Identify the Basic Components of a cell

Size: px
Start display at page:

Download "Identify the Basic Components of a cell"

Transcription

1 Unit 2 The Cellular Basis of Life 2A. Basic Cell Structure and Function 2B. Viruses 2C. Membranes and Cell Transport 2D. Energy and Metabolism 2E. How Cells Harvest Energy 2F. Photosynthesis 2G. Cell Communication 1 Module 2A Basic Cell Structure and Function Cells are the basic units of life. Therefore, an understanding of cells is essential for an understanding of living organisms. In this module, we will take an introductory look at the structure and function of living cells. 2 Objective # 1 Objective 1 Describe the general plan of cellular organization common to all cells. In 1655, the English scientist Robert Hooke coined the term cellulae for the small box-like structures he saw while examining a thin slice of cork under a microscope. A few years later, a Dutchman named Anton van Leeuwenhoek observed and described numerous living cells. 3 4 Onion Cells Objective 1 5 Further study has shown that all cells have the following basic structure : A A thin, flexible plasma membrane surrounds the entire cell. The interior is filled with a semi-fluid material called the cytoplasm. Also inside are specialized structures called organelles and the cell s genetic material. 6 1

2 Objective # 2 Plasma membrane Cytoplasm Organelles Genetic material Identify the Basic Components of a cell List and explain the 3 principles of the cell theory. 8 Objective 2 In , the German scientists Schleiden and Schwann, proposed the first 2 principles of the cell theory: All organisms are composed of one or more cells. Cells are the basic units of life. Objective 2 About 15 years later, the German physician Rudolf Virchow proposed the third and final principle of the cell theory: All cells arise from pre-existing existing cells. This is now qualified with under the current conditions on earth Objective # 3 Describe some factors that act to limit cell size. 11 Objective 3 Why are cells so small? Because a cell usually has only 1 or 2 sets of genetic instructions, there is a limit to the volume of cytoplasm that can be effectively controlled. Methods used to transport materials and information inside the cell are efficient over short distances only. Problem with surface-to to-volume ratio. 12 2

3 Objective 3 Assuming constant shape, as an object gets bigger what happens to its surface area? What happens to its volume? What happens to its surface-to to-volume ratio? The S/V ratio decreases because volume increases at a faster rate than surface area. 13 The ratio of Surface Area to Volume gets smaller as this cell gets larger Cell radius (r) Surface area (4πr 2 ) 4 Volume ( πr 3 ) 3 1 unit unit unit 3 10 unit 1257 unit unit 3 Surface Area- /Volume Objective 3 Why is decreasing S/V ratio a problem? In order to survive, a cell must exchange materials with its environment. Cell volume determines the amount of materials that must be exchanged, while surface area limits how fast exchange can occur. In other words, as cells get larger the need for materials increases faster than the ability to absorb them. 15 Objective 3 How have organisms become larger in spite of these problems? At first, single cells simply got larger. Average eukaryotic cell is 1,000 X larger in volume than average prokaryotic cell. Eventually, limits to size of individual cells were reached. 16 Objective 3 Coenocytic organisms sac of cytoplasm continued to increase in size but became multinucleate and evolved thin, flat shapes or long, narrow shapes to increase S/V ratio. e.g. some protists, fungi 17 Objective 3 Colonial organisms instead of one large mass of cytoplasm, body was divided into many small, similar cells, each with its own nucleus. e.g. some protists Multicellular organisms similar to colonial except cells became specialized to carry out specific functions. e.g. plants, animals 18 3

4 Objective # 4 Objective 4 Be able to describe the structure and Cytoplasm Ribosomes Nucleoid (DNA) Describe the structure of a function all cell parts shown on Pl b typical prokaryotic cell. Cell wall this diagram of a typical prokaryotic cell Flagellum Pili Plasma membrane Capsule 19 Copyright The McGraw Hill Companies, Inc. Permission required for reproduction or display. Fig. 4.4 Electron micrograph of a photosynthetic prokaryotic cell Nucleoid Cytoplasm Cell wall Plasma membrane 0.6 µm Photosynthetic membranes Courtesy of E.H. Newcomb & T.D. Pugh, University of Wisconsin 22 Objective # 5 Describe the structure of a typical eukaryotic cell. 23 Nucleus Nuclear envelope Nucleolus Nuclear pore Cytoskeleton Actin filament Microtubule Intermediate filament Centriole Cytoplasm Lysosome Be able to describe the structure and function of all cell parts shown on this diagram of a typical animal cell Ribosomes Plasma membrane Peroxisome Rough endoplasmic reticulum Smooth endoplasmic reticulum Microvilli Mitochondrion Ribosomes Exocytosis Vesicle Golgi apparatus 4

5 Rough endoplasmic reticulum Smooth endoplasmic reticulum Golgi apparatus Ribosome Vesicle Chloroplast Be able to describe the structure and function of all cell parts shown on this diagram of a typical plant cell Adjacent cell wall Cell wall Plasma membrane Nucleus Nuclear envelope Nuclear pore Nucleolus Intermediate filament Central vacuole Cytoskeleton Intermediate filament Microtubule Actin filament (microfilament) Plasmodesmata Peroxisome Mitochondrion Cytoplasm Nucleus Repository of the genetic information Most eukaryotic cells possess a single nucleus Nucleolus region where ribosomal RNA synthesis takes place Nuclear envelope 2 phospholipid bilayers Nuclear pores control passage in and out In eukaryotes, the DNA is divided into multiple linear chromosomes Chromatin is chromosomes plus protein 26 Be able to describe the structure and function of the eukaryotic nucleus 27 Ribosomes Cell s protein synthesis machinery Found in all cell types in all 3 domains Ribosomal RNA (rrna)-protein complex Protein synthesis also requires messenger RNA (mrna) and transfer RNA (trna) Ribosomes may be free in cytoplasm or associated with internal membranes 28 Fig. 4.9 Copyright The McGraw Hill Companies, Inc. Permission required for reproduction or display. Ribosome Be able to describe the structure and function of ribosomes Large subunit Small subunit Endomembrane System A system of membranes that run through the cytoplasm and divide the cell into compartments where different cellular functions occur Present in eukaryotic cells only Components of the endomembrane system include: the endoplasmic reticulum, the Golgi, lysosomes, microbodies, vacuoles, and vesicles 30 5

