# Principle of (Weak) Mathematical Induction. P(1) ( n 1)(P(n) P(n + 1)) ( n 1)(P(n))

Save this PDF as:

Size: px
Start display at page:

Download "Principle of (Weak) Mathematical Induction. P(1) ( n 1)(P(n) P(n + 1)) ( n 1)(P(n))"

## Transcription

1 Outline We will cover (over the next few weeks) Mathematical Induction (or Weak Induction) Strong (Mathematical) Induction Constructive Induction Structural Induction

2 Principle of (Weak) Mathematical Induction P(1) ( n 1)(P(n) P(n + 1)) ( n 1)(P(n))

3 Principle of (Weak) Mathematical Induction P(1) ( n 1)(P(n) P(n + 1)) ( n 1)(P(n)) Alternate view: P(1) ( n 2)(P(n 1) P(n)) ( n 1)(P(n))

4 Requirements Mathematical Inductive proofs must have:

5 Requirements Mathematical Inductive proofs must have: Base case: P(1) Usually easy

6 Requirements Mathematical Inductive proofs must have: Base case: P(1) Usually easy Inductive hypothesis: Assume P(n 1)

7 Requirements Mathematical Inductive proofs must have: Base case: P(1) Usually easy Inductive hypothesis: Assume P(n 1) Inductive step: Prove P(n 1) P(n)

8 Arithmetic series: A first example Example For all n 1 n 4i 2 = (4n 6) + (4n 2) i=1 = 2n 2 Do in class.

9 Arithmetic series: Gauss s sum Example For all n 1 n i = (n 1) + n i=1 = n(n + 1) 2 Do in class.

10 Sum of powers of 2 Example For all n 1 n 1 2 k = n n 1 k=0 = 2 n 1 Do in class.

11 Geometric Series Example For all n 1 and real r 1 n 1 r k = 1 + r + r 2 + r r n 2 + r n 1 k=0 = rn 1 r 1 Do in class.

12 A divisibility property Example For all integers n 0 n 3 n (mod 3) Do in class. Use P(n) P(n + 1) and/or start with Induction Hypothesis.

13 Size of Power Set Theorem Let A be a finite set. Then P(A) = 2 A Proof in class.

14 A recurrence relation Example Let Then a n = { a n 1 + (2n 1) if n 2 1 if n = 1 a n = n 2 for n 1 Do in class.

15 An inequality Example For all integers n 3 2n + 1 < 2 n Do in class.

16 Another inequality Example For all integers n 0 and real x nx (1 + x) n Do in class.

17 Catalan Numbers Example C n = ( ) 1 2n n + 1 n = (2n)! n!(n + 1)! For all integers n 1 (2n)! n!(n + 1)! 4 n (n + 1) 2 Also on handout. Do in class.

18 A less mathematical example Example If all we have is 2 cent and 5 cent coins, we can make change for any amount of money at least 4 cents. Do in class.

19 A recurrence relation Example Start with a 0 = 1. a 1 = a = = 2. a 2 = (a 0 + a 1 ) + 1 = (1 + 2) + 1 = 4. a 3 = (a 0 + a 1 + a 2 ) + 1 = ( ) + 1 = 8. a 4 = (a 0 +a 1 +a 2 +a 3 )+1 = ( )+1 = 16. In general, a n = = 2 n ( n 1 ) a i + 1 = (a 0 + a 1 + a a n 1 ) + 1 i=0

20 A recurrence relation Example Start with a 0 = 1. a 1 = a = = 2. a 2 = (a 0 + a 1 ) + 1 = (1 + 2) + 1 = 4. a 3 = (a 0 + a 1 + a 2 ) + 1 = ( ) + 1 = 8. a 4 = (a 0 +a 1 +a 2 +a 3 )+1 = ( )+1 = 16. In general, a n = ( n 1 ) a i + 1 = (a 0 + a 1 + a a n 1 ) + 1 i=0 = 2 n Proof on next slide!!!

