# A new test for randomness and its application to some cryptographic problems

Save this PDF as:

Size: px
Start display at page:

Download "A new test for randomness and its application to some cryptographic problems"

## Transcription

2 366 B.Ya. Ryabko et al. / Journal of Statistical Planning and Inference 123 (2004) suitability for random number generators (see, for example, Knuth, 1981; Rukhin et al., 2001). In such applications the number of categories (and, consequently, the number of degrees of freedom of 2 distribution) is very large and, thereby, the sample size should be also large. So, in such cases, performing the chi-square test requires a lot of time. Moreover, it is often dicult to obtain such large samples and the chi-square test cannot be applied. We suggest a new method, which we call the adaptive chi-square test. It is shown that the new test can be applied when the sample size is much smaller than that required for the usual chi-square test. First, let us explain the main idea of the new test. Let there be a hypothesis H 0 which states that the letters from some alphabet A = {a 1 ;a 2 ;:::;a k }, k 2, are distributed uniformly (i.e. p(a 1 )=p(a 2 )= = p(a k )=1=k) against the alternative hypothesis H 1 that the true distribution is not uniform. Let there be given a sample which can be used for testing. The sample is divided into two parts, which are called the training sample and the testing sample. The training sample is used for estimation of frequencies of the letter occurrences. After that the letters of the alphabet A are combined into subsets A 1 ;A 2 ;:::;A s ; s 2, in such a way that, rst, one subset contains letters with close (or even equal) frequencies of occurrence and, second, s is much less than k (say, k =2 20 ;s= 2). Then, the set of subsets {A 1 ;A 2 ;:::;A s } is considered as a new alphabet and the new hypothesis Ĥ 0 :p(a 1 )= A 1 =k; p(a 2 )= A 2 =k;:::;p(a s )= A s =k and the alternative hypothesis, which is the negation of Ĥ 0, are tested based on the second ( testing ) part of the sample. Obviously, if H 0 is true, then Ĥ 0 is also true and, if Ĥ 1 is true, then H 1 is true. That is why this new test can be used for testing the initial H 0 and H 1. The idea of such a scheme is quite simple. If H 1 is true, then there are letters with relatively large and relatively small probabilities. Generally speaking, the high-probable letters will have relatively large frequencies of occurrence and will be accumulated in some subsets A i whereas low-probable letters will be accumulated in the other subsets. That is why this dierence can be found based on the testing sample. It should be pointed out that a decrease in the number of categories from large k to small s can essentially increase the power of the test and, therefore, can essentially decrease the required sample size. More exactly, it will be shown that the sample size can be decreased in k times, which can be important when k is large. We carried out some experiments in addition to a theoretical investigation of the suggested test. Namely, we tested ciphered texts in English and in Russian in order to distinguish them from random sequences. It is worth noting that the problem of recognition of ciphered texts in a natural language is of some interest for cryptology, see Schneier (1996). It turns out, that the suggested test can distinguish ciphered English and Russian texts from random bit sequences, basing on samples which are essentially smaller than it is required for usual chi-square test. It should be noted that the learning techniques has been applied to many statistical problems. For example, MarkovApproximation and Neural Network based clustering are used to make testing more ecient, see, for example, reviews in Vapnik (1995) and Devroye et al. (1996). Besides, it is known that stratication can be used as a tool in the analysis of randomness, see L Ecuyer and Simard (1999) and Wegenkittl and

3 B.Ya. Ryabko et al. / Journal of Statistical Planning and Inference 123 (2004) Matsumoto (1999). In contrast to those approaches, the suggested method is intended to solve one particular statistical problem, which was not considered earlier. Namely, it is oered to increase the power of the chi-square test by learning and grouping, in case when the sample size is relatively small. The rest of the paper is organized as follows. Section 2 contains necessary information from the mathematical statistics and some auxiliary results about the chi-square test. The description of the suggested test and its properties are given in Section 3. Section 4 contains experimental results about recognition of ciphered texts. Appendix contains some proofs. 2. Chi-square test First we give some required information concerning the chi-square test. Let there be two following hypotheses about a probability distributions on a set (or alphabet) A: H 0 : p(a 1 )=p1;p(a 0 2 )=p2;:::;p(a 0 k )=pk; 0 H 1 0 ; (1) where p =(p1 0;p0 2 ;:::;p0 k ) is a certain distribution on the A. Let x 1;x 2 ;:::;x N be a sample and i is the number of occurrences of a i A in the sample. (In statistics a 1 ;:::;a k are often called categories.) The chi-square test is applied by calculating k x 2 ( i Npi 0 = )2 Np 0 : (2) i=1 i The less x 2, the more probable H 0. More exactly, when the chi-square test is applied, there is such a threshold constant, that H 0 is accepted, if x 2. Otherwise, H 0 is rejected. (The constant depends on k and the level of signicance). It is known that x 2 asymptotically follows the chi-square distribution with (k 1) degrees of freedom (k 1 2 )ifh 0 is true. On the other hand, if H 1 is true, x 2 asymptotically follows a so called noncentral chi-square distribution with (k 1) degrees of freedom and a parameter (ˆ 2 ;k 1 ) where is dened by k (pi 0 pi 1 ) 2 = N; = : (3) i=1 p 0 i Here N is the sample size and pk 1 = p(a k) when H 1 is true, see Kendall and Stuart (1961) and Lehmann (1959). It is shown by Kendall and Stuart (1961) that E H0 (x 2 )=k 1; V H0 (x 2 )=2(k 1); (4) E H1 (x 2 )=(k 1) + ; V H1 (x 2 )=2(k 1)+4; (5) where E Hi and V Hi are the mean value and variance, correspondingly, when H i is true, i =1; 2: If the level of signicance (or a Type I error) of the chi-square test is ; (0; 1); then H 0 is rejected is if x 2 k 1;(1 ) 2. (Here 2 k 1;(1 ) is the (1 )-value of the k 1 2 distribution.)

