Consider a system that consists of a finite number of equivalent states. The chance that a given state will occur is given by the equation.

Size: px
Start display at page:

Download "Consider a system that consists of a finite number of equivalent states. The chance that a given state will occur is given by the equation."

Transcription

1 Probability and the Chi-Square Test written by J. D. Hendrix Learning Objectives Upon completing the exercise, each student should be able: to determine the chance that a given state will occur in a system that consists of a finite number of equivalent states; to determine the chance of two or more independent events occurring simultaneously by using the product rule; to determine the chance that either one or the other of two mutually exclusive events will occur by using the sum rule; to test hypotheses based on expected frequencies using the chi-square test. Background Many genetic events are random processes. These include the segregation and assortment of genes during meiosis, the combination of gametes during fertilization, and crossover between homologous chromosomes. Scientists describe random natural processes using the mathematical tools of probability and statistics. A. The Chance that an Event will Occur Consider a system that consists of a finite number of equivalent states. The chance that a given state will occur is given by the equation C= a t in which C is the chance (probability) of the state, a is the number of times the state is represented in the system, and t is the total number of equivalent states in the system. For example, we can develop a mathematical model to describe a coin toss. We assume that a coin toss is a system with two equivalent states, heads-up and tails-up. We describe each state with a probability. Chance of heads = Chance of tails = number of heads total sides on the coin = 2 number of tails total sides on the coin = 2 = 0.5 = 50% = 0.5 = 50% We can use probabilities to predict the frequency of an event, or how often an event will occur. In an experiment with 50 coin tosses: Expected number of heads = 50 x 0.5 = 25 Expected number of tails = 50 x 0.5 = 25 We test the validity of the hypothesis (that there is an equal chance of getting heads or tails) by comparing the observed number of heads and tails in a coin-toss experiment with the expected values calculated from the probabilities. If the original assumptions in the hypothesis are not valid (for example, if the coin is heavier on one side, or if it is deformed in some way),

2 2 then there could be a significant difference between the observed and expected values. It is customary to express the expected outcome of an experiment involving frequencies as a ratio. In the coin toss experiment, we expect a heads:tails ratio of :. Imagine a standard deck of 52 playing cards, randomly shuffled. What is the chance of drawing an ace of hearts (A ) from the deck? Chance of A = Number of A Total number of Cards = What is the chance of drawing any ace? Chance of any ace = Number of Aces Total number of Cards = Imagine that an ace of hearts was drawn from a standard deck of 52 cards and returned to the deck. Then, the deck was reshuffled and another card drawn. What is the chance that the card will be an ace of hearts? Chance of A = Number of A Total number of Cards = Notice that, since the card was returned to the deck, the total number of cards and the chance remain the same. Imagine that an ace of hearts was drawn from a standard deck of 52 cards and discarded. Then, another card was drawn. What is the probability that the card will be an ace of hearts? Chance of A = Number of A Total number of Cards = 0 5 = 0 Notice that the number of cards and the chance have changed. Since there is no longer an ace of hearts in the deck, then the probability of drawing an ace of hearts is zero. What is the chance of drawing one of the three remaining aces? 3 Chance of drawing one of the three remaining aces =

3 3 B. The Chance of Independent Events occurring together The chance of two or more independent events occurring together is the product of their individual probabilities. An example is the simultaneous tossing of two coins. The outcome of the toss on one coin should not affect the outcome on the second coin (unless the coins are glued together). Therefore, the events are independent of each other. Outcome of toss on Probability of toss on Coin # Coin #2 Coin # Coin #2 Probability of both events occurring Heads Heads x 0.5 = 0.25 Heads Tails x 0.5 = 0.25 Tails Heads x 0.5 = 0.25 Tails Tails x 0.5 = 0.25 What is the probability of rolling a pair of sixes on a standard set of dice? As you probably know, a die is a game cube with six sides, each side numbered with between one through six dots. Assuming that the mass of the cube is evenly distributed, the chance of rolling any of the numbers is /6. Therefore, the probability of rolling a pair of sixes on a pair of dice is 6 6 = 36 C. Mutually Exclusive Events (Either/or situations) The chance that either one or the other of two mutually exclusive events will occur is the sum of their individual probabilities. For example, consider a box containing two red beads, three white beads, and four blue beads. If one bead is randomly chosen, what is the chance that the bead will be either red or white? Chance of a red bead = 2 9 Chance of a white bead = 3 9 Chance of either red or white = = 5 9

