COMP232  Mathematics for Computer Science


 Elfrieda Smith
 1 years ago
 Views:
Transcription
1 COMP3  Mathematics for Computer Science Tutorial 10 Ali Moallemi moa Iraj Hedayati h Concordia University, Winter 016 Ali Moallemi, Iraj Hedayati COMP3  Mathematics for Computer Science 1 / 11
2 Table of Contents Mathematical Induction Exercise 4 Exercise 6 Exercise 9 Exercise 18 Exercise 33 Exercise 4 Exercise 45 Ali Moallemi, Iraj Hedayati COMP3  Mathematics for Computer Science / 11
3 Exercise 4 Let P (n) be the statement that n 3 = ( n(n+1) ) for the positive integer n. a) What is the statement P (1)? 1 3 = ( 1(1+1) ) b) Show that P (1) is true, completing the basis step of the proof. Left side: 1 3 = 1 Right side: ( 1(1+1) ) = ( ) = 1 = 1 c) What is the inductive hypothesis? P (k) holds for an arbitrary positive integer k 1, k 3 = ( k(k+1) ) d) What do you need to prove in the inductive step? We have to prove that P (k) P (k + 1) Ali Moallemi, Iraj Hedayati COMP3  Mathematics for Computer Science 3 / 11
4 Exercise 4  Cont... e) Complete the inductive step, identifying where you use the inductive hypothesis. P (k + 1) : k 3 + (k + 1) 3 = ( (k+1)(k+) ) Under assumption of P (k) is true: k 3 + (k + 1) 3 = ( k(k+1) ) + (k + 1) 3 = k (k+1) 4 + (k + 1) 3 = k (k+1) +4(k+1) 3 4 = (k+1) (k +4(k+1)) 4 = (k+1) (k +4k+4) 4 = (k+1) (k+) 4 = ( (k+1)(k+) ) This shows that P (k + 1) is true. f) Explain why these steps show that this formula is true whenever n is a positive integer. Since we proved correctness of basis step (a and b) and also completed inductive step (e), using mathematical induction method, P (n) holds for every positive integer n Ali Moallemi, Iraj Hedayati COMP3  Mathematics for Computer Science 4 / 11
5 Exercise 6 Prove that 1 1! +! + + n n! = (n + 1)! 1 whenever n is a positive integer. Using mathematical induction; Suppose P (n) : 1 1! +! + + n n! = (n + 1)! 1 1 P (1) : 1 1! = 1 and (n + 1)! 1 = (1 + 1)! 1 =! 1 = 1 (TRUE) P (k) is true. Hence 1 1! +! + + k k! = (k + 1)! 1 3 P (k) P (k + 1) P (k + 1) : 1 1! +! + + k k! + (k + 1) (k + 1)! = (k + )! 1 Using we can rewrite left side as: 1 1! +! + + k k! + (k + 1) (k + 1)! = (k + 1)! 1 + (k + 1) (k + 1)! = (k + ) (k + 1)! 1 = (k + )! 1 Ali Moallemi, Iraj Hedayati COMP3  Mathematics for Computer Science 5 / 11
6 Exercise 9 a) Find a formula for the sum of the first n even positive integers n = n(n + 1) b) Prove the formula that you conjectured in part (a). Basis step: = 1 (1 + 1) is true. Inductive Hypothesis: k = k(k + 1) Inductive step: P (k) P (k + 1) ( k)+(k +1) = k(k +1)+(k +1) = (k +1)(k +). Ali Moallemi, Iraj Hedayati COMP3  Mathematics for Computer Science 6 / 11
7 Exercise 18 Let P (n) be the statement that n! < n n, where n is an integer greater than 1. a) What is the statement P ()? Basis step because it is the first integer positive greater than 1. b) Show that P () is true, completing the basis step of the proof.! = and = 4.Also < 4 hence P () is true c) What is the inductive hypothesis? P (k) is true and k! < k k d) What do you need to prove in the inductive step? k > 1 (P (k) P (k + 1)) Ali Moallemi, Iraj Hedayati COMP3  Mathematics for Computer Science 7 / 11
8 Exercise 18  Cont... Let P (n) be the statement that n! < n n, where n is an integer greater than 1. e) Complete the inductive step. P (k) is true means k! < k k k!(k + 1) < (k + 1)k k < (k + 1)(k + 1) k (k + 1)! < (k + 1) (k+1) f) Explain why these steps show that this inequality is true whenever n is an integer greater than 1. Since we proved correctness of basis step (a and b) and also completed inductive step (e), using mathematical induction method, P (n) holds for every positive integer n greater than or equal to. Ali Moallemi, Iraj Hedayati COMP3  Mathematics for Computer Science 8 / 11
