# HOMEWORK #3 SOLUTIONS - MATH 3260

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 HOMEWORK #3 SOLUTIONS - MATH 3260 ASSIGNED: FEBRUARY 26, 2003 DUE: MARCH 12, 2003 AT 2:30PM (1) Show either that each of the following graphs are planar by drawing them in a way that the vertices do not cross or give a subgraph which is homeomorphic to K 3,3 or K 5. For the first graph we see below on the left a subgraph isomorphic to K 3,3. For the second graph it is planar and we draw the isomorphic graph in the plane below. The graph on the left is not planar and we can show it by isolating the subgraph on the left. All of the black vertices are of degree 2 in the subgraph and so can be ignored when 1

2 2 ASSIGNED: FEBRUARY 26, 2003 DUE: MARCH 12, 2003 AT 2:30PM we observe that the blue edges and red vertices form a graph homeomorphic to K 5. The graph on the right is planar and we show it by giving a graph which is isomorphic and has no crossings in the plane. (2) (a) Show that K 3, can be drawn in a torus without crossings by drawing this image. It will take some thought to determine how to arrange the vertices in a nice way. (b) Corollary 1.3 on page 71 in the text gives a bound on the surface that a graph G can be embedded in. What does this say about the genus of the graphs K r,s for r + s? What does this say in particular about K 3,3 and K 3,? Solution: The number of edges in K r,s is rs and the number of vertices is r+s, therefore this corollary says that and in particular for K 3,3 and K 3, and g(k r,s ) (rs 3r 3s)/6 + 1 g(k 3,3 ) (9 9 9)/6 + 1 = 0 g(k 3, ) ( )/6 + 1 = 0. This doesn t tell us much since we already know that g(k 3,3 ) = g(k 3, ) = 1. (c) Modify the proof of Corollary 1.3 to obtain a better lower bound for g if the graph does not contain any triangles. Show that this implies (r 2)(s 2) g(k r,s ) In particular, explain in words what this inequality tells you about the graphs K 3,3 and K 3,.

3 HOMEWORK #3 SOLUTIONS - MATH Solution: If the graph does not contain any triangles, then every face has at least edges and since every edge adjoins exactly two faces we have that f 2m where f is the number of faces and m is the number of edges. Euler s theorem says that 2 2g = n m + f n m + m 2 = n m 2 This implies that or more precisely, 2 n + m 2 2g g 1 n 2 + m. For K r,s, n = r + s and m = rs, therefore we have that g(k r,s ) 1 r + s 2 + rs = 1 (2 r)(2 s) ( 2(r + s) + rs) =. Since the genus is an integer we can say more precisely that (2 r)(2 s) g(k r,s ) In particular this says that (2 3)(2 3) g(k 3,3 ) = 1 and (2 3)(2 ) g(k 3, ) = 1. This says that K 3,3 and K 3, are not planar. It does not say that they can be embedded into a torus, it says that they MIGHT be able to be embedded into a torus (but we already showed that they can in part (a)). (3) Show that the dual of the cube graph is the octahedron graph and that the dual of the dodecahedron graph is the icosahedron graph. Give the number of vertices, edges and faces for each of these four graphs. The cube has 8 vertices, 12 edges and 6 faces. The octahedron has 6 vertices, 12 edges and 8 faces.

4 ASSIGNED: FEBRUARY 26, 2003 DUE: MARCH 12, 2003 AT 2:30PM The icosahedron has 12 vertices, 30 edges, and 20 faces. The dodecahedron has 20 vertices, 30 edges, and 12 faces. () Show that the following two graphs are isomorphic but that their geometric duals are not isomorphic. Note the reason that the duals of these graphs cannot be isomorphic is that the one on the right has two vertices of degree while the one on the left has all vertices of degree 3 except for 1 which is of degree 5. (5) Let G be a simple planar graph. Demonstrate what conditions on G are necessary to guarantee that the dual of G has the following properties. (a) G has no edges to and from the same vertex (no loops).