4 4 D. Hypothesis Testing using the Chi-square Test Let s develop a formal hypothesis for the coin toss experiment. Hypothesis: If the mass of a coin is symmetrically distributed on both sides of the coin, then there is an equal probability of a coin toss resulting in heads or tails. From this hypothesis we can make the following prediction. Prediction: If a specific coin is tossed 50 times, then 25 of the tosses will result in heads and 25 of the tosses will result in tails. The prediction can be tested by performing the following experiment. Experiment: Toss the coin 50 times and count the number of heads and tails. Independent variable: Number of times the coin is tossed. Dependent variable: Number of heads or tails. The observed results in an experiment are almost never exactly equal to the expected results. For example, in the coin toss experiment one expects 25 heads and 25 tails if a coin is tossed 50 times. However, what if the result is 27 heads and 23 tails? Is this a significant difference between the expected and the observed results, or can we attribute the difference to random chance? It seems to make sense that a result of 27 heads, 23 tails is reasonable, but how can we be sure? If we repeated the experiment 00 times, how often would we expect to this much deviation from the expected value (25:25)? The chi-square (χ 2 ) test is a statistical test used to determine whether the difference between an expected result and an observed result is significant or whether the difference can be attributed to random chance. To analyze experimental data using the χ 2 test, the data must consist of a finite number of mutually exclusive outcomes or classes. Also, we must know the probability of each class in order to calculate the expected values. The degrees of freedom in an experiment is the total number of classes minus one: df = k -, where k is the number of classes. In the coin experiment, there are two outcomes or classes of results, heads and tails. Therefore, there is one degree of freedom. The value of χ 2 is given by the equation χ 2 = O E 2 E where O is the observed number of items in a given class, E is the expected number of items in the class, and the summation sign (Σ) indicates the sum of all values of [(O-E) 2 ]/E for every class in the system. Consider the following results of the coin toss experiment.

5 5 # obtained # expected O E (O E) 2 (O E) 2 Toss (O) (E) E Heads x 0.5 = Tails x 0.5 = Total: 50 χ 2 = Is the difference between O and E significant? If so, then we reject the hypothesis. If not, then we fail to reject the hypothesis. We evaluate the difference from a table of χ 2 values, such as the one shown below. P value = Probability that the Difference is due to Chance and is Not Significant df Locate the value of χ 2 in the row corresponding to the appropriate df value. In this example, the value of χ 2 = 0.320, and the value of df = 2 - =. Therefore, the χ 2 value is between and < χ 2 < The probability, P, that the deviation is due to random chance, and is not significant, is read from the top row of the table. How do we interpret this nonsense? 0.80 > P > 0.50 In most genetics work, deviations are considered significant only if the probability value from the χ 2 table is 0.05 (5%) or less. This is called a 5% level of significance (or a 95% confidence level). If the probability is 0.05 or less, this means that there is a 95% or greater probability that the deviation is not due to chance, and the hypothesis is rejected. If the probability is greater than 0.05, then we cannot reject the hypothesis based on the data. In our example, P is greater than 0.05, so the hypothesis is not rejected. Whew! That s a lot of words. To put it simply: If the P value from the χ 2 table is less than 0.05, then the deviation of the observed values from the expected values is significant and the data do not support the hypothesis. If the P value from the χ 2 table is greater that 0.05, then the deviation of the observed values from the expected values is not significant and the data support the hypothesis.