21 Proof of recurrence relation by mathematical induction Theorem { 1 if n = 0 a n = ( n 1 ) i=0 a i + 1 = a 0 + a a n if n 1 Then a n = 2 n. Proof by Mathematical Induction. Base case easy. Induction Hypothesis: Assume a n 1 = 2 n 1. Induction Step: a n = ( n 1 ) a i + 1 = i=0 ( n 2 ) a i + a n Now what? i=0

22 Proof of recurrence relation by mathematical induction Theorem { 1 if n = 0 a n = ( n 1 ) i=0 a i + 1 = a 0 + a a n if n 1 Then a n = 2 n. Proof by Mathematical Induction. Base case easy. Induction Hypothesis: Assume a n 1 = 2 n 1. Induction Step: a n = ( n 1 ) a i + 1 = i=0 ( n 2 ) a i + a n Now what? i=0 = (a n 1 1) + a n = 2a n 1 = 2 2 n 1 = 2 n.

23 Principle of Strong (Mathematical) Induction Recall weak mathematical induction: P(1) ( n 2)(P(n 1) P(n)) ( n 1)(P(n))

24 Principle of Strong (Mathematical) Induction Recall weak mathematical induction: P(1) ( n 2)(P(n 1) P(n)) ( n 1)(P(n)) Strong mathematical induction: P(1) ( n 2)(P(1) P(2) P(n 1) P(n)) ( n 1)(P(n))

25 Proof of recurrence relation by strong induction Theorem { 1 if n = 0 a n = ( n 1 ) i=0 a i + 1 = a 0 + a a n if n 1 Then a n = 2 n. Proof by Strong Induction. Base case easy. Induction Hypothesis: Assume a i = 2 i for 0 i < n. Induction Step: a n = ( n 1 ) a i + 1 = i=0 ( n 1 = (2 n 1) + 1 = 2 n. ) 2 i + 1 i=0

26 Another recurrence relation Example Let 1 if n = 0 1 if n = 1 a n = 3 if n = 2 a n 1 + a n 2 a n 3 if n 3 Then a n is odd, for n 0. Do in class.

27 Yet another recurrence relation Example Let Then for all integers i 0 0 if i = 0 a i = 7 if i = 1 2a i 1 + 3a i 2 if i 2 a i 0 (mod 7) Do in class.

28 And yet another recurrence relation Example Let 0 if i = 1 a i = 2 if i = 2 3a i 2 if i 3 Then for all integers i 1, a i is even. Do in class.

29 Size of prime numbers Example Let p n be the nth prime number. Then p n 2 2n Proof in class.

30 Jigsaw Puzzle How many moves does it take to put together a jigsaw puzzle with n pieces? Do in class.

31 Principle of Constructive Induction If you know or guess the form of the answer, you can sometimes derive the actual answer while doing mathematical induction to prove it.

32 Constructive Induction: Example Example For all n 1 n 4i 2 =? i=1 Guess that for all integers n 1, n 4i 2 = an 2 + bn + c i=1 Why? Find constants a, b, and c such that this holds. Do in class.

33 Constructive induction: Recurrence Example Let 2 if n = 0 a n = 7 if n = 1 12a n 1 + 3a n 2 if n 2 What is a n? Guess that for all integers n 0, a n AB n Why? Find constants A and B such that this holds: Primarily find smallest B and secondarily smallest A. Do in class.

34 Structural Induction Definition (Loosely speaking...) Structural induction is strong induction over recursively defined objects.

35 A geometric example Definition A triangulated polygon is a decomposition of the polygon into triangles by non-intersecting lines. Example in class.

36 A geometric example Definition A triangulated polygon is a decomposition of the polygon into triangles by non-intersecting lines. Example in class. Not recursively defined.

37 A geometric example Definition A triangulated polygon is a decomposition of the polygon into triangles by non-intersecting lines. Example in class. Definition (Alternative recursive version) A triangulated polygon is Either a triangle, Not recursively defined. or a polygon with a straight line drawn between two vertices (that are not next to each other), where the two polygons formed by this line and the original polygon are themselves triangulated polygons.