4 368 B.Ya. Ryabko et al. / Journal of Statistical Planning and Inference 123 (2004) It is important to note that such an approximation is valid when N is quite large. Thus, many authors recommend to take such a sample size N that Npi 0 5 for all i =1;:::;k. (If this inequality is not true for some category i, this category should be combined with some other category and this procedure should be repeated as long as the inequality becomes true for all categories.) Obviously, if the inequality is true, then N 5k. 3. Adaptive chi-square test: description and theoretical consideration First we give some informal explanation. Let us assume that there exist such letters a i from the alphabet A for which the fractions (pi 1 =pi 0 ) are equal. If we combine the letters from A into subsets in such a way that one subset contains letters for which the fraction (pi 1 =pi 0 ) are equal, then the required sample size can be decreased. Indeed, if we denote the number of such groups as k, we obtain from (4) and (5) the equalities E H0 (x 2 )= k 1; V H0 (x 2 )=2(k 1); E H1 (x 2 )=(k 1) + ; V H1 (x 2 )=2(k 1)+4: Obviously, the number of groups k is less than k and we can see from the last equalities, (4) and (5) that the dierence E H1 (x 2 ) E H0 (x 2 ) is the same for the initial and grouped alphabet, whereas both variancies V H0 (x 2 ) and V H1 (x 2 ) of the grouped alphabet are less than for the initial one. That is why the required sample size can be decreased, if the chi-square test is applied to the grouped alphabet. We do not consider this method in details because the alternative hypothesis H 1 is not known beforehand. In order to overcome obstacles, we suggest, rst, to estimate the frequencies of occurrence of letters from the alphabet A using a part of the sample and, then, to implement the grouping using frequencies instead of probabilities p1 1;p1 2 ;:::;p1 k. After that the independent second part of the sample is used for testing. The more formal description of the suggested adaptive chi-square test is as follows. There are hypotheses H 0 and H 1 dened by (1) and the sample x 1 ;x 2 ;:::;x N. The sample is divided into two following parts x 1 ;x 2 ;:::;x m and x m+1 ;x 2 ;:::;x N, which are called the training sample and the testing sample, correspondingly. The training part is used for nding the frequencies of occurrence of letters from the alphabet A which will be denoted by p 1 1 ; p1 2 ;:::; p1 k. Then, we divide the alphabet A into subsets {A 1 ;A 2 ;:::;A s }, s 1, combining the letters for which the fractions ( p 1 i =pi 0 ) are close, in one subset. After that the new following hypotheses Ĥ 0 : p(a 1 )= pi 0 ;p(a 2 )= pi 0 ;:::;p(a s )= pi 0 ; Ĥ 1 0 a i A 1 a i A 2 a i A s are tested based on the testing sample x m+1 ;x 2 ;:::;x N. We do not describe the exact rule of nding the parameters m; N and s and do not also dene exactly how to construct the subsets {A 1 ;A 2 ;:::;A s }, but we recommend to implement some experiments for nding the parameters, which make the total sample size N minimal (or, at least, acceptable). The point is that there are many problems in cryptography and other applications where it is possible to implement some experiments for optimizing the

5 B.Ya. Ryabko et al. / Journal of Statistical Planning and Inference 123 (2004) parameter values and, then, to test hypothesis basing on independent data. For example, there are some problems in cryptography where it is possible to carry out experiments with known secret keys for nding suitable m and N and, then, use them for real problems. Such a problem will be considered in the next paragraph while we proceed with theoretical investigation at the rest of this paragraph. Let us consider an example where the required sample size of the adaptive chi-square test is equal to O( k), whereas a usual chi-square test can be used if the sample size is more than k. Let us assume, that the number of categories k is even and let p1 0 = p2 0 = = pk 0 = 1 k ; (6) p 1 i 1 = p 1 i 2 = = p 1 i k=2 = 1 k (1+1=2); pi 1 (k=2)+1 = = pi 1 k = 1 k (1 1=2); (7) where {i 1 ;:::;i k=2 } {i (k=2)+1 ;:::;i k }={1;:::;k}. It turns out that the adaptive chi-square test can be successfully applied when the total sample size is O( k). Theorem. Let and be in the interval (0; 1). Then, we can nd such k ; that for each even k k ; there exists an adaptive chi-square test with the training sample size m(k) and testing sample size n(k), such that for every partition {{a i1 ;:::;a ik=2 }; {a i(k=2)+1 ;:::;a ik }}, and H 0 ; H 1 complying with (6), (7), the following is true: (i) (m(k)+n(k)) 6 ċ k, where ċ 0 and does not depend on k, (ii) the Type I error is less than and the Type II error is less than. Proof. Let Â i be the set of letters from A which occurred i times in the training sample x 1 x 2 :::x m ;i=0; 1;::: : The proof will be based on the following lemmas. Lemma 1. If k goes to innity, C is a positive constant, H 0 is true and m = C k, then E( k r=2 (r 1) Â r 6 C, where E() means the expectation and C does not depend on k. Lemma 2. If k goes to innity, C is a positive constant, m = C k and H 1 is true, then E p(a) =5C=(4 k) + O(1=k); a Â1 E p(a) =7C 2 =(4k) + o(1=k); a Â2 k E r=3 a Âr p(a) = o(1=k):