6 6 In this example, the P value is between 0.50 and This means that there is between a 50% and 80% probability that the deviation seen is due to chance. Since the P value is greater than 0.05, the deviation is not significant at the 95% confidence level, and the data support the hypothesis. Consider the results of another coin toss experiment, using a different coin. # obtained # expected O E (O E) 2 (O E) 2 Toss (O) (E) E Heads Tails Total: 50 χ 2 =.52 As before, df = 2 =. At df =, it looks like the χ 2 value we calculated is off the chart! This simply means that the deviation is so big that it is larger than the the largest recorded value in the chart. The P value must therefore be much much smaller than 0.0 (and smaller than 0.05). Hence: χ 2 > P < 0.0 Since P < 0.05, the deviation of the observed values from the expected in this coin toss is significant and the data do not support the hypothesis. Can you suggest a reason why the coin toss experiment failed to support the expected : ratio in this case? (Here s a hint: read the first sentence of the hypothesis for an important assumption that lead us to the : ratio.)

7 Probability and the Chi-Square Test Laboratory Report Sheet Name Lab Partners. A standard deck of 52 playing cards has 3 cards of each suit (hearts, spades, diamonds, or clubs). What is the probability of drawing a diamond? 2. If two coins are tossed, what is the probability that one coin will be heads and the other coin will be tails, with either of the two coins being heads. To solve this problem, start with the information given in section B under the Product Rule, then apply the Sum Rule to solve for an either/or situation. 3. What is the probability of rolling a seven in any combination on a pair of dice? To solve this problem, you will need to use a combination of the product rule and the summation rule. Try completing this table. Remember that each roll is a mutually exclusive event (that is, if you roll a and a 6, you can t roll a 2 and a 5 at the same time). Roll on Die Roll on Die 2 Probability of this Roll 6 6 x 6 = 36 2 Probability of rolling a seven in any combination: 7

8 8 4. In corn, the genes for seed color (purple or yellow) and seed shape (smooth or wrinkled) assort independently of each other. This means that the expected frequencies (probabilities) of these traits in a cross can be treated as independent events occurring simultaneously, so the product rule applies. If hybrid purple corn is self-fertilized, the following offspring are expected: ¾ Purple ¼ Yellow If hybrid smooth corn is self-fertilized, the following offspring are expected: ¾ Smooth ¼ Wrinkled Here s the question: If corn that is both hybrid purple and hybrid smooth is self-fertilized, what results do you expect? Use the product rule to figure out how many purple smooth, purple wrinkled, yellow smooth, and yellow wrinkled kernels you expect. 5. You will be provided a 6-sided die (game cube). (a) (b) (c) (d) Write a formal hypothesis, prediction, experiment, and variables about the probabilities of tossing numbers on the die. Perform your experiment. You should have a sufficient sample size (i.e. several hundred rolls) for a valid statistical sample. Use the χ 2 test to determine if your data support your hypothesis. Show your work. Write a brief conclusion summarizing your results. If the data do not support your conclusion, you should suggest reasons in your conclusion.

Mendelian Genetics. I. Background

Mendelian Genetics. I. Background Mendelian Genetics Objectives 1. To understand the Principles of Segregation and Independent Assortment. 2. To understand how Mendel s principles can explain transmission of characters from one generation

More information

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Period Date LAB : THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

Section 6.2 Definition of Probability

Section 6.2 Definition of Probability Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will

More information

INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS

INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS By Dr. Susan Petro Based on a lab by Dr. Elaine Winshell Nicotiana tabacum Objectives To apply Mendel s Law of Segregation To use Punnett

More information

What about two traits? Dihybrid Crosses

What about two traits? Dihybrid Crosses What about two traits? Dihybrid Crosses! Consider two traits for pea: Color: Y (yellow) and y (green) Shape: R (round) and r (wrinkled)! Each dihybrid plant produces 4 gamete types of equal frequency.

More information

2 GENETIC DATA ANALYSIS

2 GENETIC DATA ANALYSIS 2.1 Strategies for learning genetics 2 GENETIC DATA ANALYSIS We will begin this lecture by discussing some strategies for learning genetics. Genetics is different from most other biology courses you have

More information

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314 Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space

More information

Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty

Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.

More information

Remember to leave your answers as unreduced fractions.