5 HOMEWORK #3 SOLUTIONS - MATH Answer: G should have no edges which for which border only one face. (b) G is isomorphic to G. Solution: G is connected (see theorem 15.2). (c) G is bipartite. Answer: G is Eulerian. (d) G is Eulerian. Answer: G is bipartite and connected. The solution to the last two problems is in the book it is problem number Hint: These last two follow from Theorem 5.1 and Corollary 6.3 in the book. (6) Find the chromatic number of (a) each of the Platonic graphs. General remark: Recall that a bipartite graph has the property that every cycle even length and a graph is two colorable if and only if the graph is bipartite. Solution: All of the platonic solids are planar so the chromatic number is less than or equal to for each of them. The tetrahedron has chromatic number since it is isomorphic to K. The octahedron is not bipartite so the chromatic number is > 2 and it is equal to 3 since the faces of the cube may be colored as in the diagram below and the cube is dual to the octahedron: The cube is bipartite and hence has chromatic number 2 (see justification that the k-cube is bipartite below). The icosahedron is -colorable but not 3-colorable so the chromatic number is. This is easier to see by looking at the face coloring of the dodecahedron (since the dodecahedron is dual to the icosahedron, the face coloring of the dodecahedron is equivalent to the vertex coloring of the icosahedron). The center face of the dodecahedron is one color and the surrounding faces cannot be colored in less than 3 colors, therefore the chromatic number is for the icosahedron.

6 6 ASSIGNED: FEBRUARY 26, 2003 DUE: MARCH 12, 2003 AT 2:30PM The chromatic number of the dodecahedron is 3. Observe in the image below that we can face color the icosahedron with 3 colors, we can vertex color the dodecahedron with 3 colors. The dodecahedron requires at least 3 colors since it is not bipartite. In summary, the tetrahedron has chromatic number, cube has chromatic number 2, octahedron has chromatic number 3, icosahedron has chromatic number, dodecahedron has chromatic number 3. (b) the complete graph K n Solution: The chromatic number is n. The complete graph must be colored with n different colors since every vertex is adjacent to every other vertex. (c) the complete bipartite graph K r,s, r, s 1. Solution: The chromatic number is 2. A bipartite graph is always 2 colorable, since the set of r vertices can be colored black while the set of s vertices can be colored white and none of the black vertices are adjacent and none of the white vertices are adjacent. It requires at least two colors because all of the vertices in one of the partition sets are adjacent to all of the others. (d) the complete tripartite graph K r,s,t, r, s, t 1. Solution: The chromatic number is 3. A complete tripartite graph requires at least three colors since this graph consists of a bunch of triangles with each vertex of the triangle in one of the three different sets. It can be done with exactly 3 since the vertices in the r-vertex set can be one color, in the s-vertex set a second color and the t-vertex set a third color. (e) the wheel graph W n. Solution: The chromatic number is 3 if n is odd and if n is even. Center will be one color. The outside of the wheel is a cycle of length n 1 which can be colored with 2 colors if n is odd and it will take 3 colors if n is even (none of these colors can be the same as the center vertex). (f) the k-cube Q k. Solution: The chromatic number is 2 since Q k is bipartite. This is not difficult to see since the vertices are labeled with sequences of k 0s and 1s. One set will be the sequences with an even number of 1s and the other set will be the sequences with an odd number of 1s. There will never be an edge between two sequences with an even number of 1s (or an odd number of 1s) because edges (u, v) in the graph Q k exist only if the number of 1 in u is one more or one less than in v.