6 Endoplasmic reticulum Rough endoplasmic reticulum (RER) Attachment of ribosomes to the membrane gives a rough appearance Synthesis of proteins to be secreted, sent to lysosomes or plasma membrane Smooth endoplasmic reticulum (SER) Relatively few bound ribosomes Variety of functions synthesis, store Ca 2+, detoxification Ratio of RER to SER depends on cell s function Be able to describe the structure and function of the rough and smooth endoplasmic reticulum: Golgi apparatus Flattened stacks of interconnected membranes (Golgi bodies) Functions in packaging and distribution of molecules synthesized at one location and used at another within the cell or even outside of it Cis and trans faces Vesicles transport molecules to destination 33 Be able to describe the structure and function of the Golgi apparatus: 34 Lysosomes Membrane-bound bound sacs that contain digestive enzymes Arise from the Golgi apparatus Enzymes catalyze the breakdown of macromolecules Destroy cells or foreign matter that the cell has engulfed by phagocytosis

7 Variety of enzymebearing, membraneenclosed vesicles One type are peroxisomes Contain enzymes involved in the oxidation of fatty acids H 2 O 2 produced as byproduct rendered harmless by catalase Microbodies Vacuoles Membrane-bounded bounded sacs that carry out various functions depending on the cell type There are different types of vacuoles: Central vacuole in plant cells Contractile vacuole of some protists Storage vacuoles Nucleus Ribosome Nuclear pore Electron micrograph showing the large central vacuole of a plant cell Be able to describe the movement of proteins through the endomembrane system of a eukaryotic cell: Rough endoplasmic reticulum Membrane protein Newly synthesized protein 1. Vesicle containing proteins buds from the rough endoplasmic reticulum, diffuses through the cell, and fuses to the cis face of the Golgi apparatus. Transport vesicle Smooth endoplasmic cis face reticulum Golgi membrane protein Cisternae Golgi Apparatus 39 trans face 2. The proteins are modified and Secretory vesicle packaged into 3. The vesicle may vesicles for travel to the plasma transport. Secreted membrane, protein releasing its contents to the Cell membrane extracellular environment. Extracellular fluid Mitochondria Found in all types of eukaryotic cells Bound by membranes Outer membrane Intermembrane space Inner membrane has cristae Matrix On the surface of the inner membrane, and also embedded within it, are proteins that carry out oxidative metabolism Have their own DNA Be able to describe the structure and function of a mitochondrium:

8 Chloroplasts Organelles present in cells of plants and some other eukaryotes Contain chlorophyll for photosynthesis Surrounded by 2 membranes Thylakoids are membranous sacs within the inner membrane Grana are stacks of thylakoids Have their own DNA Be able to describe the structure and function of a chloroplast: Endosymbiosis This theory proposes that some eukaryotic organelles evolved by a symbiosis between two cells that were each free-living One cell, a prokaryote, was engulfed by and became part of a larger cell, which was the precursor of modern eukaryotes Organelles that probably arose by endosymbiosis include mitochondria and chloroplasts Some eukaryotic organelles evolved through the process of endosymbiosis: Cytoskeleton A network of protein fibers and tubes found in all eukaryotic cells Supports the shape of the cell Keeps organelles in fixed locations Dynamic system constantly forming and disassembling 3 Components of the Cytoskeleton Microfilaments (actin filaments) Two protein chains loosely twined together Movements like contraction, crawling, pinching Microtubules Largest of the cytoskeletal elements Dimers of α- and β-tubulin subunits Facilitate movement of cell and materials within cell Intermediate filaments Between the size of actin filaments and microtubules Very stable usually not broken down

9 Be able to describe the structure and function of the 3 components of the cytoskeleton: Centrosome Region containing a pair of centrioles Centrioles function as microtubule- organizing centers. They can initiate the assembly of new microtubules. Animal cells and most protists have centrioles Plants and fungi usually lack centrioles A pair of centrioles. Each centriole is composed of 9 triplets of microtubules: Copyright The McGraw Hill Companies, Inc. Permission required for reproduction or display. Microtubule triplet Cell Movement Essentially all cell motion is tied to the movement of actin filaments, microtubules, or both Some cells crawl using actin microfilaments Eukaryotic flagella and cilia have arrangement of microtubules Not like prokaryotic flagella 52 Be able to describe the structure and function of a eukaryotic flagellum. Cilia have a similar structure, except they are shorter and more numerous. A green algal cell with numerous flagella and a paramecium covered with cilia 53 9

10 Eukaryotic cell walls Plants, fungi, and many protists Different from prokaryote Prokaryotes - peptidoglycan Plants and protists cellulose Fungi chitin Plants primary and secondary cell walls 55 Extracellular matrix (ECM) Animal cells lack cell walls Secrete an elaborate mixture of glycoproteins into the space around them Collagen may be abundant Form a protective layer over the cell surface Integrins link ECM to cell s cytoskeleton 56 Extracellular matrix surrounding an animal cell Table Objective # 6 Describe the similarities and differences between prokaryotic and eukaryotic cells