Remember to leave your answers as unreduced fractions. Probability Worksheet 2 NAME: Remember to leave your answers as unreduced fractions. We will work with the example of picking poker cards out of a deck. A poker deck contains four suits: diamonds, hearts,

More information

Math 3C Homework 3 Solutions

Math 3C Homework 3 Solutions Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada ilhwanjo@math.ucla.edu, akashiwada@ucla.edu Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard

More information

Lab 11. Simulations. The Concept

Lab 11. Simulations. The Concept Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that

More information

Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics

Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics Name Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics Introduction During your lifetime you have grown from a single celled zygote into an organism made up of trillions of cells. The vast

More information

MAT 1000. Mathematics in Today's World

MAT 1000. Mathematics in Today's World MAT 1000 Mathematics in Today's World We talked about Cryptography Last Time We will talk about probability. Today There are four rules that govern probabilities. One good way to analyze simple probabilities

More information

Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4?

Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4? Contemporary Mathematics- MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than

More information

Probabilistic Strategies: Solutions

Probabilistic Strategies: Solutions Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1

More information

MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

More information

(b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball.

(b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball. Examples for Chapter 3 Probability Math 1040-1 Section 3.1 1. Draw a tree diagram for each of the following situations. State the size of the sample space. (a) You flip a coin three times. (b) You draw

More information

Mendelian Inheritance & Probability

Mendelian Inheritance & Probability Mendelian Inheritance & Probability (CHAPTER 2- Brooker Text) January 31 & Feb 2, 2006 BIO 184 Dr. Tom Peavy Problem Solving TtYy x ttyy What is the expected phenotypic ratio among offspring? Tt RR x Tt

More information

Probability definitions

Probability definitions Probability definitions 1. Probability of an event = chance that the event will occur. 2. Experiment = any action or process that generates observations. In some contexts, we speak of a data-generating

More information

11.1 The Work of Gregor Mendel

11.1 The Work of Gregor Mendel 11.1 The Work of Gregor Mendel Lesson Objectives Describe Mendel s studies and conclusions about inheritance. Describe what happens during segregation. Lesson Summary The Experiments of Gregor Mendel The

More information

PROBABILITY 14.3. section. The Probability of an Event

PROBABILITY 14.3. section. The Probability of an Event 4.3 Probability (4-3) 727 4.3 PROBABILITY In this section In the two preceding sections we were concerned with counting the number of different outcomes to an experiment. We now use those counting techniques

More information

Probability & Probability Distributions

Probability & Probability Distributions Probability & Probability Distributions Carolyn J. Anderson EdPsych 580 Fall 2005 Probability & Probability Distributions p. 1/61 Probability & Probability Distributions Elementary Probability Theory Definitions

More information

Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes

Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all

More information

Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 www.math12.com

Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 www.math12.com Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..

More information

Determining Acceptance of the 9:3:3:1 Ratio in Fruit Fly Crosses Using the Chi Squared Test

Determining Acceptance of the 9:3:3:1 Ratio in Fruit Fly Crosses Using the Chi Squared Test Determining Acceptance of the 9:3:3:1 Ratio in Fruit Fly Crosses Using the Chi Squared Test Abstract In this experiment we set out to determine whether or not two different fruit fly crosses fit the 9:3:3:1

More information

+ Section 6.2 and 6.3

+ Section 6.2 and 6.3 Section 6.2 and 6.3 Learning Objectives After this section, you should be able to DEFINE and APPLY basic rules of probability CONSTRUCT Venn diagrams and DETERMINE probabilities DETERMINE probabilities

More information

Meiosis Poker. Other Resources A video demonstration of this lab is available free of charge on itunes and YouTube. Required Material:

Meiosis Poker. Other Resources A video demonstration of this lab is available free of charge on itunes and YouTube. Required Material: Meiosis Poker Objective Meiosis Poker is a simple lab designed to reinforce a student s understanding of meiosis. This lab can be performed in one class period (30+ minutes) and only requires a deck of

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

Unit 29 Chi-Square Goodness-of-Fit Test

Unit 29 Chi-Square Goodness-of-Fit Test Unit 29 Chi-Square Goodness-of-Fit Test Objectives: To perform the chi-square hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni

More information

Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific

Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific Name: The point value of each problem is in the left-hand margin. You

More information

AMS 5 CHANCE VARIABILITY

AMS 5 CHANCE VARIABILITY AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and

More information

Unit 18: Introduction to Probability

Unit 18: Introduction to Probability Unit 18: Introduction to Probability Summary of Video There are lots of times in everyday life when we want to predict something in the future. Rather than just guessing, probability is the mathematical

More information

Chapter 3: The basic concepts of probability

Chapter 3: The basic concepts of probability Chapter 3: The basic concepts of probability Experiment: a measurement process that produces quantifiable results (e.g. throwing two dice, dealing cards, at poker, measuring heights of people, recording

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level S2 of challenge: B/C S2 Mathematical goals Starting points Materials required Time needed Evaluating probability statements To help learners to: discuss and clarify some common misconceptions about

More information

Examination 110 Probability and Statistics Examination

Examination 110 Probability and Statistics Examination Examination 0 Probability and Statistics Examination Sample Examination Questions The Probability and Statistics Examination consists of 5 multiple-choice test questions. The test is a three-hour examination

More information

Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.

Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52. Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive

More information

MATHEMATICS Y3 Using and applying mathematics 3810 Solve mathematical puzzles and investigate. Equipment MathSphere www.mathsphere.co.

MATHEMATICS Y3 Using and applying mathematics 3810 Solve mathematical puzzles and investigate. Equipment MathSphere www.mathsphere.co. MATHEMATICS Y3 Using and applying mathematics 3810 Solve mathematical puzzles and investigate. Equipment Paper, pencil, ruler Dice, number cards, buttons/counters, boxes etc MathSphere 3810 Solve mathematical

More information

Chapter 16 Evolution of Populations. 16.1 Genes and Variation Biology Mr. Hines

Chapter 16 Evolution of Populations. 16.1 Genes and Variation Biology Mr. Hines Chapter 16 Evolution of Populations 16.1 Genes and Variation Biology Mr. Hines Figure 1-21 Levels of Organization Section 1-3 Levels of organization Biosphere Ecosystem The part of Earth that contains

More information

Mendelian and Non-Mendelian Heredity Grade Ten

Mendelian and Non-Mendelian Heredity Grade Ten Ohio Standards Connection: Life Sciences Benchmark C Explain the genetic mechanisms and molecular basis of inheritance. Indicator 6 Explain that a unit of hereditary information is called a gene, and genes

More information

ACMS 10140 Section 02 Elements of Statistics October 28, 2010. Midterm Examination II

ACMS 10140 Section 02 Elements of Statistics October 28, 2010. Midterm Examination II ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages of the examination

More information

https://assessment.casa.uh.edu/assessment/printtest.htm PRINTABLE VERSION Quiz 10

https://assessment.casa.uh.edu/assessment/printtest.htm PRINTABLE VERSION Quiz 10 1 of 8 4/9/2013 8:17 AM PRINTABLE VERSION Quiz 10 Question 1 Let A and B be events in a sample space S such that P(A) = 0.34, P(B) = 0.39 and P(A B) = 0.19. Find P(A B). a) 0.4872 b) 0.5588 c) 0.0256 d)

More information

Ready, Set, Go! Math Games for Serious Minds

Ready, Set, Go! Math Games for Serious Minds Math Games with Cards and Dice presented at NAGC November, 2013 Ready, Set, Go! Math Games for Serious Minds Rande McCreight Lincoln Public Schools Lincoln, Nebraska Math Games with Cards Close to 20 -

More information

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

More information

Jan 17 Homework Solutions Math 151, Winter 2012. Chapter 2 Problems (pages 50-54)

Jan 17 Homework Solutions Math 151, Winter 2012. Chapter 2 Problems (pages 50-54) Jan 17 Homework Solutions Math 11, Winter 01 Chapter Problems (pages 0- Problem In an experiment, a die is rolled continually until a 6 appears, at which point the experiment stops. What is the sample

More information

All zombies that are not in play are kept in a pile off to the side, known as the Zombie Pile.