### Introduction to Graph Theory

Introduction to Graph Theory Allen Dickson October 2006 1 The Königsberg Bridge Problem The city of Königsberg was located on the Pregel river in Prussia. The river divided the city into four separate

### Sum of Degrees of Vertices Theorem

Sum of Degrees of Vertices Theorem Theorem (Sum of Degrees of Vertices Theorem) Suppose a graph has n vertices with degrees d 1, d 2, d 3,...,d n. Add together all degrees to get a new number d 1 + d 2

### Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902

Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler Different Graphs, Similar Properties

### Topological Treatment of Platonic, Archimedean, and Related Polyhedra

Forum Geometricorum Volume 15 (015) 43 51. FORUM GEOM ISSN 1534-1178 Topological Treatment of Platonic, Archimedean, and Related Polyhedra Tom M. Apostol and Mamikon A. Mnatsakanian Abstract. Platonic

### CS311H. Prof: Peter Stone. Department of Computer Science The University of Texas at Austin

CS311H Prof: Department of Computer Science The University of Texas at Austin Good Morning, Colleagues Good Morning, Colleagues Are there any questions? Logistics Class survey Logistics Class survey Homework

### Graph Theory Problems and Solutions

raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

### Class One: Degree Sequences

Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of

### 1 Symmetries of regular polyhedra

1230, notes 5 1 Symmetries of regular polyhedra Symmetry groups Recall: Group axioms: Suppose that (G, ) is a group and a, b, c are elements of G. Then (i) a b G (ii) (a b) c = a (b c) (iii) There is an

### SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

### Connectivity and cuts

Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every

### M-Degrees of Quadrangle-Free Planar Graphs

M-Degrees of Quadrangle-Free Planar Graphs Oleg V. Borodin, 1 Alexandr V. Kostochka, 1,2 Naeem N. Sheikh, 2 and Gexin Yu 3 1 SOBOLEV INSTITUTE OF MATHEMATICS NOVOSIBIRSK 630090, RUSSIA E-mail: brdnoleg@math.nsc.ru

### 3. Eulerian and Hamiltonian Graphs

3. Eulerian and Hamiltonian Graphs There are many games and puzzles which can be analysed by graph theoretic concepts. In fact, the two early discoveries which led to the existence of graphs arose from

### The 5 Platonic solids:

The 5 Platonic solids: The Tetrahedron (3 equilateral triangles at each vertex) The Hexahedron (3 squares at each vertex, cube) The Octahedron (4 equilateral triangles at each vertex) The Dodecahedron

### Planar Graphs. Complement to Chapter 2, The Villas of the Bellevue

Planar Graphs Complement to Chapter 2, The Villas of the Bellevue In the chapter The Villas of the Bellevue, Manori gives Courtel the following definition. Definition A graph is planar if it can be drawn

### Math 2443, Section 16.3

Math 44, Section 6. Review These notes will supplement not replace) the lectures based on Section 6. Section 6. i) ouble integrals over general regions: We defined double integrals over rectangles in the

### Computing the Symmetry Groups of the Platonic Solids With the Help of Maple

Computing the Symmetry Groups of the Platonic Solids With the Help of Maple Patrick J. Morandi Department of Mathematical Sciences New Mexico State University Las Cruces NM 88003 USA pmorandi@nmsu.edu

### The minimum number of distinct areas of triangles determined by a set of n points in the plane

The minimum number of distinct areas of triangles determined by a set of n points in the plane Rom Pinchasi Israel Institute of Technology, Technion 1 August 6, 007 Abstract We prove a conjecture of Erdős,

### Divisor graphs have arbitrary order and size

Divisor graphs have arbitrary order and size arxiv:math/0606483v1 [math.co] 20 Jun 2006 Le Anh Vinh School of Mathematics University of New South Wales Sydney 2052 Australia Abstract A divisor graph G

### 2.3 Scheduling jobs on identical parallel machines

2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed

### Nets of a cube puzzle

Nets of a cube puzzle Here are all eleven different nets for a cube, together with four that cannot be folded to make a cube. Can you find the four impostors? Pyramids Here is a square-based pyramid. A

### Geometry Chapter 1 Vocabulary. coordinate - The real number that corresponds to a point on a line.

Chapter 1 Vocabulary coordinate - The real number that corresponds to a point on a line. point - Has no dimension. It is usually represented by a small dot. bisect - To divide into two congruent parts.

### Actually Doing It! 6. Prove that the regular unit cube (say 1cm=unit) of sufficiently high dimension can fit inside it the whole city of New York.