9 Exercise 33 Prove that 5 divides n 5 n whenever n is a nonnegative integer. Let P (n) be n 5 n is divisible by 5. Basis step: P (0) is true because = 0 is divisible by 5. Inductive step: Assume that P (k) is true, that is, k 5 k is divisible by 5. Then (k + 1) 5 (k + 1) = (k 5 + 5k k k + 5k + 1) (k + 1) = (k 5 k) + 5(k 4 + k 3 + k + k) is also divisible by 5, because both terms in this sum are divisible by 5. Ali Moallemi, Iraj Hedayati COMP3  Mathematics for Computer Science 9 / 11
10 Exercise 4 Prove that if A 1, A,..., A n and B are sets, then (A 1 B) (A B) (A n B) = (A 1 A A n ) B answer: P (n) : (A 1 B) (A B) (A n B) = (A 1 A A n ) B Basis Step:p(1) is trivial: A 1 B = A 1 B Inductive Step: Assume P (k) holds. We show P (k + 1) also holds. (A 1 B) (A B) (A k B) (A k+1 B) = ( ) (A 1 B) (A B) (A k B) (A k+1 B) = ( ) (A 1 A A k ) B (A k+1 B) = ( ) (A 1 A A k ) B (A k+1 B) = (A 1 A A k ) A k+1 B = (A 1 A A k A k+1 ) B Ali Moallemi, Iraj Hedayati COMP3  Mathematics for Computer Science 10 / 11
11 Exercise 45 Prove that a set with n elements has n(n 1) subsets containing exactly two elements whenever n is an integer greater than or equal to. Let P (n) be the statement that a set with n elements has n(n 1) twoelement subsets. Basis step: P (), is true, because a set with two elements has one subset with two elements (itself), and ( 1) = = 1. Inductive step: Now assume that P (k) is true. Let S be a set with k + 1 elements.choose an element a in S and let T = S {a}. A twoelement subset of S either contains a or does not. Those subsets not containing a are the subsets of T with two elements; by the inductive hypothesis there are k(k 1)/ of these. There are k subsets of S with two elements that contain a, because such a subset contains a and one of the k elements in T.Hence, there are k(k 1) + k = k k + k = k + k = (k + 1)k twoelement subsets of S. This completes the inductive proof. Ali Moallemi, Iraj Hedayati COMP3  Mathematics for Computer Science 11 / 11
Mathematical induction. Niloufar Shafiei
Mathematical induction Niloufar Shafiei Mathematical induction Mathematical induction is an extremely important proof technique. Mathematical induction can be used to prove results about complexity of
More informationSample Induction Proofs
Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given
More informationMath 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What
More information3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
More informationWorksheet on induction Calculus I Fall 2006 First, let us explain the use of for summation. The notation
Worksheet on induction MA113 Calculus I Fall 2006 First, let us explain the use of for summation. The notation f(k) means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other
More informationFull and Complete Binary Trees
Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full
More informationSolutions for Practice problems on proofs
Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some
More informationIntroduction. Appendix D Mathematical Induction D1
Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to
More informationMathematical Induction. Lecture 1011
Mathematical Induction Lecture 1011 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach
More informationSection 62 Mathematical Induction
6 Mathematical Induction 457 In calculus, it can be shown that e x k0 x k k! x x x3!! 3!... xn n! where the larger n is, the better the approximation. Problems 6 and 6 refer to this series. Note that
More informationSECTION 102 Mathematical Induction
73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms
More informationMATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.
MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P
More informationAppendix F: Mathematical Induction
Appendix F: Mathematical Induction Introduction In this appendix, you will study a form of mathematical proof called mathematical induction. To see the logical need for mathematical induction, take another
More informationNotes: Chapter 2 Section 2.2: Proof by Induction
Notes: Chapter 2 Section 2.2: Proof by Induction Basic Induction. To prove: n, a W, n a, S n. (1) Prove the base case  S a. (2) Let k a and prove that S k S k+1 Example 1. n N, n i = n(n+1) 2. Example
More informationSCORE SETS IN ORIENTED GRAPHS
Applicable Analysis and Discrete Mathematics, 2 (2008), 107 113. Available electronically at http://pefmath.etf.bg.ac.yu SCORE SETS IN ORIENTED GRAPHS S. Pirzada, T. A. Naikoo The score of a vertex v in
More informationk, then n = p2α 1 1 pα k
Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square
More informationMathematical Induction. Mary Barnes Sue Gordon
Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by
More informationWRITING PROOFS. Christopher Heil Georgia Institute of Technology
WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this
More informationInduction. Margaret M. Fleck. 10 October These notes cover mathematical induction and recursive definition
Induction Margaret M. Fleck 10 October 011 These notes cover mathematical induction and recursive definition 1 Introduction to induction At the start of the term, we saw the following formula for computing
More informationGROUPS SUBGROUPS. Definition 1: An operation on a set G is a function : G G G.
Definition 1: GROUPS An operation on a set G is a function : G G G. Definition 2: A group is a set G which is equipped with an operation and a special element e G, called the identity, such that (i) the
More informationThe Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.
The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,
More informationMathematical Induction
Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,
More informationMITES Physics III Summer Introduction 1. 3 Π = Product 2. 4 Proofs by Induction 3. 5 Problems 5
MITES Physics III Summer 010 Sums Products and Proofs Contents 1 Introduction 1 Sum 1 3 Π Product 4 Proofs by Induction 3 5 Problems 5 1 Introduction These notes will introduce two topics: A notation which
More informationNotes on counting finite sets
Notes on counting finite sets Murray Eisenberg February 26, 2009 Contents 0 Introduction 2 1 What is a finite set? 2 2 Counting unions and cartesian products 4 2.1 Sum rules......................................
More informationLEARNING OBJECTIVES FOR THIS CHAPTER
CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. FiniteDimensional
More information6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
More informationSolutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014
Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014 3.4: 1. If m is any integer, then m(m + 1) = m 2 + m is the product of m and its successor. That it to say, m 2 + m is the
More informationSets and set operations
CS 441 Discrete Mathematics for CS Lecture 7 Sets and set operations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square asic discrete structures Discrete math = study of the discrete structures used
More informationBasic Proof Techniques
Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document
More informationSHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
More informationSection Summary. The Product Rule The Sum Rule The Subtraction Rule The Division Rule Examples, Examples, and Examples Tree Diagrams
Chapter 6 Chapter Summary The Basics of Counting The Pigeonhole Principle Permutations and Combinations Binomial Coefficients and Identities Generalized Permutations and Combinations Generating Permutations
More informationIf n is odd, then 3n + 7 is even.
Proof: Proof: We suppose... that 3n + 7 is even. that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. that 3n + 7 is even. Since n is odd, there exists an integer k so that
More informationUndergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics
Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights
More informationn k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...
6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence
More informationCOUNTING SUBSETS OF A SET: COMBINATIONS
COUNTING SUBSETS OF A SET: COMBINATIONS DEFINITION 1: Let n, r be nonnegative integers with r n. An rcombination of a set of n elements is a subset of r of the n elements. EXAMPLE 1: Let S {a, b, c, d}.
More informationCHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs
CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce
More informationHomework until Test #2
MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such
More informationCONTRIBUTIONS TO ZERO SUM PROBLEMS
CONTRIBUTIONS TO ZERO SUM PROBLEMS S. D. ADHIKARI, Y. G. CHEN, J. B. FRIEDLANDER, S. V. KONYAGIN AND F. PAPPALARDI Abstract. A prototype of zero sum theorems, the well known theorem of Erdős, Ginzburg
More information8 Divisibility and prime numbers
8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express
More informationSection IV.1: Recursive Algorithms and Recursion Trees
Section IV.1: Recursive Algorithms and Recursion Trees Definition IV.1.1: A recursive algorithm is an algorithm that solves a problem by (1) reducing it to an instance of the same problem with smaller
More informationarxiv:math/0202219v1 [math.co] 21 Feb 2002
RESTRICTED PERMUTATIONS BY PATTERNS OF TYPE (2, 1) arxiv:math/0202219v1 [math.co] 21 Feb 2002 TOUFIK MANSOUR LaBRI (UMR 5800), Université Bordeaux 1, 351 cours de la Libération, 33405 Talence Cedex, France
More informationHandout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs
MCS236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set
More informationGraph Theory Problems and Solutions
raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is
More informationMODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.
MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on
More informationMATH 289 PROBLEM SET 4: NUMBER THEORY
MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides
More informationThe thing that started it 8.6 THE BINOMIAL THEOREM
476 Chapter 8 Discrete Mathematics: Functions on the Set of Natural Numbers (b) Based on your results for (a), guess the minimum number of moves required if you start with an arbitrary number of n disks.
More informationSTUDENT S SOLUTIONS MANUAL ELEMENTARY NUMBER THEORY. Bart Goddard. Kenneth H. Rosen AND ITS APPLICATIONS FIFTH EDITION. to accompany.
STUDENT S SOLUTIONS MANUAL to accompany ELEMENTARY NUMBER THEORY AND ITS APPLICATIONS FIFTH EDITION Bart Goddard Kenneth H. Rosen AT&T Labs Reproduced by Pearson AddisonWesley from electronic files supplied
More information1.4 Factors and Prime Factorization
1.4 Factors and Prime Factorization Recall from Section 1.2 that the word factor refers to a number which divides into another number. For example, 3 and 6 are factors of 18 since 3 6 = 18. Note also that
More informationprinceton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora
princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora Scribe: One of the running themes in this course is the notion of
More informationDiscrete Math in Computer Science Homework 7 Solutions (Max Points: 80)
Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80) CS 30, Winter 2016 by Prasad Jayanti 1. (10 points) Here is the famous Monty Hall Puzzle. Suppose you are on a game show, and you
More informationU.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
More informationMath 319 Problem Set #3 Solution 21 February 2002
Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod
More informationDedekind s forgotten axiom and why we should teach it (and why we shouldn t teach mathematical induction in our calculus classes)
Dedekind s forgotten axiom and why we should teach it (and why we shouldn t teach mathematical induction in our calculus classes) by Jim Propp (UMass Lowell) March 14, 2010 1 / 29 Completeness Three common
More informationLinear Codes. In the V[n,q] setting, the terms word and vector are interchangeable.