All zombies that are not in play are kept in a pile off to the side, known as the Zombie Pile. One Against the Dead By Scott Slomiany (scott@ledgaming.com) (Read my incredibly biased opinions and notes on game design at http://meeplespeak.blogspot.com/) Players: 1 Game Style: Exploration, Survival,

More information

11-1 Permutations and Combinations

11-1 Permutations and Combinations Fundamental Counting Principal 11-1 Permutations and Combinations Using the Fundamental Counting Principle 1a. A make-your-own-adventure story lets you choose 6 starting points, gives 4 plot choices, and

More information

ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers

ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages

More information

number of favorable outcomes total number of outcomes number of times event E occurred number of times the experiment was performed.

number of favorable outcomes total number of outcomes number of times event E occurred number of times the experiment was performed. 12 Probability 12.1 Basic Concepts Start with some Definitions: Experiment: Any observation of measurement of a random phenomenon is an experiment. Outcomes: Any result of an experiment is called an outcome.

More information

Inferential Statistics. Probability. From Samples to Populations. Katie Rommel-Esham Education 504

Inferential Statistics. Probability. From Samples to Populations. Katie Rommel-Esham Education 504 Inferential Statistics Katie Rommel-Esham Education 504 Probability Probability is the scientific way of stating the degree of confidence we have in predicting something Tossing coins and rolling dice

More information

1 Combinations, Permutations, and Elementary Probability

1 Combinations, Permutations, and Elementary Probability 1 Combinations, Permutations, and Elementary Probability Roughly speaking, Permutations are ways of grouping things where the order is important. Combinations are ways of grouping things where the order

More information

Basic concepts in probability. Sue Gordon

Basic concepts in probability. Sue Gordon Mathematics Learning Centre Basic concepts in probability Sue Gordon c 2005 University of Sydney Mathematics Learning Centre, University of Sydney 1 1 Set Notation You may omit this section if you are

More information

36 Odds, Expected Value, and Conditional Probability

36 Odds, Expected Value, and Conditional Probability 36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face

More information

Math 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2

Math 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2 Math 58. Rumbos Fall 2008 1 Solutions to Review Problems for Exam 2 1. For each of the following scenarios, determine whether the binomial distribution is the appropriate distribution for the random variable

More information

Study Guide for the Final Exam

Study Guide for the Final Exam Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

More information

Chapter 4 - Practice Problems 1

Chapter 4 - Practice Problems 1 Chapter 4 - Practice Problems SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) Compare the relative frequency formula

More information

Statistical Inference. Prof. Kate Calder. If the coin is fair (chance of heads = chance of tails) then

Statistical Inference. Prof. Kate Calder. If the coin is fair (chance of heads = chance of tails) then Probability Statistical Inference Question: How often would this method give the correct answer if I used it many times? Answer: Use laws of probability. 1 Example: Tossing a coin If the coin is fair (chance

More information

Hypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam

Hypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam Hypothesis Testing 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 3 2. Hypothesis Testing... 3 3. Hypothesis Tests Concerning the Mean... 10 4. Hypothesis Tests

More information

Math Games For Skills and Concepts

Math Games For Skills and Concepts Math Games p.1 Math Games For Skills and Concepts Original material 2001-2006, John Golden, GVSU permission granted for educational use Other material copyright: Investigations in Number, Data and Space,

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

MATHEMATICS 154, SPRING 2010 PROBABILITY THEORY Outline #3 (Combinatorics, bridge, poker)

MATHEMATICS 154, SPRING 2010 PROBABILITY THEORY Outline #3 (Combinatorics, bridge, poker) Last modified: February, 00 References: MATHEMATICS 5, SPRING 00 PROBABILITY THEORY Outline # (Combinatorics, bridge, poker) PRP(Probability and Random Processes, by Grimmett and Stirzaker), Section.7.