6 370 B.Ya. Ryabko et al. / Journal of Statistical Planning and Inference 123 (2004) The proofs of the lemmas are given in appendix. Let us proceed with the proof of the theorem. Let the training sample size m(k) and the tasting sample size n(k) be dened by m(k)= k ; n(k)= c k ; (8) where the positive constant c will be dened later. By denition, the test uses two following subsets (superletters): k A 0 = Â 0 ;A 1 = Â r : r=1 Obviously, m(k)= k r=1 r Â r and, consequently, A 1 = m(k) k r=1 (r 1) Â r. From this equality and (8) we obtain k k (r 1) Â r A 1 k +1: (10) Let us dene r=2 P(A i \H j )= a A i p(a); i;j =0; 1: (11) (9) P(A i \H j ) are random variables for i; j =0; 1, because they depend on the training sample x 1 ;:::;x m. Their estimations will be based on Lemmas 1, 2 and the following well-known Markov inequality: For any non-negative random variable and any 0 Pr{ } 6 E()=: From Lemma 1 and (8) we can see that E( k r=2 (r 1) Â r ) C, where C does not depend on the alphabet size k. If we dene = 3 k and apply Markovinequality to k r=2 Âr we obtain the inequality { k } Pr (r 1) Â r 3 k 6 C= 3 k: r=2 From the last inequality and (10) we obtain the estimation Pr{ A 1 k 3 k} 6 C= 3 k: If the hypothesis H 0 is true, then p(a)=1=k for all a A and we obtain from the last inequality and (9), (11) that { Pr P(A 1 \H 0 ) 1 } (1= 3 k2 ) 6 C= 3 k: k In the same way we can derive from the Lemma 2 that { Pr P(A 1 \H 1 ) 5 4 k (1= } 3 k2 ) 6 C 1 = 3 k:

7 B.Ya. Ryabko et al. / Journal of Statistical Planning and Inference 123 (2004) Taking into account that the testing sample size n(k)= c k (see (8)), we can see from two last inequalities that, with the probability 1, P(A 1 \H 0 )n(k)=c + o(1); P(A 1 \H 1 )n(k)=5c=4 + o(1); where k. In torn, from those equalities and (2) we can see that (with probability 1) x 2 = c=16 + o(1); if H 1 is true and x 2 = o(1), if H 0 is true. Taking into account that chi-square test can be applied if the sample size is not less than 5 k, where k is number of categories (or superletters) we dene the constant c by c = max{5; 161;1 2 }. Now we can see that the test can be applied, if c in (8) is not less than c. From the denition (2) and two last equalities we can see that H 0 will be accepted with probability 1, if H 0 is true, and rejected (with probability 1), if H 1 is true, when k. It means that there exists such k that H 0 will be accepted with probability larger than 1 ; if H 0 is true and k k, and H 0 will be rejected with probability larger than (1 ), if H 1 is true and k k. We obtain from the denition c and (8) that the total sample size (m(k)+n(k)) is less than ( c +1) k. So, we can see that the theorem is proved for k ; = k. Comment 1. The theorem can be extended. Namely, if we consider the following more general hypothesis H 1 pi 1 1 = pi 1 2 = = pi 1 k=2 = 1 k (1 + ); pi 1 (k=2)+1 = = pi 1 k = 1 k (1 ); (0; 1) instead of (7), we can prove the claim 2, but the constant c will be depended on. The way of proving is completely the same. Comment 2. It can be easily seen that the test power is maximal if the training sample size and the testing sample size are equal, but we do not focus an attention on this fact, because, generally speaking, there exist alternative hypotheses H 1 for which it is not true. 4. The experiments As it was shown by Maurer (1992), the problem of testing randomness is very important for many cryptographic applications. In this section we consider one of such applications concerned with the block ciphers. Block ciphers have been widely used in practice and attracted attention of many researches. Recently, National Institute of Standards and Technology (USA) carried out a competition Advanced Encryption Standard (AES), whose purpose was to nd a new block cipher which could be used as a standard. The cipher has to meet many requirements and, in particular, its output should look like completely random even if the input is not; see Nechvatal et al. (2000) and Soto and Bassham (2001). (Here the completely random output means a bit sequence generated by the Bernoulli source with equal probabilities of 0 s and 1 s.) For example, even if the input is a natural

8 372 B.Ya. Ryabko et al. / Journal of Statistical Planning and Inference 123 (2004) language text (English, Russian, etc.), the ciphertext has to be indistinguishable from a completely random sequence. Of course, theoretically, this cannot be achieved. The point is that a usual representation of texts in computers is very redundant. More exactly, one letter of the text is often represented as an 8-bit word (or byte). So, if we take into account the well-known estimation of the Shannon entropy of English (see, e.g., Cover and Thomas, 1991), we can see that the Shannon entropy per bit is much less than 1. It can be easily seen that the Shannon entropy of the ciphered text is not greater than the sum of the key entropy and the entropy of the input. Hence, if, for example, someone uses such a cipher for which the lengths of input and output les are equal and applies this cipher to an English language text using one key for the large text, the Shannon entropy of the ciphered text will be approximately the same as for the original text and, consequently, will be less than 1 per bit. It is well known that the Shannon entropy of the completely random sequence is 1 (per bit), that is why the ciphered text in English (and other languages) is not completely random, if a large le is ciphered using one key. So, apparently, the problem of constructing tests which can distinguish ciphered texts from random sequences can be considered as a good example for estimation of a power of statistical tests, because, on the one hand, it is known that ciphered texts cannot be completely random in principle and, on the other hand, the ciphers are constructed in such a way that the ciphered sequences should look random. (As much as possible). Besides, the problem of testing of the ciphered texts is of some interest for cryptography, see Schneier (1996). That is why the problem of distinguishing a ciphered text from a random bit sequence was chosen for experimental investigation of the adaptive chi-square test. Let us describe the experiments in more details. We considered the block ciphers Rijndael and RC6. The rst cipher has been proposed by NIST as Advanced Encryption Standard (AES) and the second one was selected as a nalist for AES and is widely used in practice. We applied adaptive chi-square test to ciphered English and Russian texts using as source of texts MoshkovLibrary ( Texts were combined in large les and each le was ciphered by either Rijndael or RC6 with 128-bit block length in such a way that one key was used for ciphering of all blocks from one le. (Such mode of encryption is called Electronic Code Book). Then we took 40 les of texts in English and 40 such les in Russian. Each le was ciphered with a randomly chosen key and tested for randomness using new algorithms and the usual chi-square test. When the new algorithm was applied, each ciphered le was divided into 24-bit words and the obtained sequence was considered as a text over an alphabet of 2 24 letters. (By denition, the alphabet letters are all 24-bit words.) The adaptive chi-square test was applied to testing the hypothesis about randomness (i.e. H 0 ={p(a 1 )=p(a 2 )= = p(a 2 24)=2 24 },H 1 0 ). The ciphered les were divided into two equal parts in such a way that the rst part was used as a training sample and the second part as a testing sample. The training sample was used for estimation of the number of the letter occurrences and the alphabet was divided into three subsets {A 0 ;A 1 ;A 2 } in such a way that the set A 0 contained letters which were not met in the training sample,