11 Objective 6 Objective 6 organisms size Prokaryotes monera (bacteria) very small Eukaryotes all other organisms much larger (1 5 μm) ( μm) complexity relatively simple more complex cell wall usually present (contains peptidoglycan) sometimes present (lacks peptidoglycan) 61 Prokaryotes Eukaryotes plasma always present always present membrane internal may contain complex system membranes infoldings of of fi internal the plasma membranes membrane but divides cell into usually lack specialized internal compartments membranes 62 membrane- bound organelles ribosomes cytoskeleton flagella Objective 6 Prokaryotes Eukaryotes absent present smaller and free in the cytoplasm absent solid flagellin; rotate larger and may be bound to ER present microtubules; bend 63 structure of genetic material location of genetic material Objective 6 Prokaryotes single, naked, circular DNA molecule in an area of the cytoplasm called the nucleoid Eukaryotes many linear chromosomes, each made of 1 DNA molecule joined with protein inside a membrane-bound bound nucleus 64 Objective # 7 Name and describe the types of surface markers that give cells identity. Objective 7 Cell surface markers allow the cells of a multicellular organism to recognize each other and to distinguish self from non-self. In this section, we will examine 2 types of cell surface markers: Glycolipids MHC proteins

12 Glycolipids: Objective 7 Are lipids embedded in the plasma membrane with cabohydrate groups attached Allow cells that are part of the same tissue to recognize each other and form intimate connections to better coordinate their functions. MHC proteins: Objective 7 Are proteins embedded in the surface of the plasma membrane. Allow cells of the immune system to distinguish foreign cells from the body s own cells so they can mount an attack against any foreign cells Objective # 8 Explain what cell s are, and discuss the following types of cell s: a) tight b) anchoring c) communicating Objective 8 Cell s refer to long-lasting lasting or permanent connections between adjacent cells. We will examine 3 types of cell s: Objective 8a a) Tight s connect cells into sheets. Because these s form a tight seal between cells, in order to cross the sheet, substances must pass through the cells, they cannot pass between the cells. a. 2.5 µm Tight Adjacent plasma membranes Tight proteins Intercellular space Tight Junction Tight Anchoring (desmosome) Microvilli Intermediate filament Communicating Basal lamina 71 Courtesy of Daniel Goodenough 12

13 Objective 8b b) Anchoring s attach the cytoskeleton of a cell to the matrix surrounding the cell, or to the cytoskeleton of an adjacent cell. b. Anchoring Junction 0.1 µm Anchoring (desmosome) Intercellular space Adjacent plasma membranes Cdh Cadherin Cytoplasmic protein plaque Cytoskeletal filaments anchored to plaque Tight Anchoring (desmosome) Microvilli Intermediate filament Communicating Basal lamina 73 Dr. Donald Fawcett/Visuals Unlimited. Objective 8c c) Communicating s link the cytoplasms of 2 cells together, permitting the controlled passage of small molecules or ions between them. In animals, these s are called gap s; in plants they are called plasmodesmata. 75 Communicating Junction c. 1.4 µm Communicating Intercellular space Connexon Two adjacent connexons forming an open channel between cells Channel (diameter 1.5 nm) Adjacent plasma membranes Tight Anchoring (desmosome) Basal lamina Dr. Donald Fawcett/Visuals Unlimited. Microvilli Intermediate filament Communicating Plasmodesmata connect plant cells Table

Chapter 4: A Tour of the Cell. 1. Cell Basics. Limits to Cell Size. 1. Cell Basics. 2. Prokaryotic Cells. 3. Eukaryotic Cells

Chapter 4: A Tour of the Cell. 1. Cell Basics. Limits to Cell Size. 1. Cell Basics. 2. Prokaryotic Cells. 3. Eukaryotic Cells Chapter 4: A Tour of the Cell 1. Cell Basics 2. Prokaryotic Cells 3. Eukaryotic Cells 1. Cell Basics Limits to Cell Size There are 2 main reasons why cells are so small: If cells get too large: 1) there

More information

The Cell: Organelle Diagrams

The Cell: Organelle Diagrams The Cell: Organelle Diagrams Fig 7-4. A prokaryotic cell. Lacking a true nucleus and the other membrane-enclosed organelles of the eukaryotic cell, the prokaryotic cell is much simpler in structure. Only

More information

Microscopes. Eukaryotes Eukaryotic cells are characterized by having: DNA in a nucleus that is bounded by a membranous nuclear envelope

Microscopes. Eukaryotes Eukaryotic cells are characterized by having: DNA in a nucleus that is bounded by a membranous nuclear envelope CH 6 The Cell Microscopy Scientists use microscopes to visualize cells too small to see with the naked eye. In a light microscope (LM), visible light is passed through a specimen and then through glass

More information

Biology 101 Chapter 4 Cells as the Basic Unit of Life. The Cell Theory Major Contributors: Galileo = first observations made with a microscope

Biology 101 Chapter 4 Cells as the Basic Unit of Life. The Cell Theory Major Contributors: Galileo = first observations made with a microscope Biology 101 Chapter 4 Cells as the Basic Unit of Life The Cell Theory Major Contributors: Galileo = first observations made with a microscope Robert Hooke = first to observe small compartments in dead

More information

Cytology. Living organisms are made up of cells. Either PROKARYOTIC or EUKARYOTIC cells.

Cytology. Living organisms are made up of cells. Either PROKARYOTIC or EUKARYOTIC cells. CYTOLOGY Cytology Living organisms are made up of cells. Either PROKARYOTIC or EUKARYOTIC cells. A. two major cell types B. distinguished by structural organization See table on handout for differences.