More information

Session 8 Probability

Session 8 Probability Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome

More information

PROBABILITY. Thabisa Tikolo STATISTICS SOUTH AFRICA

PROBABILITY. Thabisa Tikolo STATISTICS SOUTH AFRICA PROBABILITY Thabisa Tikolo STATISTICS SOUTH AFRICA Probability is a topic that some educators tend to struggle with and thus avoid teaching it to learners. This is an indication that teachers are not yet

More information

Basic Probability Theory II

Basic Probability Theory II RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample

More information

Curriculum Design for Mathematic Lesson Probability

Curriculum Design for Mathematic Lesson Probability Curriculum Design for Mathematic Lesson Probability This curriculum design is for the 8th grade students who are going to learn Probability and trying to show the easiest way for them to go into this class.

More information

The Casino Lab STATION 1: CRAPS

The Casino Lab STATION 1: CRAPS The Casino Lab Casinos rely on the laws of probability and expected values of random variables to guarantee them profits on a daily basis. Some individuals will walk away very wealthy, while others will

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know. Define: gene locus gamete male gamete female

More information

Probability, statistics and football Franka Miriam Bru ckler Paris, 2015.

Probability, statistics and football Franka Miriam Bru ckler Paris, 2015. Probability, statistics and football Franka Miriam Bru ckler Paris, 2015 Please read this before starting! Although each activity can be performed by one person only, it is suggested that you work in groups

More information

Inferential Statistics

Inferential Statistics Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

More information

2. Three dice are tossed. Find the probability of a) a sum of 4; or b) a sum greater than 4 (may use complement)

2. Three dice are tossed. Find the probability of a) a sum of 4; or b) a sum greater than 4 (may use complement) Probability Homework Section P4 1. A two-person committee is chosen at random from a group of four men and three women. Find the probability that the committee contains at least one man. 2. Three dice

More information

PROBABILITIES AND PROBABILITY DISTRIBUTIONS

PROBABILITIES AND PROBABILITY DISTRIBUTIONS Published in "Random Walks in Biology", 1983, Princeton University Press PROBABILITIES AND PROBABILITY DISTRIBUTIONS Howard C. Berg Table of Contents PROBABILITIES PROBABILITY DISTRIBUTIONS THE BINOMIAL

More information

Testing Research and Statistical Hypotheses

Testing Research and Statistical Hypotheses Testing Research and Statistical Hypotheses Introduction In the last lab we analyzed metric artifact attributes such as thickness or width/thickness ratio. Those were continuous variables, which as you

More information

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Combinatorics: The Fine Art of Counting Week 7 Lecture Notes Discrete Probability Continued Note Binomial coefficients are written horizontally. The symbol ~ is used to mean approximately equal. The Bernoulli

More information

2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.

2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch. - Problems to look at Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability

More information

Math 202-0 Quizzes Winter 2009

Math 202-0 Quizzes Winter 2009 Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile

More information

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers. Heredity 1. Sarah is doing an experiment on pea plants. She is studying the color of the pea plants. Sarah has noticed that many pea plants have purple flowers and many have white flowers. Sarah crosses

More information

PASS Sample Size Software

PASS Sample Size Software Chapter 250 Introduction The Chi-square test is often used to test whether sets of frequencies or proportions follow certain patterns. The two most common instances are tests of goodness of fit using multinomial

More information

Combinations and Permutations

Combinations and Permutations Combinations and Permutations What's the Difference? In English we use the word "combination" loosely, without thinking if the order of things is important. In other words: "My fruit salad is a combination

More information

Having a coin come up heads or tails is a variable on a nominal scale. Heads is a different category from tails.

Having a coin come up heads or tails is a variable on a nominal scale. Heads is a different category from tails. Chi-square Goodness of Fit Test The chi-square test is designed to test differences whether one frequency is different from another frequency. The chi-square test is designed for use with data on a nominal

More information

The study of probability has increased in popularity over the years because of its wide range of practical applications.