9 B.Ya. Ryabko et al. / Journal of Statistical Planning and Inference 123 (2004) Table 1 Results of experiments Length 102, , ,000 1,024,000 2,048,000 Usual/new Usual/new Usual/new Usual/new Usual/new RC6 Russian 4/11 4/13 4/28 23/32 27/35 RC6 English 7/19 6/24 5/31 27/31 27/35 AES Russian 3/10 4/18 5/24 18/31 25/34 AES English 4/17 8/26 8/28 25/30 30/33 A 1 contained letters which were met once and A 2 contained all other letters. Then, according to description of the adaptive chi-square test, the hypotheses Ĥ 0 = {p(a i )= A i =2 24 ; i=0; 1; 2}; Ĥ 1 0 were tested based on the testing sample. The level of signicance was It is worth noting that a lot of experiments were carried out for nding the value of the parameter s, the lengths of training and testing samples and the number of subsets. The aim of the experiments was to nd the parameters, which maximize the test power. It is also important to note that the new (independent) data were used for described below experiments. The results are given in Table 1. For example, the second column contains results for 102,400-les. The number 11 from the rst column new means that the hypothesis H 0 about randomness was rejected 11 times, when 40 Russian les ciphered by RC6 were tested by the adaptive chi-square test. Analogously, the last number 33 in the last column new means that H 0 was rejected 33 times, when 40 English les ciphered by AES were tested by the adaptive chi-square test. As it was mentioned above, the usual chi-square test was also applied for testing H 0. For this purpose each le was considered as a bit stream and divided into s-bit subwords (blocks) and the hypothesis H 0 that each word u B s = {0; 1} s has the probability 2 s was tested against H 1 0, where s took values 1; 2;::: : As it has been noted, the chi-square test can be applied for testing H 0 if the sample size is not less than 5 B. That is why H 0 was tested for such s that 8L=s 52 s, where L is the length of the le in bytes. (Indeed, the sample size is equal to 8L=s as well as the alphabet size is 2 s.) Thus, for the les of the length of 102,400 bytes H 0 was tested for s =1; 2; 3;:::;13, for the length 204,800 H 0 was tested for s =1; 2; 3;:::;14, etc. As before, the level of signicance was The largest number of cases when H 0 was rejected is written down in the table. (So, we write down the best result for the usual chi-square test over all possible values of s.) For example, 40 Russian texts ciphered by RC6 were tested by the usual chi-square test for the block lengths s=1; 2;:::;14. When s=1, H 0 was rejected 2 times, when s=2 3 times, etc. The maximal value of rejections was 4 and it was obtained when s =8; 10 and 12. So, 4 is written down in the corresponding column usual. Similarly, when 40 2,048,000-byte English les ciphered by AES were tested by the usual chi-square test with s = 16, H 0 was rejected 30 times and this number of rejections was larger

10 374 B.Ya. Ryabko et al. / Journal of Statistical Planning and Inference 123 (2004) than for all other values of the block length s. That is why 30 is written down at the bottom of the last column usual. We can see from the table that the new test can detect non-randomness more eciently than the usual chi-square test. In other words, the power of the adaptive chi-square test is larger than that of the usual one, when the sample size is relatively small. Acknowledgements The authors wish to thank Prof. Subir Ghosh for valuable advice and Prof. George Marsaglia for providing them with The Marsaglia Random Number CDROM. Appendix A Proof of Lemma 1. From (6) we obtain ( m E( Â 2 )=k 2 ) ( ) 2 ( ) m 2 = 1 m(m 1) k k k 2 [ ( 1 1 ) ] k (m 2)=k : k Obviously, E( Â 2 ) 6 m 2 =(2k). From the equality m = C k, we can see, that E( Â 2 ) = O(1). For Â r ;r 2, analogously ( ) m ( ) r ( 1 E( Â r )=k 1 1 ) m r 1 ( ) 1 1 +o : r k k r! 1 k r 2 k r 2 1 If we upper bound the last value by 1=k (r=2 1) and calculate the sum of the geometrical progression, we obtain that k r=2 (r 1)E( Â r ) = o(1). The statement of the lemma follows from three last equalities and the last inequality. The lemma is proved. Proof of the lemma 2. Let us dene A + i ={a i1 ;:::;a ik=2 } Â i and A i ={a ik=2+1 ;:::;a ik } Â i ;i =0; 1;:::, and let the number of occurrences of letters from {a i1 ;:::;a ik=2 } and {a i(k=2)+1 ;:::;a ik } in the training sample x 1 :::x m be m 1 and m 2, correspondingly. Obviously, E(m 1 )= m 2 (1+1=2); E(m 2)= m (1 1=2): (A.1) 2 From the denition (7) we can see that ( ) E p(a) = E p(a) + E p(a) a A 1 a A + 1 a A 1 = E( A + 1 )(3=(2k)) + E( A 1 )(1=(2k)): (A.2)