More information

Lecture 4 Cell Membranes & Organelles

Lecture 4 Cell Membranes & Organelles Lecture 4 Cell Membranes & Organelles Structure of Animal Cells The Phospholipid Structure Phospholipid structure Encases all living cells Its basic structure is represented by the fluidmosaic model Phospholipid

More information

Chapter 2: Cell Structure and Function pg. 70-107

Chapter 2: Cell Structure and Function pg. 70-107 UNIT 1: Biochemistry Chapter 2: Cell Structure and Function pg. 70-107 Organelles are internal structures that carry out specialized functions, interacting and complementing each other. Animal and plant

More information

cells - relatively simple cells - lack nuclear membrane and many organelles - bacteria and their relatives are all prokaryotic

cells - relatively simple cells - lack nuclear membrane and many organelles - bacteria and their relatives are all prokaryotic Cell Biology A cell is chemical system that is able to maintain its structure and reproduce. Cells are the fundamental unit of life. All living things are cells or composed of cells. 1 The interior contents

More information

Plasma Membrane hydrophilic polar heads

Plasma Membrane hydrophilic polar heads The Parts of the Cell 3 main parts in ALL cells: plasma membrane, cytoplasm, genetic material this is about the parts of a generic eukaryotic cell Plasma Membrane -is a fluid mosaic model membrane is fluid

More information

Cell Structure and Function. Eukaryotic Cell: Neuron

Cell Structure and Function. Eukaryotic Cell: Neuron Cell Structure and Function Eukaryotic Cell: Neuron Cell Structure and Function Eukaryotic Cells: Blood Cells Cell Structure and Function Prokaryotic Cells: Bacteria Cell Structure and Function All living

More information

Bacterial (Prokaryotic) Cell. Common features of all cells. Tour of the Cell. Eukaryotic Cell. Plasma Membrane defines inside from outside

Bacterial (Prokaryotic) Cell. Common features of all cells. Tour of the Cell. Eukaryotic Cell. Plasma Membrane defines inside from outside www.denniskunkel.com Tour of the Cell www.denniskunkel.com Today s Topics Properties of all cells Prokaryotes and Eukaryotes Functions of Major Cellular Organelles Information, Synthesis&Transport,, Vesicles

More information

The Cell Interior and Function

The Cell Interior and Function The Cell Interior and Function 5 5.0 CHAPTER PREVIEW Investigate and understand the organization and function of the cell interior. Define the differences between eukaryotic and prokaryotic cell structure.

More information

7.2 Cell Structure. Lesson Objectives. Lesson Summary. Cell Organization Eukaryotic cells contain a nucleus and many specialized structures.

7.2 Cell Structure. Lesson Objectives. Lesson Summary. Cell Organization Eukaryotic cells contain a nucleus and many specialized structures. 7.2 Cell Structure Lesson Objectives Describe the structure and function of the cell nucleus. Describe the role of vacuoles, lysosomes, and the cytoskeleton. Identify the role of ribosomes, endoplasmic

More information

Cell Structure & Function!

Cell Structure & Function! Cell Structure & Function! Chapter 3! The most exciting phrase to hear in science, the one that heralds new discoveries, is not 'Eureka!' but 'That's funny.! -- Isaac Asimov Animal Cell Plant Cell Cell

More information

Compartmentalization of the Cell. Objectives. Recommended Reading. Professor Alfred Cuschieri. Department of Anatomy University of Malta

Compartmentalization of the Cell. Objectives. Recommended Reading. Professor Alfred Cuschieri. Department of Anatomy University of Malta Compartmentalization of the Cell Professor Alfred Cuschieri Department of Anatomy University of Malta Objectives By the end of this session the student should be able to: 1. Identify the different organelles

More information

Review of the Cell and Its Organelles

Review of the Cell and Its Organelles Biology Learning Centre Review of the Cell and Its Organelles Tips for most effective learning of this material: Memorize the names and structures over several days. This will help you retain what you

More information

Organelles and Their Functions

Organelles and Their Functions Organelles and Their Functions The study of cell organelles and their functions is a fascinating part of biology. The current article provides a brief description of the structure of organelles and their

More information

Chapter 3. Cellular Structure and Function Worksheets. 39 www.ck12.org

Chapter 3. Cellular Structure and Function Worksheets. 39 www.ck12.org Chapter 3 Cellular Structure and Function Worksheets (Opening image copyright by Sebastian Kaulitzki, 2010. Used under license from Shutterstock.com.) Lesson 3.1: Introduction to Cells Lesson 3.2: Cell

More information

CELLS: PLANT CELLS 20 FEBRUARY 2013

CELLS: PLANT CELLS 20 FEBRUARY 2013 CELLS: PLANT CELLS 20 FEBRUARY 2013 Lesson Description In this lesson we will discuss the following: The Cell Theory Terminology Parts of Plant Cells: Organelles Difference between plant and animal cells

More information

Cell Structure and Function

Cell Structure and Function Bio 100 - Cells 1 Cell Structure and Function Tenets of Cell Theory 1. All living things are made up of one or more cells 2. Cells are the basic living units within organisms, and the chemical reactions

More information

Biology I. Chapter 7

Biology I. Chapter 7 Biology I Chapter 7 Interest Grabber NOTEBOOK #1 Are All Cells Alike? All living things are made up of cells. Some organisms are composed of only one cell. Other organisms are made up of many cells. 1.

More information

Cells. Structure, Function and Homeostasis

Cells. Structure, Function and Homeostasis Cells Structure, Function and Homeostasis Characteristics of Cells Basic unit of life anything alive is made of cells Plasma membrane (skin) that separates them from the environment. Skeletonsfor protection

More information

Eukaryotes. www.njctl.org PSI Biology Eukaryotes & Gene Expression

Eukaryotes. www.njctl.org PSI Biology Eukaryotes & Gene Expression Eukaryotes The Eukaryotic Cell Classwork 1. Identify two characteristics that are shared by all cells. 2. Suppose you are investigating a cell that contains a nucleus. Would you categorize this cell as

More information

AP BIOLOGY 2006 SCORING GUIDELINES. Question 1

AP BIOLOGY 2006 SCORING GUIDELINES. Question 1 AP BIOLOGY 2006 SCORING GUIDELINES Question 1 A major distinction between prokaryotes and eukaryotes is the presence of membrane-bound organelles in eukaryotes. (a) Describe the structure and function

More information

Introduction to the Cell: Plant and Animal Cells

Introduction to the Cell: Plant and Animal Cells Introduction to the Cell: Plant and Animal Cells Tissues, Organs, and Systems of Living Things Cells, Cell Division, and Animal Systems and Plant Systems Cell Specialization Human Systems All organisms