Linear Codes Linear Codes In the V[n,q] setting, an important class of codes are the linear codes, these codes are the ones whose code words form a subvector space of V[n,q]. If the subspace of V[n,q]
More informationTAKEAWAY GAMES. ALLEN J. SCHWENK California Institute of Technology, Pasadena, California INTRODUCTION
TAKEAWAY GAMES ALLEN J. SCHWENK California Institute of Technology, Pasadena, California L INTRODUCTION Several games of Tf takeaway?f have become popular. The purpose of this paper is to determine the
More informationAnswer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
More informationExamination paper for MA0301 Elementær diskret matematikk
Department of Mathematical Sciences Examination paper for MA0301 Elementær diskret matematikk Academic contact during examination: Iris Marjan Smit a, Sverre Olaf Smalø b Phone: a 9285 0781, b 7359 1750
More informationPOWER SETS AND RELATIONS
POWER SETS AND RELATIONS L. MARIZZA A. BAILEY 1. The Power Set Now that we have defined sets as best we can, we can consider a sets of sets. If we were to assume nothing, except the existence of the empty
More informationConnectivity and cuts
Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every
More informationNONCANONICAL EXTENSIONS OF ERDŐSGINZBURGZIV THEOREM 1
NONCANONICAL EXTENSIONS OF ERDŐSGINZBURGZIV THEOREM 1 R. Thangadurai StatMath Division, Indian Statistical Institute, 203, B. T. Road, Kolkata 700035, INDIA thanga v@isical.ac.in Received: 11/28/01,
More informationIndiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
More informationCMPS 102 Solutions to Homework 1
CMPS 0 Solutions to Homework Lindsay Brown, lbrown@soe.ucsc.edu September 9, 005 Problem.. p. 3 For inputs of size n insertion sort runs in 8n steps, while merge sort runs in 64n lg n steps. For which
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationRi and. i=1. S i N. and. R R i
The subset R of R n is a closed rectangle if there are n nonempty closed intervals {[a 1, b 1 ], [a 2, b 2 ],..., [a n, b n ]} so that R = [a 1, b 1 ] [a 2, b 2 ] [a n, b n ]. The subset R of R n is an
More information1 Review of complex numbers
1 Review of complex numbers 1.1 Complex numbers: algebra The set C of complex numbers is formed by adding a square root i of 1 to the set of real numbers: i = 1. Every complex number can be written uniquely
More informationChapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
More information= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
More informationWHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
More informationJan 31 Homework Solutions Math 151, Winter 2012. Chapter 3 Problems (pages 102110)
Jan 31 Homework Solutions Math 151, Winter 01 Chapter 3 Problems (pages 10110) Problem 61 Genes relating to albinism are denoted by A and a. Only those people who receive the a gene from both parents
More informationElementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
More informationNote on some explicit formulae for twin prime counting function
Notes on Number Theory and Discrete Mathematics Vol. 9, 03, No., 43 48 Note on some explicit formulae for twin prime counting function Mladen VassilevMissana 5 V. Hugo Str., 4 Sofia, Bulgaria email:
More informationMatrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.
Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that
More informationSection 3 Sequences and Limits, Continued.
Section 3 Sequences and Limits, Continued. Lemma 3.6 Let {a n } n N be a convergent sequence for which a n 0 for all n N and it α 0. Then there exists N N such that for all n N. α a n 3 α In particular
More informationThe Foundations: Logic and Proofs. Chapter 1, Part III: Proofs
The Foundations: Logic and Proofs Chapter 1, Part III: Proofs Rules of Inference Section 1.6 Section Summary Valid Arguments Inference Rules for Propositional Logic Using Rules of Inference to Build Arguments
More informationStudent Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 8 Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain
More information1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let
Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as
More informationPrime power degree representations of the symmetric and alternating groups
Prime power degree representations of the symmetric and alternating groups Antal Balog, Christine Bessenrodt, Jørn B. Olsson, Ken Ono Appearing in the Journal of the London Mathematical Society 1 Introduction
More informationIteration, Induction, and Recursion
CHAPTER 2 Iteration, Induction, and Recursion The power of computers comes from their ability to execute the same task, or different versions of the same task, repeatedly. In computing, the theme of iteration