11 B.Ya. Ryabko et al. / Journal of Statistical Planning and Inference 123 (2004) Let us estimate E( A + 1 ) and E( A 1 ). For each m 1 we obtain the following: ( ) ( ) m1 2 ( 3 E( A + 2 )=k 1 3 ) m m 1 (m 1 1) : 2 2k 2k 4k 2 If we take into account that m 1 6 m and m = C k + O(1), we can see that E H1 ( A + 2 ) 9C2 =8 + o(1): (A.3) Analogously, for each m 1 ( m E( A + r ) 6 k r ) ( 3 2k ) r ( 1 3 ) m1 r 3r 2k 2 r r! k 1 (r=2) 1 +o ( 1 k (r=2) 1 If we upper bound the last value by 3 r =(2 r k (r=2 1) ) and calculate the sum of the geometrical progression, we obtain that k r=2 E( A+ r ) = o(1). Analogously, we can easily obtain that k E H1 ( A 2 ) C2 =8 + o(1); E( A r ) = o(1): r=2 By denition, m 1 = k r=1 r A+ r ;m 2 = k r=1 r A r and we obtain from (A.3) and the last inequalities that E( A + 1 )=E(m 1) + O(1);E( A 1 )=E(m 2) + O(1): From this equalities, (A.2) and (A.1) we can see that E H1 (P{a A 1 })= 1 m 2 k (3=2)2 + 1 ( ) m 1 2 k (1=2)2 +O : k If we take into account that m = C k we derive the rst statement of the lemma from the last equality. The proof of other statements is completely analogous. The lemma is proved. ) : References Cover, T.M., Thomas, J.A., Elements of Information Theory. Wiley, New York. Devroye, L., Gyor, L., Lugosi, G., A Probabilistic Theory of Pattern Recognition. Springer, New York. Kendall, M.G., Stuart, A., The Advanced Theory of Statistics, Vol. 2. Inference and Relationship. Charles Grin, London. Knuth, D.E., The Art of Computer Programming, Vol. 2. Addison-Wesley, Reading, MA. L Ecuyer, P., Simard, R., Beware of linear congruential generators with multipliers of the form a = ±2 q ± 2 r. ACM Trans. Model. Comput. Simulation 25 (3), Lehmann, E.L., Testing Statistical Hypotheses. Wiley, New York. Maurer, U., A universal statistical test for random bit generators. J. Cryptology 5 (2), Nechvatal, J., et al., Report on the Development of the Advanced Encryption Standard (AES).

12 376 B.Ya. Ryabko et al. / Journal of Statistical Planning and Inference 123 (2004) Rukhin, A., et al., A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST Special Publication (with revision dated May 15). Schneier, B., Applied Cryptography. Wiley, New York. Soto, J., Bassham, L., Randomness testing of the advanced encryption standard nalist candidates. Proceedings AES3, New York. Vapnik, V.N., The Nature of Statistical Learning Theory. Springer, New York. Wegenkittl, S., Matsumoto, M., Getting rid of correlations among pseudorandom numbers: discarding versus tempering. ACM Trans. Model. Comput. Simulation 9 (3),

### Exact Nonparametric Tests for Comparing Means - A Personal Summary

Exact Nonparametric Tests for Comparing Means - A Personal Summary Karl H. Schlag European University Institute 1 December 14, 2006 1 Economics Department, European University Institute. Via della Piazzuola

### Nonparametric Tests for Randomness

ECE 461 PROJECT REPORT, MAY 2003 1 Nonparametric Tests for Randomness Ying Wang ECE 461 PROJECT REPORT, MAY 2003 2 Abstract To decide whether a given sequence is truely random, or independent and identically

### Security Analysis of DRBG Using HMAC in NIST SP 800-90

Security Analysis of DRBG Using MAC in NIST SP 800-90 Shoichi irose Graduate School of Engineering, University of Fukui hrs shch@u-fukui.ac.jp Abstract. MAC DRBG is a deterministic random bit generator

### Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

### 1 Domain Extension for MACs

CS 127/CSCI E-127: Introduction to Cryptography Prof. Salil Vadhan Fall 2013 Reading. Lecture Notes 17: MAC Domain Extension & Digital Signatures Katz-Lindell Ÿ4.34.4 (2nd ed) and Ÿ12.0-12.3 (1st ed).

### SECURITY EVALUATION OF EMAIL ENCRYPTION USING RANDOM NOISE GENERATED BY LCG

SECURITY EVALUATION OF EMAIL ENCRYPTION USING RANDOM NOISE GENERATED BY LCG Chung-Chih Li, Hema Sagar R. Kandati, Bo Sun Dept. of Computer Science, Lamar University, Beaumont, Texas, USA 409-880-8748,

### How to Conduct a Hypothesis Test

How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some

### In this paper a new signature scheme and a public key cryptotsystem are proposed. They can be seen as a compromise between the RSA and ElGamal-type sc

Digital Signature and Public Key Cryptosystem in a Prime Order Subgroup of Z n Colin Boyd Information Security Research Centre, School of Data Communications Queensland University of Technology, Brisbane

### CHAPTER 3 Numbers and Numeral Systems

CHAPTER 3 Numbers and Numeral Systems Numbers play an important role in almost all areas of mathematics, not least in calculus. Virtually all calculus books contain a thorough description of the natural,

### IMPACT OF HASH FUNCTION NON-UNIFORMITY ON DIGITAL SIGNATURE SECURITY Introduction. 2. Digital Signature

Novi Sad J. Math. Vol. 38, No. 3, 008, 01-08 IMPACT OF HASH FUNCTION NON-UNIFORMITY ON DIGITAL SIGNATURE SECURITY 1 Milan Tuba, Nadezda Stanarevic 3, Perica Strbac 4, Jasmina Novakovic 5 Abstract. This

### A Non-Linear Schema Theorem for Genetic Algorithms

A Non-Linear Schema Theorem for Genetic Algorithms William A Greene Computer Science Department University of New Orleans New Orleans, LA 70148 bill@csunoedu 504-280-6755 Abstract We generalize Holland

### Introduction To Security and Privacy Einführung in die IT-Sicherheit I

Introduction To Security and Privacy Einführung in die IT-Sicherheit I Prof. Dr. rer. nat. Doğan Kesdoğan Institut für Wirtschaftsinformatik kesdogan@fb5.uni-siegen.de http://www.uni-siegen.de/fb5/itsec/

### Mobile Systems Security. Randomness tests

Mobile Systems Security Randomness tests Prof RG Crespo Mobile Systems Security Randomness tests: 1/6 Introduction (1) [Definition] Random, adj: lacking a pattern (Longman concise English dictionary) Prof

### Enhancing Advanced Encryption Standard S-Box Generation Based on Round Key

Enhancing Advanced Encryption Standard S-Box Generation Based on Round Key Julia Juremi Ramlan Mahmod Salasiah Sulaiman Jazrin Ramli Faculty of Computer Science and Information Technology, Universiti Putra