More information

Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students

Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students Activity Title: Quick Hit Goal of Activity: To perform formative and summative assessments

More information

3.1 AS Unit: Cells, Exchange and Transport

3.1 AS Unit: Cells, Exchange and Transport 3.1 AS Unit: Cells, Exchange and Transport Module 1: Cells 1.1.1 Cell Structure Candidates should be able to: (a) state the resolution and magnification that can be achieved by a light microscope, a transmission

More information

THE HISTORY OF CELL BIOLOGY

THE HISTORY OF CELL BIOLOGY SECTION 4-1 REVIEW THE HISTORY OF CELL BIOLOGY Define the following terms. 1. cell 2. cell theory Write the correct letter in the blank. 1. One early piece of evidence supporting the cell theory was the

More information

Plant and Animal Cells

Plant and Animal Cells Plant and Animal Cells a. Explain that cells take in nutrients in order to grow, divide and to make needed materials. S7L2a b. Relate cell structures (cell membrane, nucleus, cytoplasm, chloroplasts, and

More information

Comparing Plant And Animal Cells

Comparing Plant And Animal Cells Comparing Plant And Animal Cells http://khanacademy.org/video?v=hmwvj9x4gny Plant Cells shape - most plant cells are squarish or rectangular in shape. amyloplast (starch storage organelle)- an organelle

More information

Plant and Animal Cells

Plant and Animal Cells Plant and Animal Cells Cell Scientists Hans and Zacharias Janssen Dutch lens grinders, father and son produced first compound microscope (2 lenses) Robert Hooke (1665) English Scientist looked at a thin

More information

Cells & Cell Organelles

Cells & Cell Organelles Cells & Cell Organelles The Building Blocks of Life H Biology Types of cells bacteria cells Prokaryote - no organelles Eukaryotes - organelles animal cells plant cells Cell size comparison Animal cell

More information

RAD 223. Radiography physiology. Lecture Notes. First lecture: Cell and Tissue

RAD 223. Radiography physiology. Lecture Notes. First lecture: Cell and Tissue RAD 223 Radiography physiology Lecture Notes First lecture: Cell and Tissue Physiology: the word physiology derived from a Greek word for study of nature. It is the study of how the body and its part work

More information

Biological cell membranes

Biological cell membranes Unit 14: Cell biology. 14 2 Biological cell membranes The cell surface membrane surrounds the cell and acts as a barrier between the cell s contents and the environment. The cell membrane has multiple

More information

Multiple Choice Questions

Multiple Choice Questions Chapter 5 THE FUNDAMENTAL UNIT OF LIFE Multiple Choice Questions 1. Which of the following can be made into crystal? (a) A Bacterium (b) An Amoeba (c) A Virus (d) A Sperm 2. A cell will swell up if (a)

More information

INTRODUCTION TO THE CELL

INTRODUCTION TO THE CELL CHAPTER 1: STRUCTURE AND FUNCTION OF THE CELL INTRODUCTION TO THE CELL Both living and non-living things are composed of molecules made from chemical elements such as Carbon, Hydrogen, Oxygen, and Nitrogen.

More information

The Cell Teaching Notes and Answer Keys

The Cell Teaching Notes and Answer Keys The Cell Teaching Notes and Answer Keys Subject area: Science / Biology Topic focus: The Cell: components, types of cells, organelles, levels of organization Learning Aims: describe similarities and differences

More information

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z.

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z. Cell Structure and Organization 1. All living things must possess certain characteristics. They are all composed of one or more cells. They can grow, reproduce, and pass their genes on to their offspring.

More information

Gymnázium, Brno, Slovanské nám. 7, WORKBOOK - Biology WORKBOOK. www.gymnaslo.agb.cz

Gymnázium, Brno, Slovanské nám. 7, WORKBOOK - Biology WORKBOOK. www.gymnaslo.agb.cz WORKBOOK www.gymnaslo.agb.cz Subjekt: Biology Teacher: Iva Kubištová Student:.. School year:../. This material was prepared with using http://biologygmh.com/ Topics: 1. 2. 3. Cell Structure and Function

More information

Chapter 5 Organelles. Lesson Objectives List the organelles of the cell and their functions. Distinguish between plant and animal cells.

Chapter 5 Organelles. Lesson Objectives List the organelles of the cell and their functions. Distinguish between plant and animal cells. Chapter 5 Organelles Lesson Objectives List the organelles of the cell and their functions. Distinguish between plant and animal cells. Check Your Understanding What is a cell? How do we visualize cells?

More information

the plant & animal cell

the plant & animal cell 6.1 Basic unit of life Biology Biology Structure & functions of 06 the plant & animal cell In 1665, Robert Hooke observed a section of a cork using a microscope prepared by him. He discovered a structure

More information

Cell Unit Practice Test #1

Cell Unit Practice Test #1 ell Unit Practice Test #1 Name: ate: 1. Which organelle is primarily concerned with the conversion of potential energy of organic compounds into suitable form for immediate use by the cell?. mitochondria.

More information

Biology Chapter 7 Practice Test

Biology Chapter 7 Practice Test Biology Chapter 7 Practice Test Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. The work of Schleiden and Schwann can be summarized by

More information

AP Biology-Chapter #6 & 7 Review

AP Biology-Chapter #6 & 7 Review DO NOT WRITE ON THIS TEST- USE ANSWER DOCUMENT AP Biology-Chapter #6 & 7 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. All of the following are

More information

Objective: On a team of no more than (2). Build to illustrate a 3D model of a PLANT or ANIMAL cell. 10 pts.

