures Klout Measures and Metrics 22 Why Do We Need Measures? Who are the central figures (influential individuals) in the network? What interaction patterns are common in friends? Who are the like-minded users

More information

(Refer Slide Time: 01.26)

(Refer Slide Time: 01.26) Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 27 Pigeonhole Principle In the next few lectures

More information

Every tree contains a large induced subgraph with all degrees odd

Every tree contains a large induced subgraph with all degrees odd Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University

More information

Networks! Topics in Contemporary Mathematics! MA 103! Summer II, 2013!

Networks! Topics in Contemporary Mathematics! MA 103! Summer II, 2013! 1! Networks! Topics in Contemporary Mathematics! MA 103! Summer II, 2013! 2! Content Trees Spanning Trees Kruskal s Algorithm The Shortest Network Connecting Three Points Shortest Networks for Four or

More information

Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014

Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014 Beyond Watson: Predictive Analytics and Big Data U.S. National Security Agency Research Directorate - R6 Technical Report February 3, 2014 300 years before Watson there was Euler! The first (Jeopardy!)

More information