### Statistical Testing of Randomness Masaryk University in Brno Faculty of Informatics

Statistical Testing of Randomness Masaryk University in Brno Faculty of Informatics Jan Krhovják Basic Idea Behind the Statistical Tests Generated random sequences properties as sample drawn from uniform/rectangular

### 1 Solving LPs: The Simplex Algorithm of George Dantzig

Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

Binomial distribution From Wikipedia, the free encyclopedia See also: Negative binomial distribution In probability theory and statistics, the binomial distribution is the discrete probability distribution

### A Numerical Study on the Wiretap Network with a Simple Network Topology

A Numerical Study on the Wiretap Network with a Simple Network Topology Fan Cheng and Vincent Tan Department of Electrical and Computer Engineering National University of Singapore Mathematical Tools of

### Victor Shoup Avi Rubin. fshoup,rubing@bellcore.com. Abstract

Session Key Distribution Using Smart Cards Victor Shoup Avi Rubin Bellcore, 445 South St., Morristown, NJ 07960 fshoup,rubing@bellcore.com Abstract In this paper, we investigate a method by which smart

### Diffusion and Data compression for data security. A.J. Han Vinck University of Duisburg/Essen April 2013 Vinck@iem.uni-due.de

Diffusion and Data compression for data security A.J. Han Vinck University of Duisburg/Essen April 203 Vinck@iem.uni-due.de content Why diffusion is important? Why data compression is important? Unicity

### Elements of probability theory

2 Elements of probability theory Probability theory provides mathematical models for random phenomena, that is, phenomena which under repeated observations yield di erent outcomes that cannot be predicted

### International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013

FACTORING CRYPTOSYSTEM MODULI WHEN THE CO-FACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II Mohammedia-Casablanca,

### 3 Does the Simplex Algorithm Work?

Does the Simplex Algorithm Work? In this section we carefully examine the simplex algorithm introduced in the previous chapter. Our goal is to either prove that it works, or to determine those circumstances

### Testing on proportions

Testing on proportions Textbook Section 5.4 April 7, 2011 Example 1. X 1,, X n Bernolli(p). Wish to test H 0 : p p 0 H 1 : p > p 0 (1) Consider a related problem The likelihood ratio test is where c is

### Ch.9 Cryptography. The Graduate Center, CUNY.! CSc 75010 Theoretical Computer Science Konstantinos Vamvourellis

Ch.9 Cryptography The Graduate Center, CUNY! CSc 75010 Theoretical Computer Science Konstantinos Vamvourellis Why is Modern Cryptography part of a Complexity course? Short answer:! Because Modern Cryptography

### INVESTIGATIONS OF THE BASIC COMPONENT OF FCSR GENERATOR

V.P. Shyrochin, I.V. Vasyltsov, B.Z. Karpinskij / Computing, 23, Vol. 2, Issue 3, 77-81 computing@tanet.edu.te.ua www.tanet.edu.te.ua/computing ISSN 1727-629 International Scientific Journal of Computing

### Why the Normal Distribution?

Why the Normal Distribution? Raul Rojas Freie Universität Berlin Februar 2010 Abstract This short note explains in simple terms why the normal distribution is so ubiquitous in pattern recognition applications.

### Testing randomness: Implementing poker approaches with hands of four numbers

www.ijcsi.org 59 Testing randomness: Implementing poker approaches with hands of four Wael M. F. Abdel-Rehim 1, Ismail A. Ismail 2 and Ehab Morsy 3 1 Department of Mathematics and Computer Science, Faculty

### Properties of Stabilizing Computations

Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71 93 Properties of Stabilizing Computations Mark Burgin a a University of California, Los Angeles 405 Hilgard Ave. Los Angeles, CA

### Hypothesis testing and the error of the third kind

Psychological Test and Assessment Modeling, Volume 54, 22 (), 9-99 Hypothesis testing and the error of the third kind Dieter Rasch Abstract In this note it is shown that the concept of an error of the

### IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem

IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem Time on my hands: Coin tosses. Problem Formulation: Suppose that I have

### Lecture 1: Course overview, circuits, and formulas

Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik

### 1.1 Related work For non-preemptive scheduling on uniformly related machines the rst algorithm with a constant competitive ratio was given by Aspnes e

A Lower Bound for On-Line Scheduling on Uniformly Related Machines Leah Epstein Jir Sgall September 23, 1999 lea@math.tau.ac.il, Department of Computer Science, Tel-Aviv University, Israel; sgall@math.cas.cz,

### 1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form

1. LINEAR EQUATIONS A linear equation in n unknowns x 1, x 2,, x n is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b, where a 1, a 2,..., a n, b are given real numbers. For example, with x and

### 1 The Line vs Point Test

6.875 PCP and Hardness of Approximation MIT, Fall 2010 Lecture 5: Low Degree Testing Lecturer: Dana Moshkovitz Scribe: Gregory Minton and Dana Moshkovitz Having seen a probabilistic verifier for linearity

### On closed-form solutions of a resource allocation problem in parallel funding of R&D projects

Operations Research Letters 27 (2000) 229 234 www.elsevier.com/locate/dsw On closed-form solutions of a resource allocation problem in parallel funding of R&D proects Ulku Gurler, Mustafa. C. Pnar, Mohamed

### MODELING RANDOMNESS IN NETWORK TRAFFIC

MODELING RANDOMNESS IN NETWORK TRAFFIC - LAVANYA JOSE, INDEPENDENT WORK FALL 11 ADVISED BY PROF. MOSES CHARIKAR ABSTRACT. Sketches are randomized data structures that allow one to record properties of

### Breaking Generalized Diffie-Hellman Modulo a Composite is no Easier than Factoring

Breaking Generalized Diffie-Hellman Modulo a Composite is no Easier than Factoring Eli Biham Dan Boneh Omer Reingold Abstract The Diffie-Hellman key-exchange protocol may naturally be extended to k > 2

### Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

### Predictive Models for Min-Entropy Estimation

Predictive Models for Min-Entropy Estimation John Kelsey Kerry A. McKay Meltem Sönmez Turan National Institute of Standards and Technology meltem.turan@nist.gov September 15, 2015 Overview Cryptographic

### Cryptography and Network Security

Cryptography and Network Security Spring 2012 http://users.abo.fi/ipetre/crypto/ Lecture 3: Block ciphers and DES Ion Petre Department of IT, Åbo Akademi University January 17, 2012 1 Data Encryption Standard

### 2.3 Scheduling jobs on identical parallel machines

2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed

### Security Aspects of. Database Outsourcing. Vahid Khodabakhshi Hadi Halvachi. Dec, 2012

Security Aspects of Database Outsourcing Dec, 2012 Vahid Khodabakhshi Hadi Halvachi Security Aspects of Database Outsourcing Security Aspects of Database Outsourcing 2 Outline Introduction to Database

### Fractions and Decimals

Fractions and Decimals Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles December 1, 2005 1 Introduction If you divide 1 by 81, you will find that 1/81 =.012345679012345679... The first

### NPTEL STRUCTURAL RELIABILITY

NPTEL Course On STRUCTURAL RELIABILITY Module # 02 Lecture 6 Course Format: Web Instructor: Dr. Arunasis Chakraborty Department of Civil Engineering Indian Institute of Technology Guwahati 6. Lecture 06:

### E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

### Structural properties of oracle classes

Structural properties of oracle classes Stanislav Živný Computing Laboratory, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK Abstract Denote by C the class of oracles relative

### 9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

### Ecient approximation algorithm for minimizing makespan. on uniformly related machines. Chandra Chekuri. November 25, 1997.

Ecient approximation algorithm for minimizing makespan on uniformly related machines Chandra Chekuri November 25, 1997 Abstract We obtain a new ecient approximation algorithm for scheduling precedence

### Math in the Solitaire Cipher By: Jeffrey Baez

Math in the Solitaire Cipher By: Jeffrey Baez Introduction: Neal Stephenson has written several novels in the cyberpunk genre, subspecialty of science fiction dealing with issues from cybernetics and informational

### 13 Infinite Sets. 13.1 Injections, Surjections, and Bijections. mcs-ftl 2010/9/8 0:40 page 379 #385

mcs-ftl 2010/9/8 0:40 page 379 #385 13 Infinite Sets So you might be wondering how much is there to say about an infinite set other than, well, it has an infinite number of elements. Of course, an infinite

### A NEW APPROACH FOR COMPLEX ENCRYPTING AND DECRYPTING DATA

A NEW APPROACH FOR COMPLEX ENCRYPTING AND DECRYPTING DATA ABSTRACT Obaida Mohammad Awad Al-Hazaimeh Department of Information Technology, Al-balqa Applied University, AL-Huson University College, Irbid,

### The Conference Call Search Problem in Wireless Networks

The Conference Call Search Problem in Wireless Networks Leah Epstein 1, and Asaf Levin 2 1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il 2 Department of Statistics,

### Introduction to Monte-Carlo Methods

Introduction to Monte-Carlo Methods Bernard Lapeyre Halmstad January 2007 Monte-Carlo methods are extensively used in financial institutions to compute European options prices to evaluate sensitivities

### Algebraic Attacks on SOBER-t32 and SOBER-t16 without stuttering

Algebraic Attacks on SOBER-t32 and SOBER-t16 without stuttering Joo Yeon Cho and Josef Pieprzyk Center for Advanced Computing Algorithms and Cryptography, Department of Computing, Macquarie University,

6.857 Computer and Network Security Fall Term, 1997 Lecture 4 : 16 September 1997 Lecturer: Ron Rivest Scribe: Michelle Goldberg 1 Conditionally Secure Cryptography Conditionally (or computationally) secure

### Topic 19: Goodness of Fit

Topic 19: November 24, 2009 A goodness of fit test examine the case of a sequence if independent experiments each of which can have 1 of k possible outcomes. In terms of hypothesis testing, let π = (π

MACs Message authentication and integrity Foundations of Cryptography Computer Science Department Wellesley College Table of contents Introduction MACs Constructing Secure MACs Secure communication and

### Chapter 10 Monte Carlo Methods

411 There is no result in nature without a cause; understand the cause and you will have no need for the experiment. Leonardo da Vinci (1452-1519) Chapter 10 Monte Carlo Methods In very broad terms one

### Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

### Monte Carlo testing with Big Data

Monte Carlo testing with Big Data Patrick Rubin-Delanchy University of Bristol & Heilbronn Institute for Mathematical Research Joint work with: Axel Gandy (Imperial College London) with contributions from:

### DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS. Posc/Uapp 816 CONTINGENCY TABLES

DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS Posc/Uapp 816 CONTINGENCY TABLES I. AGENDA: A. Cross-classifications 1. Two-by-two and R by C tables 2. Statistical independence 3. The interpretation

### Lecture 5 - CPA security, Pseudorandom functions

Lecture 5 - CPA security, Pseudorandom functions Boaz Barak October 2, 2007 Reading Pages 82 93 and 221 225 of KL (sections 3.5, 3.6.1, 3.6.2 and 6.5). See also Goldreich (Vol I) for proof of PRF construction.