Objective: On a team of no more than (2). Build to illustrate a 3D model of a PLANT or ANIMAL cell. 10 pts. THE CELL model: Activity 4.1 Science / Biology Objective: On a team of no more than (2). Build to illustrate a 3D model of a PLANT or ANIMAL cell. - Your models should clearly demonstrate the following

More information

CELL ANALOGY: AIRPORT. By: Joe Behrmann and Isaac Thompson

CELL ANALOGY: AIRPORT. By: Joe Behrmann and Isaac Thompson CELL ANALOGY: AIRPORT By: Joe Behrmann and Isaac Thompson MITOCHONDRIA Location: The Mitochondria of a cell is located in both plant and animal cells. They are found floating throughout the cell. Function:

More information

Lesson Aim To explain the human body at a microscopic level, including the structure and function of cells, tissues and membranes.

Lesson Aim To explain the human body at a microscopic level, including the structure and function of cells, tissues and membranes. LESSON 1. CELLS & TISSUES Lesson Aim To explain the human body at a microscopic level, including the structure and function of cells, tissues and membranes. THE CELL All living matter is composed of functional

More information

BSC 2010 - Exam I Lectures and Text Pages. The Plasma Membrane Structure and Function. Phospholipids. I. Intro to Biology (2-29) II.

BSC 2010 - Exam I Lectures and Text Pages. The Plasma Membrane Structure and Function. Phospholipids. I. Intro to Biology (2-29) II. BSC 2010 - Exam I Lectures and Text Pages I. Intro to Biology (2-29) II. Chemistry of Life Chemistry review (30-46) Water (47-57) Carbon (58-67) Macromolecules (68-91) III. Cells and Membranes Cell structure

More information

Do Not Write on this Quiz Paper (südamlik aitäh)

Do Not Write on this Quiz Paper (südamlik aitäh) 1. This makes ribosomes. Cell Organelle Quiz Do Not Write on this Quiz Paper (südamlik aitäh) a. Rough ER c. Golgi apparatus (body) b. Nucleolus d. Mitochondria 2. This is an energy producing organelle.

More information

Cellular Structure and Function

Cellular Structure and Function Chapter Test A CHAPTER 7 Cellular Structure and Function Part A: Multiple Choice In the space at the left, write the letter of the term or phrase that best answers each question. 1. Which defines a cell?

More information

How Well Do You Know Your Cells?

How Well Do You Know Your Cells? How Well Do You Know Your Cells? Complete each sentence below with words from the box. One word will not be used. cells cell membrane cell walls chloroplasts cytoplasm Hooke Leeuwenhoek mitochondria nucleus

More information

Biology 13A Lab #3: Cells and Tissues

Biology 13A Lab #3: Cells and Tissues Biology 13A Lab #3: Cells and Tissues Lab #3 Table of Contents: Expected Learning Outcomes.... 28 Introduction...... 28 Activity 1: Eukaryotic Cell Structure... 29 Activity 2: Perspectives on Tissue Preparations.

More information

BME 42-620 Engineering Molecular Cell Biology. Lecture 02: Structural and Functional Organization of

BME 42-620 Engineering Molecular Cell Biology. Lecture 02: Structural and Functional Organization of BME 42-620 Engineering Molecular Cell Biology Lecture 02: Structural and Functional Organization of Eukaryotic Cells BME42-620 Lecture 02, September 01, 2011 1 Outline A brief review of the previous lecture

More information

Buddhist Chi Hong Chi Lam Memorial College A.L. Bio. Notes (by Denise Wong) The Cell... Page 28

Buddhist Chi Hong Chi Lam Memorial College A.L. Bio. Notes (by Denise Wong) The Cell... Page 28 The Cell... Page 28 Organelles of cells: Introduction : - The cell is the fundamental unit of life. - The modern Cell theory states : i) All living organisms are composed of cells. ii) All new cells are

More information

called a cell wall. The cell wall protects against mechanical stress and keeps the cell from becoming over-filled with water.

called a cell wall. The cell wall protects against mechanical stress and keeps the cell from becoming over-filled with water. What are Cells? By: Byron Norelius About Cells A cell is the basic unit of life. All living organisms are composed of one (unicellular) or more (multicellular) cells. In unicellular organisms, like many

More information

* The cell is the basic structural and functional unit of life. * Organismal activity depends on individual and collective activity of cells.

* The cell is the basic structural and functional unit of life. * Organismal activity depends on individual and collective activity of cells. Define Cell * The cell is the basic structural and functional unit of life. * Organismal activity depends on individual and collective activity of cells. * Biochemical activities of cells are dictated

More information

Date: Student Name: Teacher Name: Jared George. Score: 1) A cell with 1% solute concentration is placed in a beaker with a 5% solute concentration.

Date: Student Name: Teacher Name: Jared George. Score: 1) A cell with 1% solute concentration is placed in a beaker with a 5% solute concentration. Biology Keystone (PA Core) Quiz Homeostasis and Transport - (BIO.A.4.1.1 ) Plasma Membrane, (BIO.A.4.1.2 ) Transport Mechanisms, (BIO.A.4.1.3 ) Transport Facilitation Student Name: Teacher Name: Jared

More information

chapter3 Cell Structure and Function

chapter3 Cell Structure and Function chapter3 Cell Structure and Function Chapter Concepts 3.1 the cellular level of Organization What does the cell theory state? 46 What instruments would a scientist use to study and view small cells? 46

More information

Prokaryotic and Eukaryotic Cells

Prokaryotic and Eukaryotic Cells Lab 2- Bio 201 Prokaryotic and Eukaryotic Cells Name: OBJECTIVES To explore cell structure and morphology in prokaryotes and eukaryotes. To gain more experience using the microscope, and in particular,

More information

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes? Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control

More information

Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm.

Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm. Protein Trafficking/Targeting (8.1) Lecture 8 Protein Trafficking/Targeting Protein targeting is necessary for proteins that are destined to work outside the cytoplasm. Protein targeting is more complex

More information

The Cell Theory The Discovery of Cells Basic Properties of Cells Two Fundamentally Different Classes of Cells: Prokaryotes and Eukaryotes

The Cell Theory The Discovery of Cells Basic Properties of Cells Two Fundamentally Different Classes of Cells: Prokaryotes and Eukaryotes The Discovery of Cells 1. Robert Hooke (1665), English microscopist described chambers in cork; called them cells (cellulae) since they reminded him of cells occupied by monks living in a monastery He

More information

Plant and Animal Cells

Plant and Animal Cells Plant and Animal Cells Strand Topic Life Systems Investigating organelles and their functions in cells of living things Primary SOL LS.2 The student will investigate and understand that all living things

More information

The Living Cell from the Biology: The Science of Life Series. Pre-Test

The Living Cell from the Biology: The Science of Life Series. Pre-Test 1 Pre-Test Directions: Answer each question TRUE OR FALSE. 1. The instructions for making proteins are stored in molecules of DNA. 2. Proteins are made in the nucleus. 3. All cells are surrounded by a

More information

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions.

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions. thebiotutor AS Biology OCR Unit F211: Cells, Exchange & Transport Module 1.2 Cell Membranes Notes & Questions Andy Todd 1 Outline the roles of membranes within cells and at the surface of cells. The main

More information

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT Completion: complete each statement. (1 point each) 1. All cells arise from. 2. The basic unit of structure

More information

City Part Function Cell Part Controls what goes in and

City Part Function Cell Part Controls what goes in and Answer key: CELL CITY INTRODUCTION! Floating around in the cytoplasm are small structures called organelles. Like the organs in your own body, each one carries out a specific function necessary for the

More information

An Overview of Cells and Cell Research

An Overview of Cells and Cell Research An Overview of Cells and Cell Research 1 An Overview of Cells and Cell Research Chapter Outline Model Species and Cell types Cell components Tools of Cell Biology Model Species E. Coli: simplest organism

More information

The microscope is an important tool.

The microscope is an important tool. KEY CONCEPT Microscopes allow us to see inside the cell. BEFORE, you learned Some organisms are unicellular and some are multicellular A microscope is necessary to study most cells The cell theory describes

More information

Eukaryotic Cell Structure: Organelles in Animal & Plant Cells Why are organelles important and how are plants and animals different?

Eukaryotic Cell Structure: Organelles in Animal & Plant Cells Why are organelles important and how are plants and animals different? Why? Eukaryotic Cell Structure: Organelles in Animal & Plant Cells Why are organelles important and how are plants and animals different? The cell is the basic unit and building block of all living things.

More information

Cell Biology Questions and Learning Objectives

Cell Biology Questions and Learning Objectives Cell Biology Questions and Learning Objectives (with hypothetical learning materials that might populate the objective) The topics and central questions listed here are typical for an introductory undergraduate

More information

I. PLANT CELL, CELL WALL Bot 404--Fall 2004

I. PLANT CELL, CELL WALL Bot 404--Fall 2004 I. PLANT CELL, CELL WALL Bot 404--Fall 2004 A. Review of General Anatomy 1. Major organs are stem, leaf, root. Flower is usually interpreted as a modified shoot, so sepals, petals, stamens and carpels

More information

d:\data\newage~1\biote\bit-1.pm5/iiird proof/4-11-04 The Cell Part A CELL BIOLOGY

d:\data\newage~1\biote\bit-1.pm5/iiird proof/4-11-04 The Cell Part A CELL BIOLOGY The Cell 1 Part A CELL BIOLOGY 2 Biotechnology The Cell 3 1 THE CELL The cell is the smallest structural and functional unit of the all living organisms. Cell biology is the study of the cell. Cell biology

More information

1. When applying the process of science, which of these is tested? a. an observation b. a result c. a hypothesis d. a question e.

1. When applying the process of science, which of these is tested? a. an observation b. a result c. a hypothesis d. a question e. BCOR 11 Exam 1, 2004 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1. When applying the process of science, which of these is tested? a. an observation

More information

Six major functions of membrane proteins: Transport Enzymatic activity

Six major functions of membrane proteins: Transport Enzymatic activity CH 7 Membranes Cellular Membranes Phospholipids are the most abundant lipid in the plasma membrane. Phospholipids are amphipathic molecules, containing hydrophobic and hydrophilic regions. The fluid mosaic

More information

Cell and Membrane Practice. A. chromosome B. gene C. mitochondrion D. vacuole

Cell and Membrane Practice. A. chromosome B. gene C. mitochondrion D. vacuole Name: ate: 1. Which structure is outside the nucleus of a cell and contains N?. chromosome. gene. mitochondrion. vacuole 2. potato core was placed in a beaker of water as shown in the figure below. Which

More information

7.1 What Are Cells? You are made of cells. A cell is the basic unit of structure and function in a living thing. CHAPTER 7

7.1 What Are Cells? You are made of cells. A cell is the basic unit of structure and function in a living thing. CHAPTER 7 CELL STRUCTURE AND FUNCTION 7.1 What Are Cells? Look closely at the skin on your arm. Can you see that it is made of cells? Of course not! Your skin cells are much too small to see with your eyes. Now

More information

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

Anatomy and Physiology Placement Exam 2 Practice with Answers at End! Anatomy and Physiology Placement Exam 2 Practice with Answers at End! General Chemical Principles 1. bonds are characterized by the sharing of electrons between the participating atoms. a. hydrogen b.