The study of probability has increased in popularity over the years because of its wide range of practical applications. 6.7. Probability. The study of probability has increased in popularity over the years because of its wide range of practical applications. In probability, each repetition of an experiment is called a trial,

More information

Chapter 4 - Practice Problems 2

Chapter 4 - Practice Problems 2 Chapter - Practice Problems 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. 1) If you flip a coin three times, the

More information

Addition and Subtraction Games

Addition and Subtraction Games Addition and Subtraction Games Odd or Even (Grades 13) Skills: addition to ten, odd and even or more Materials: each player has cards (Ace=1)10, 2 dice 1) Each player arranges their cards as follows. 1

More information

2. The Law of Independent Assortment Members of one pair of genes (alleles) segregate independently of members of other pairs.

2. The Law of Independent Assortment Members of one pair of genes (alleles) segregate independently of members of other pairs. 1. The Law of Segregation: Genes exist in pairs and alleles segregate from each other during gamete formation, into equal numbers of gametes. Progeny obtain one determinant from each parent. 2. The Law

More information

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square Period Date LAB : PAPER PET GENETICS 1. Given the list of characteristics below, you will create an imaginary pet and then breed it to review the concepts of genetics. Your pet will have the following

More information

Worked examples Basic Concepts of Probability Theory

Worked examples Basic Concepts of Probability Theory Worked examples Basic Concepts of Probability Theory Example 1 A regular tetrahedron is a body that has four faces and, if is tossed, the probability that it lands on any face is 1/4. Suppose that one

More information

Bayesian Tutorial (Sheet Updated 20 March)

Bayesian Tutorial (Sheet Updated 20 March) Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that

More information

Hoover High School Math League. Counting and Probability

Hoover High School Math League. Counting and Probability Hoover High School Math League Counting and Probability Problems. At a sandwich shop there are 2 kinds of bread, 5 kinds of cold cuts, 3 kinds of cheese, and 2 kinds of dressing. How many different sandwiches

More information

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k. REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game

More information

6th Grade Lesson Plan: Probably Probability

6th Grade Lesson Plan: Probably Probability 6th Grade Lesson Plan: Probably Probability Overview This series of lessons was designed to meet the needs of gifted children for extension beyond the standard curriculum with the greatest ease of use

More information

Probability. 4.1 Sample Spaces

Probability. 4.1 Sample Spaces Probability 4.1 Sample Spaces For a random experiment E, the set of all possible outcomes of E is called the sample space and is denoted by the letter S. For the coin-toss experiment, S would be the results

More information

Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014

Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014 Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities

More information

Module 5 Hypotheses Tests: Comparing Two Groups

Module 5 Hypotheses Tests: Comparing Two Groups Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this

More information

6. Let X be a binomial random variable with distribution B(10, 0.6). What is the probability that X equals 8? A) (0.6) (0.4) B) 8! C) 45(0.6) (0.

6. Let X be a binomial random variable with distribution B(10, 0.6). What is the probability that X equals 8? A) (0.6) (0.4) B) 8! C) 45(0.6) (0. Name: Date:. For each of the following scenarios, determine the appropriate distribution for the random variable X. A) A fair die is rolled seven times. Let X = the number of times we see an even number.

More information

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments

More information

Exam. Name. How many distinguishable permutations of letters are possible in the word? 1) CRITICS

Exam. Name. How many distinguishable permutations of letters are possible in the word? 1) CRITICS Exam Name How many distinguishable permutations of letters are possible in the word? 1) CRITICS 2) GIGGLE An order of award presentations has been devised for seven people: Jeff, Karen, Lyle, Maria, Norm,

More information

Tasks to Move Students On

Tasks to Move Students On Maths for Learning Inclusion Tasks to Move Students On Part 1 Maths for Learning Inclusion (M4LI) Tasks to Move Students On Numbers 1 10 Structuring Number Maths for Learning Inclusion (M4LI) Tasks to

More information

CATEGORICAL DATA Chi-Square Tests for Univariate Data

CATEGORICAL DATA Chi-Square Tests for Univariate Data CATEGORICAL DATA Chi-Square Tests For Univariate Data 1 CATEGORICAL DATA Chi-Square Tests for Univariate Data Recall that a categorical variable is one in which the possible values are categories or groupings.

More information

Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical

More information

AP Stats - Probability Review

AP Stats - Probability Review AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose

More information