1: 1. Compute a random 4-dimensional polytope P as the convex hull of 10 random points using rand sphere(4,10). Run VISUAL to see a Schlegel diagram. How many 3-dimensional polytopes do you see? How many

### Spring 2007 Math 510 Hints for practice problems

Spring 2007 Math 510 Hints for practice problems Section 1 Imagine a prison consisting of 4 cells arranged like the squares of an -chessboard There are doors between all adjacent cells A prisoner in one

### A Turán Type Problem Concerning the Powers of the Degrees of a Graph

A Turán Type Problem Concerning the Powers of the Degrees of a Graph Yair Caro and Raphael Yuster Department of Mathematics University of Haifa-ORANIM, Tivon 36006, Israel. AMS Subject Classification:

### Cycles and clique-minors in expanders

Cycles and clique-minors in expanders Benny Sudakov UCLA and Princeton University Expanders Definition: The vertex boundary of a subset X of a graph G: X = { all vertices in G\X with at least one neighbor

### Product irregularity strength of certain graphs

Also available at http://amc.imfm.si ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 7 (014) 3 9 Product irregularity strength of certain graphs Marcin Anholcer

### On planar regular graphs degree three without Hamiltonian cycles 1

On planar regular graphs degree three without Hamiltonian cycles 1 E. Grinbergs Computing Centre of Latvian State University Abstract. Necessary condition to have Hamiltonian cycle in planar graph is given.

### Euler s Theorem. Tom Davis July 14, 2009

Euler s Theorem Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles July 14, 2009 Abstract Euler s theorem is a nice result that is easy to investigate with simple models from Euclidean

### Midterm Practice Problems

6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator

### Removing Even Crossings

EuroComb 2005 DMTCS proc. AE, 2005, 105 110 Removing Even Crossings Michael J. Pelsmajer 1, Marcus Schaefer 2 and Daniel Štefankovič 2 1 Department of Applied Mathematics, Illinois Institute of Technology,

### . 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9

Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a

### SOLIDS, NETS, AND CROSS SECTIONS

SOLIDS, NETS, AND CROSS SECTIONS Polyhedra In this section, we will examine various three-dimensional figures, known as solids. We begin with a discussion of polyhedra. Polyhedron A polyhedron is a three-dimensional

### Ramsey numbers for bipartite graphs with small bandwidth

Ramsey numbers for bipartite graphs with small bandwidth Guilherme O. Mota 1,, Gábor N. Sárközy 2,, Mathias Schacht 3,, and Anusch Taraz 4, 1 Instituto de Matemática e Estatística, Universidade de São

### Teaching and Learning 3-D Geometry

This publication is designed to support and enthuse primary trainees in Initial Teacher Training. It will provide them with the mathematical subject and pedagogic knowledge required to teach 3-D geometry

### Induction. Margaret M. Fleck. 10 October These notes cover mathematical induction and recursive definition

Induction Margaret M. Fleck 10 October 011 These notes cover mathematical induction and recursive definition 1 Introduction to induction At the start of the term, we saw the following formula for computing

### When is a graph planar?

When is a graph planar? Theorem(Euler, 1758) If a plane multigraph G with k components has n vertices, e edges, and f faces, then n e + f = 1 + k. Corollary If G is a simple, planar graph with n(g) 3,

### Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )

1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the

### DISCOVERING 3D SHAPES

. DISCOVERING 3D SHAPES WORKSHEETS OCTOBER-DECEMBER 2009 1 . Worksheet 1. Cut out and stick the shapes. SHAPES WHICH ROLL SHAPES WHICH SLIDE 2 . Worksheet 2: COMPLETE THE CHARTS Sphere, triangle, prism,

### Analysis of Algorithms, I

Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications

### Definition 11.1. Given a graph G on n vertices, we define the following quantities:

Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define

### 12 Surface Area and Volume

12 Surface Area and Volume 12.1 Three-Dimensional Figures 12.2 Surface Areas of Prisms and Cylinders 12.3 Surface Areas of Pyramids and Cones 12.4 Volumes of Prisms and Cylinders 12.5 Volumes of Pyramids