More information

Parts of the Nerve Cell and Their Functions

Parts of the Nerve Cell and Their Functions Parts of the Nerve Cell and Their Functions Silvia Helena Cardoso, PhD [ 1. Cell body] [2. Neuronal membrane] [3. Dendrites] [4. Axon] [5. Nerve ending] 1. Cell body The cell body (soma) is the factory

More information

The Cell Grade Ten. Estimated Duration: Three hours

The Cell Grade Ten. Estimated Duration: Three hours Ohio Standards Connection: Life Sciences Benchmark A Explain that cells are the basic unit of structure and function of living organisms, that once life originated all cells come from pre-existing cells,

More information

Week 1 EOC Review Cell Theory, Cell Structure, Cell Transport

Week 1 EOC Review Cell Theory, Cell Structure, Cell Transport Week 1 EOC Review Cell Theory, Cell Structure, Cell Transport Benchmarks: SC.912.L.14.1 Describe the scientific theory of cells (cell theory) and relate the history of its discovery to the processes of

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function Part A Multiple Choice 1. The fluid mosaic model describes membranes as having A. a set of protein channels separated by phospholipids. B. a bilayer of phospholipids in

More information

Video Links: Differences Between Plant and Animal Cells http://www.youtube.com/watch?v=mwz4ptp_qeu

Video Links: Differences Between Plant and Animal Cells http://www.youtube.com/watch?v=mwz4ptp_qeu Comparing Animal and Plant Cells by Annie Plant and animal cells are known as Eukaryotic cells which contain a nucleus and other genetic material enclosed within membranes. (Science Daily, n.d.) The primary

More information

Organization and Structure of Cells

Organization and Structure of Cells Organization and Structure of Cells All living things fall into one of the two categories: prokaryotes eukaryotes The distinction is based on whether or not a cell has a nucleus. Prokaryotic cells do not

More information

OBJECTIVES PROCEDURE. Lab 2- Bio 160. Name:

OBJECTIVES PROCEDURE. Lab 2- Bio 160. Name: Lab 2- Bio 160 Name: Prokaryotic and Eukaryotic Cells OBJECTIVES To explore cell structure and morphology in prokaryotes and eukaryotes. To gain more experience using the microscope. To obtain a better

More information

Cells are tiny building blocks that make up all living things. Cells are so small that you need a microscope to see them.

Cells are tiny building blocks that make up all living things. Cells are so small that you need a microscope to see them. FC01 CELLS s are tiny building blocks that make up all living things. s are so small that you need a microscope to see them. ANIMAL CELL PLANT CELL This is the control centre of the cell. It contains chromosomes

More information

COMPARISON OF PLANT AND ANIMAL CELLS SIMILARITIES IN PLANT & ANIMAL CELLS

COMPARISON OF PLANT AND ANIMAL CELLS SIMILARITIES IN PLANT & ANIMAL CELLS COMPARISON OF PLANT AND ANIMAL CELLS Cells vary widely in structure and function, even within the same organism. The human body, for example, has more than 200 different types of cells, each with a specialized

More information

4a. A Busy Factory. Cell Structure: An Overview

4a. A Busy Factory. Cell Structure: An Overview 4a. A Busy Factory Imagine a bustling factory manufacturing the latest must-have gadget. Whether they make bicycles, cell phones, or hot air balloons, most factories are set up in essentially the same

More information

7.2 Cells: A Look Inside

7.2 Cells: A Look Inside CHAPTER 7 CELL STRUCTURE AND FUNCTION 7.2 Cells: A Look Inside Imagine a factory that makes thousands of cookies a day. Ingredients come into the factory, get mixed and baked, then the cookies are packaged.

More information

Lab 4 Cell Structure, Osmosis, and Diffusion

Lab 4 Cell Structure, Osmosis, and Diffusion Lab 4 Cell Structure, Osmosis, and Diffusion Introduction: Connecting Your Learning The basic building block of life is the cell. Each cell contains several structures, some of which are common to both

More information

The Lipid Bilayer Is a Two-Dimensional Fluid

The Lipid Bilayer Is a Two-Dimensional Fluid The Lipid Bilayer Is a Two-Dimensional Fluid The aqueous environment inside and outside a cell prevents membrane lipids from escaping from bilayer, but nothing stops these molecules from moving about and

More information

PLANT CELLS AND ANIMAL CELLS

PLANT CELLS AND ANIMAL CELLS PLANT CELLS AND ANIMAL CELLS General Science, Biology, Anatomy, Physiology Grades 6 12 OBJECTIVES CONTENT THINKING SKILL/PROCESS Students will learn the role of cells as building blocks of all living structures.

More information

ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes

ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes Page 1 of 22 Introduction Indiana students enrolled in Biology I participated in the ISTEP+: Biology I Graduation Examination

More information

Cell and its organelles -1-

Cell and its organelles -1- http://www.bristol.ac.uk/phys-pharm/media/teaching/ pharm/media/teaching/ Cell and its organelles -1- The main text for this lecture is: Vander s Human Physiology + some additions from Germann & Stanfield

More information

Use of the Microscope and Cytology

Use of the Microscope and Cytology Use of the Microscope and Cytology Introduction: A true study of anatomy not only considers the large, visible structures of an organism, but also the small structures that provide the organism its form

More information

CHAPTER 5.1 5.2: Plasma Membrane Structure

CHAPTER 5.1 5.2: Plasma Membrane Structure CHAPTER 5.1 5.2: Plasma Membrane Structure 1. Describe the structure of a phospholipid molecule. Be sure to describe their behavior in relationship to water. 2. What happens when a collection of phospholipids

More information

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet AP * BIOLOGY CELL MEMBRANES, TRANSPORT, and COMMUNICATION Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production

More information

Common Characteristics of cells

Common Characteristics of cells Characteristics of Cells Introduction to Cells Biology is the subject of life and living organisms. The living organisms are diverse in almost every aspect. What a great difference exists between human

More information

Homeostasis and Transport Module A Anchor 4

Homeostasis and Transport Module A Anchor 4 Homeostasis and Transport Module A Anchor 4 Key Concepts: - Buffers play an important role in maintaining homeostasis in organisms. - To maintain homeostasis, unicellular organisms grow, respond to the

More information

UNIT 1 - Living Organisms and the Environment Situations. Cells

UNIT 1 - Living Organisms and the Environment Situations. Cells Lesson Summaries HUMAN AND SOCIAL BIOLOGY UNIT 1 - Living Organisms and the Environment Situations Lesson 2 Cells OBJECTIVES At the end of this lesson you will be able to: a) Describe the structure of

More information