### Split Based Encryption in Secure File Transfer

Split Based Encryption in Secure File Transfer Parul Rathor, Rohit Sehgal Assistant Professor, Dept. of CSE, IET, Nagpur University, India Assistant Professor, Dept. of CSE, IET, Alwar, Rajasthan Technical

### 3. Mathematical Induction

3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

### 3 Some Integer Functions

3 Some Integer Functions A Pair of Fundamental Integer Functions The integer function that is the heart of this section is the modulo function. However, before getting to it, let us look at some very simple

### Topic 8. Chi Square Tests

BE540W Chi Square Tests Page 1 of 5 Topic 8 Chi Square Tests Topics 1. Introduction to Contingency Tables. Introduction to the Contingency Table Hypothesis Test of No Association.. 3. The Chi Square Test

### AN ANALYSIS OF A WAR-LIKE CARD GAME. Introduction

AN ANALYSIS OF A WAR-LIKE CARD GAME BORIS ALEXEEV AND JACOB TSIMERMAN Abstract. In his book Mathematical Mind-Benders, Peter Winkler poses the following open problem, originally due to the first author:

### Big Data & Scripting Part II Streaming Algorithms

Big Data & Scripting Part II Streaming Algorithms 1, 2, a note on sampling and filtering sampling: (randomly) choose a representative subset filtering: given some criterion (e.g. membership in a set),

### Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

### STRUTS: Statistical Rules of Thumb. Seattle, WA

STRUTS: Statistical Rules of Thumb Gerald van Belle Departments of Environmental Health and Biostatistics University ofwashington Seattle, WA 98195-4691 Steven P. Millard Probability, Statistics and Information

### Network Security. Chapter 6 Random Number Generation. Prof. Dr.-Ing. Georg Carle

Network Security Chapter 6 Random Number Generation Prof. Dr.-Ing. Georg Carle Chair for Computer Networks & Internet Wilhelm-Schickard-Institute for Computer Science University of Tübingen http://net.informatik.uni-tuebingen.de/

### The Data Encryption Standard (DES)

The Data Encryption Standard (DES) As mentioned earlier there are two main types of cryptography in use today - symmetric or secret key cryptography and asymmetric or public key cryptography. Symmetric

### Data analysis in supersaturated designs

Statistics & Probability Letters 59 (2002) 35 44 Data analysis in supersaturated designs Runze Li a;b;, Dennis K.J. Lin a;b a Department of Statistics, The Pennsylvania State University, University Park,

### FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint

### NP-Completeness and Cook s Theorem

NP-Completeness and Cook s Theorem Lecture notes for COM3412 Logic and Computation 15th January 2002 1 NP decision problems The decision problem D L for a formal language L Σ is the computational task:

### PASS Sample Size Software

Chapter 250 Introduction The Chi-square test is often used to test whether sets of frequencies or proportions follow certain patterns. The two most common instances are tests of goodness of fit using multinomial

### Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.

Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.

### Fairfield Public Schools

Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

### Math212a1010 Lebesgue measure.

Math212a1010 Lebesgue measure. October 19, 2010 Today s lecture will be devoted to Lebesgue measure, a creation of Henri Lebesgue, in his thesis, one of the most famous theses in the history of mathematics.

### Block encryption. CS-4920: Lecture 7 Secret key cryptography. Determining the plaintext ciphertext mapping. CS4920-Lecture 7 4/1/2015

CS-4920: Lecture 7 Secret key cryptography Reading Chapter 3 (pp. 59-75, 92-93) Today s Outcomes Discuss block and key length issues related to secret key cryptography Define several terms related to secret

### Two classes of ternary codes and their weight distributions

Two classes of ternary codes and their weight distributions Cunsheng Ding, Torleiv Kløve, and Francesco Sica Abstract In this paper we describe two classes of ternary codes, determine their minimum weight

### ON THE CONSEQUENCES OF THE STATISTICAL MECHANICS THEORY OF LEARNING CURVES FOR THE MODEL SELECTION PROBLEM AT&T BELL LABORATORIES

ON THE CONSEQUENCES OF THE STATISTICAL MECHANICS THEORY OF LEARNING CURVES FOR THE MODEL SELECTION PROBLEM 1. Introduction MICHAEL J. KEARNS AT&T BELL LABORATORIES Murray Hill, New Jersey 07974, USA E-mail:

### Mathematical induction. Niloufar Shafiei

Mathematical induction Niloufar Shafiei Mathematical induction Mathematical induction is an extremely important proof technique. Mathematical induction can be used to prove results about complexity of

### On an anti-ramsey type result

On an anti-ramsey type result Noga Alon, Hanno Lefmann and Vojtĕch Rödl Abstract We consider anti-ramsey type results. For a given coloring of the k-element subsets of an n-element set X, where two k-element

### Developing and Investigation of a New Technique Combining Message Authentication and Encryption

Developing and Investigation of a New Technique Combining Message Authentication and Encryption Eyas El-Qawasmeh and Saleem Masadeh Computer Science Dept. Jordan University for Science and Technology P.O.

### Determination of the normalization level of database schemas through equivalence classes of attributes

Computer Science Journal of Moldova, vol.17, no.2(50), 2009 Determination of the normalization level of database schemas through equivalence classes of attributes Cotelea Vitalie Abstract In this paper,

### princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora Scribe: One of the running themes in this course is the notion of

### CS 758: Cryptography / Network Security

CS 758: Cryptography / Network Security offered in the Fall Semester, 2003, by Doug Stinson my office: DC 3122 my email address: dstinson@uwaterloo.ca my web page: http://cacr.math.uwaterloo.ca/~dstinson/index.html

### Lecture 22: November 10

CS271 Randomness & Computation Fall 2011 Lecture 22: November 10 Lecturer: Alistair Sinclair Based on scribe notes by Rafael Frongillo Disclaimer: These notes have not been subjected to the usual scrutiny

### arxiv:1112.0829v1 [math.pr] 5 Dec 2011

How Not to Win a Million Dollars: A Counterexample to a Conjecture of L. Breiman Thomas P. Hayes arxiv:1112.0829v1 [math.pr] 5 Dec 2011 Abstract Consider a gambling game in which we are allowed to repeatedly

### Network Security. Chapter 6 Random Number Generation

Network Security Chapter 6 Random Number Generation 1 Tasks of Key Management (1)! Generation:! It is crucial to security, that keys are generated with a truly random or at least a pseudo-random generation

### Mathematical Induction

Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,

### JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004

Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According

### A Negative Result Concerning Explicit Matrices With The Restricted Isometry Property

A Negative Result Concerning Explicit Matrices With The Restricted Isometry Property Venkat Chandar March 1, 2008 Abstract In this note, we prove that matrices whose entries are all 0 or 1 cannot achieve

### 6.4 Normal Distribution

Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

### Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 12 Block Cipher Standards