### Labeling outerplanar graphs with maximum degree three

Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics

### Examination paper for MA0301 Elementær diskret matematikk

Department of Mathematical Sciences Examination paper for MA0301 Elementær diskret matematikk Academic contact during examination: Iris Marjan Smit a, Sverre Olaf Smalø b Phone: a 9285 0781, b 7359 1750

### Inscribed Angle Theorem and Its Applications

: Student Outcomes Prove the inscribed angle theorem: The measure of a central angle is twice the measure of any inscribed angle that intercepts the same arc as the central angle. Recognize and use different

### Short Cycles make W-hard problems hard: FPT algorithms for W-hard Problems in Graphs with no short Cycles

Short Cycles make W-hard problems hard: FPT algorithms for W-hard Problems in Graphs with no short Cycles Venkatesh Raman and Saket Saurabh The Institute of Mathematical Sciences, Chennai 600 113. {vraman

### 56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.

6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which

### Graphs without proper subgraphs of minimum degree 3 and short cycles

Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract

### arxiv: v2 [math.co] 30 Nov 2015

PLANAR GRAPH IS ON FIRE PRZEMYSŁAW GORDINOWICZ arxiv:1311.1158v [math.co] 30 Nov 015 Abstract. Let G be any connected graph on n vertices, n. Let k be any positive integer. Suppose that a fire breaks out

### Shape Dictionary YR to Y6

Shape Dictionary YR to Y6 Guidance Notes The terms in this dictionary are taken from the booklet Mathematical Vocabulary produced by the National Numeracy Strategy. Children need to understand and use

### Arrangements And Duality

Arrangements And Duality 3.1 Introduction 3 Point configurations are tbe most basic structure we study in computational geometry. But what about configurations of more complicated shapes? For example,

### Euler Paths and Euler Circuits

Euler Paths and Euler Circuits An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler path starts and

### Star and convex regular polyhedra by Origami.

Star and convex regular polyhedra by Origami. Build polyhedra by Origami.] Marcel Morales Alice Morales 2009 E D I T I O N M O R A L E S Polyhedron by Origami I) Table of convex regular Polyhedra... 4

### (Q, ), (R, ), (C, ), where the star means without 0, (Q +, ), (R +, ), where the plus-sign means just positive numbers, and (U, ),

2 Examples of Groups 21 Some infinite abelian groups It is easy to see that the following are infinite abelian groups: Z, +), Q, +), R, +), C, +), where R is the set of real numbers and C is the set of

### COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact

### Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph

### Hyperbolic Islamic Patterns A Beginning

Hyperbolic Islamic Patterns A Beginning Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-2496, USA E-mail: ddunham@d.umn.edu Web Site: http://www.d.umn.edu/

### Induction Problems. Tom Davis November 7, 2005

Induction Problems Tom Davis tomrdavis@earthlin.net http://www.geometer.org/mathcircles November 7, 2005 All of the following problems should be proved by mathematical induction. The problems are not necessarily

### Every 3-dimensional shape has three measurements to describe it: height, length and width.

Every 3-dimensional shape has three measurements to describe it: height, length and width. Height Width Length Faces A face is one of the flat sides of a three-dimensional shape. Faces A cuboid has 6 flat

### INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

### Total colorings of planar graphs with small maximum degree

Total colorings of planar graphs with small maximum degree Bing Wang 1,, Jian-Liang Wu, Si-Feng Tian 1 Department of Mathematics, Zaozhuang University, Shandong, 77160, China School of Mathematics, Shandong

### Exponential time algorithms for graph coloring

Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].