More informationThe EpsilonDelta Limit Definition:
The EpsilonDelta Limit Definition: A Few Examples Nick Rauh 1. Prove that lim x a x 2 = a 2. (Since we leave a arbitrary, this is the same as showing x 2 is continuous.) Proof: Let > 0. We wish to find
More informationON ROUGH (m, n) BIΓHYPERIDEALS IN ΓSEMIHYPERGROUPS
U.P.B. Sci. Bull., Series A, Vol. 75, Iss. 1, 2013 ISSN 12237027 ON ROUGH m, n) BIΓHYPERIDEALS IN ΓSEMIHYPERGROUPS Naveed Yaqoob 1, Muhammad Aslam 1, Bijan Davvaz 2, Arsham Borumand Saeid 3 In this
More informationProblem Set I: Preferences, W.A.R.P., consumer choice
Problem Set I: Preferences, W.A.R.P., consumer choice Paolo Crosetto paolo.crosetto@unimi.it Exercises solved in class on 18th January 2009 Recap:,, Definition 1. The strict preference relation is x y
More informationLinear Programming Notes V Problem Transformations
Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material
More informationEvery Positive Integer is the Sum of Four Squares! (and other exciting problems)
Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer
More informationInduction Problems. Tom Davis November 7, 2005
Induction Problems Tom Davis tomrdavis@earthlin.net http://www.geometer.org/mathcircles November 7, 2005 All of the following problems should be proved by mathematical induction. The problems are not necessarily
More informationI. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
More informationNumerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number
More informationDEGREES OF ORDERS ON TORSIONFREE ABELIAN GROUPS
DEGREES OF ORDERS ON TORSIONFREE ABELIAN GROUPS ASHER M. KACH, KAREN LANGE, AND REED SOLOMON Abstract. We construct two computable presentations of computable torsionfree abelian groups, one of isomorphism
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationElements of probability theory
2 Elements of probability theory Probability theory provides mathematical models for random phenomena, that is, phenomena which under repeated observations yield di erent outcomes that cannot be predicted
More information1.2. Successive Differences
1. An Application of Inductive Reasoning: Number Patterns In the previous section we introduced inductive reasoning, and we showed how it can be applied in predicting what comes next in a list of numbers
More informationarxiv:math/0606467v2 [math.co] 5 Jul 2006
A Conjectured Combinatorial Interpretation of the Normalized Irreducible Character Values of the Symmetric Group arxiv:math/0606467v [math.co] 5 Jul 006 Richard P. Stanley Department of Mathematics, Massachusetts
More informationCS 441 Discrete Mathematics for CS Lecture 5. Predicate logic. CS 441 Discrete mathematics for CS. Negation of quantifiers
CS 441 Discrete Mathematics for CS Lecture 5 Predicate logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Negation of quantifiers English statement: Nothing is perfect. Translation: x Perfect(x)
More informationSolving Linear Diophantine Matrix Equations Using the Smith Normal Form (More or Less)
Solving Linear Diophantine Matrix Equations Using the Smith Normal Form (More or Less) Raymond N. Greenwell 1 and Stanley Kertzner 2 1 Department of Mathematics, Hofstra University, Hempstead, NY 11549
More informationApplications of Fermat s Little Theorem and Congruences
Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4
More informationINCIDENCEBETWEENNESS GEOMETRY
INCIDENCEBETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full
More informationDivisor graphs have arbitrary order and size
Divisor graphs have arbitrary order and size arxiv:math/0606483v1 [math.co] 20 Jun 2006 Le Anh Vinh School of Mathematics University of New South Wales Sydney 2052 Australia Abstract A divisor graph G
More informationMath 231b Lecture 35. G. Quick
Math 231b Lecture 35 G. Quick 35. Lecture 35: Sphere bundles and the Adams conjecture 35.1. Sphere bundles. Let X be a connected finite cell complex. We saw that the Jhomomorphism could be defined by
More informationAn example of a computable
An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept
More informationSequential Data Structures
Sequential Data Structures In this lecture we introduce the basic data structures for storing sequences of objects. These data structures are based on arrays and linked lists, which you met in first year
More informationDiscrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof. Harper Langston New York University
Discrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof Harper Langston New York University Proof and Counterexample Discovery and proof Even and odd numbers number n from Z is called
More information