### Small Maximal Independent Sets and Faster Exact Graph Coloring

Small Maximal Independent Sets and Faster Exact Graph Coloring David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science The Exact Graph Coloring Problem: Given an undirected

### Comments on Quotient Spaces and Quotient Maps

22M:132 Fall 07 J. Simon Comments on Quotient Spaces and Quotient Maps There are many situations in topology where we build a topological space by starting with some (often simpler) space[s] and doing

### On one-factorizations of replacement products

Filomat 27:1 (2013), 57 63 DOI 10.2298/FIL1301057A Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat On one-factorizations of replacement

### Answers to some of the exercises.

Answers to some of the exercises. Chapter 2. Ex.2.1 (a) There are several ways to do this. Here is one possibility. The idea is to apply the k-center algorithm first to D and then for each center in D

### ON DEGREES IN THE HASSE DIAGRAM OF THE STRONG BRUHAT ORDER

Séminaire Lotharingien de Combinatoire 53 (2006), Article B53g ON DEGREES IN THE HASSE DIAGRAM OF THE STRONG BRUHAT ORDER RON M. ADIN AND YUVAL ROICHMAN Abstract. For a permutation π in the symmetric group

### angle Definition and illustration (if applicable): a figure formed by two rays called sides having a common endpoint called the vertex

angle a figure formed by two rays called sides having a common endpoint called the vertex area the number of square units needed to cover a surface array a set of objects or numbers arranged in rows and

### Math 181 Handout 16. Rich Schwartz. March 9, 2010

Math 8 Handout 6 Rich Schwartz March 9, 200 The purpose of this handout is to describe continued fractions and their connection to hyperbolic geometry. The Gauss Map Given any x (0, ) we define γ(x) =

V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer

### PUZZLES WITH POLYHEDRA AND PERMUTATION GROUPS

PUZZLES WITH POLYHEDRA AND PERMUTATION GROUPS JORGE REZENDE. Introduction Consider a polyhedron. For example, a platonic, an arquemidean, or a dual of an arquemidean polyhedron. Construct flat polygonal

### Just the Factors, Ma am

1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

### Graph Attack! So clearly there is no way to get from Earth to Mars.

Graph Attack! 1. In the distant future, cosmic liaisons have been established between various bodies in the solar system. Rockets travel along the following routes: Earth-Mercury, Moon-Venus, Earth-Moon,

### Using 3 D SketchUp Design Software. Building Blocks Tools

Using 3 D SketchUp Design Software Building Blocks Tools Introduction Google s SketchUp is an easy to use drawing program capable of building 3 dimensional (or 3 D) objects (SketchUp also does 2 D easily).

### From Perfect Matchings to the Four Colour Theorem

From Perfect Matchings to the Four Colour Theorem Aguilar (Cinvestav), Flores (UNAM), Pérez (HP), Santos (Cantabria), Zaragoza (UAM-A) Universidad Autónoma Metropolitana Unidad Azcapotzalco Departamento

### An algorithmic classification of open surfaces

An algorithmic classification of open surfaces Sylvain Maillot January 8, 2013 Abstract We propose a formulation for the homeomorphism problem for open n-dimensional manifolds and use the Kerekjarto classification

### Triangle deletion. Ernie Croot. February 3, 2010

Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,

### The number of generalized balanced lines

The number of generalized balanced lines David Orden Pedro Ramos Gelasio Salazar Abstract Let S be a set of r red points and b = r + 2δ blue points in general position in the plane, with δ 0. A line l

### MATH 131 SOLUTION SET, WEEK 12

MATH 131 SOLUTION SET, WEEK 12 ARPON RAKSIT AND ALEKSANDAR MAKELOV 1. Normalisers We first claim H N G (H). Let h H. Since H is a subgroup, for all k H we have hkh 1 H and h 1 kh H. Since h(h 1 kh)h 1

### YILUN SHANG. e λi. i=1

LOWER BOUNDS FOR THE ESTRADA INDEX OF GRAPHS YILUN SHANG Abstract. Let G be a graph with n vertices and λ 1,λ,...,λ n be its eigenvalues. The Estrada index of G is defined as EE(G = n eλ i. In this paper,

### ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

### Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs

MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set

### Zachary Monaco Georgia College Olympic Coloring: Go For The Gold

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various

### P. Jeyanthi and N. Angel Benseera

Opuscula Math. 34, no. 1 (014), 115 1 http://dx.doi.org/10.7494/opmath.014.34.1.115 Opuscula Mathematica A TOTALLY MAGIC CORDIAL LABELING OF ONE-POINT UNION OF n COPIES OF A GRAPH P. Jeyanthi and N. Angel

### 1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT

DECISION 1 Revision Notes 1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT Make sure you show comparisons clearly and label each pass First Pass 8 4 3 6 1 4 8 3 6 1 4 3 8 6 1 4 3 6 8 1

### 2-partition-transitive tournaments

-partition-transitive tournaments Barry Guiduli András Gyárfás Stéphan Thomassé Peter Weidl Abstract Given a tournament score sequence s 1 s s n, we prove that there exists a tournament T on vertex set

### Section Summary. Introduction to Graphs Graph Taxonomy Graph Models

Chapter 10 Chapter Summary Graphs and Graph Models Graph Terminology and Special Types of Graphs Representing Graphs and Graph Isomorphism Connectivity Euler and Hamiltonian Graphs Shortest-Path Problems

### The Clar Structure of Fullerenes

The Clar Structure of Fullerenes Liz Hartung Massachusetts College of Liberal Arts June 12, 2013 Liz Hartung (Massachusetts College of Liberal Arts) The Clar Structure of Fullerenes June 12, 2013 1 / 25

### GRAPH THEORY LECTURE 4: TREES

GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection

### Math 475, Problem Set #13: Answers. A. A baton is divided into five cylindrical bands of equal length, as shown (crudely) below.

Math 475, Problem Set #13: Answers A. A baton is divided into five cylindrical bands of equal length, as shown (crudely) below. () ) ) ) ) ) In how many different ways can the five bands be colored if

### 5-4 Prime and Composite Numbers

5-4 Prime and Composite Numbers Prime and Composite Numbers Prime Factorization Number of Divisorss Determining if a Number is Prime More About Primes Prime and Composite Numbers Students should recognizee

### Mean Ramsey-Turán numbers

Mean Ramsey-Turán numbers Raphael Yuster Department of Mathematics University of Haifa at Oranim Tivon 36006, Israel Abstract A ρ-mean coloring of a graph is a coloring of the edges such that the average

### 3D shapes. Level A. 1. Which of the following is a 3-D shape? A) Cylinder B) Octagon C) Kite. 2. What is another name for 3-D shapes?

Level A 1. Which of the following is a 3-D shape? A) Cylinder B) Octagon C) Kite 2. What is another name for 3-D shapes? A) Polygon B) Polyhedron C) Point 3. A 3-D shape has four sides and a triangular

### Incenter Circumcenter

TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is

### Advice Complexity of Online Coloring for Paths

Advice Complexity of Online Coloring for Paths Michal Forišek 1, Lucia Keller 2, and Monika Steinová 2 1 Comenius University, Bratislava, Slovakia 2 ETH Zürich, Switzerland LATA 2012, A Coruña, Spain Definition

### 3. Equivalence Relations. Discussion

3. EQUIVALENCE RELATIONS 33 3. Equivalence Relations 3.1. Definition of an Equivalence Relations. Definition 3.1.1. A relation R on a set A is an equivalence relation if and only if R is reflexive, symmetric,

### An inequality for the group chromatic number of a graph

An inequality for the group chromatic number of a graph Hong-Jian Lai 1, Xiangwen Li 2 and Gexin Yu 3 1 Department of Mathematics, West Virginia University Morgantown, WV 26505 USA 2 Department of Mathematics

### each college c i C has a capacity q i - the maximum number of students it will admit

n colleges in a set C, m applicants in a set A, where m is much larger than n. each college c i C has a capacity q i - the maximum number of students it will admit each college c i has a strict order i

### Lecture 3: Linear Programming Relaxations and Rounding

Lecture 3: Linear Programming Relaxations and Rounding 1 Approximation Algorithms and Linear Relaxations For the time being, suppose we have a minimization problem. Many times, the problem at hand can