38 A geometric example continued Definition A coloring of a triangulated polygon is an assignment of colors to all of the vertices of the polygon so that no two vertices that share an edge have the same color. Example in class. Theorem Every triangulated polygon is 3-colorable. Proof in class.

39 Full binary tree Definition A full binary tree is a rooted tree where every node has exactly zero or two children. Definition (Alternative recursive version) A full binary tree is Either a single node, called the root, or a single node, called the root, with exactly two children, where each child is the root of a full binary tree. Example in class.

40 Tree definitions Definition The distance between two nodes is the number of edges between them. Definition A leaf is a node with no children. An internal node is a node with children. Definition The external path length is the sum of the distances from the root to all of the leaves. The internal path length is the sum of the distances from the root to all of the internal nodes.

41 Internal and external path lengths Theorem Let N be the number of nodes in a full binary tree. Let E and I be its external and internal path lengths, respectively. Then E = I + N 1 Two proofs in class.

### Full and Complete Binary Trees

Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

### Mathematical Induction. Lecture 10-11

Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach

### Mathematical induction. Niloufar Shafiei

Mathematical induction Niloufar Shafiei Mathematical induction Mathematical induction is an extremely important proof technique. Mathematical induction can be used to prove results about complexity of

### Appendix F: Mathematical Induction

Appendix F: Mathematical Induction Introduction In this appendix, you will study a form of mathematical proof called mathematical induction. To see the logical need for mathematical induction, take another

### Induction. Margaret M. Fleck. 10 October These notes cover mathematical induction and recursive definition

Induction Margaret M. Fleck 10 October 011 These notes cover mathematical induction and recursive definition 1 Introduction to induction At the start of the term, we saw the following formula for computing

### Introduction. Appendix D Mathematical Induction D1

Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to

### Math 55: Discrete Mathematics

Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What

### MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.

MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P

### Induction Problems. Tom Davis November 7, 2005

Induction Problems Tom Davis tomrdavis@earthlin.net http://www.geometer.org/mathcircles November 7, 2005 All of the following problems should be proved by mathematical induction. The problems are not necessarily

### SECTION 10-2 Mathematical Induction

73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

### Catalan Numbers. Thomas A. Dowling, Department of Mathematics, Ohio State Uni- versity.

7 Catalan Numbers Thomas A. Dowling, Department of Mathematics, Ohio State Uni- Author: versity. Prerequisites: The prerequisites for this chapter are recursive definitions, basic counting principles,

### 6.3 Conditional Probability and Independence

222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

### Mathematical Induction

Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,

### Worksheet on induction Calculus I Fall 2006 First, let us explain the use of for summation. The notation

Worksheet on induction MA113 Calculus I Fall 2006 First, let us explain the use of for summation. The notation f(k) means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other

### ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

### Midterm Practice Problems

6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator

### 3. INNER PRODUCT SPACES

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

### Mathematical Induction. Mary Barnes Sue Gordon

Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by

### HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

### Graph Theory Problems and Solutions

raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

### Notes: Chapter 2 Section 2.2: Proof by Induction

Notes: Chapter 2 Section 2.2: Proof by Induction Basic Induction. To prove: n, a W, n a, S n. (1) Prove the base case - S a. (2) Let k a and prove that S k S k+1 Example 1. n N, n i = n(n+1) 2. Example

### Mathematics for Algorithm and System Analysis

Mathematics for Algorithm and System Analysis for students of computer and computational science Edward A. Bender S. Gill Williamson c Edward A. Bender & S. Gill Williamson 2005. All rights reserved. Preface

### Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )

1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the

### Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

### 3. Mathematical Induction

3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

### INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

### Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

### Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

### Cartesian Products and Relations

Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

### Basic Proof Techniques

Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document

### Math 55: Discrete Mathematics

Math 55: Discrete Mathematics UC Berkeley, Spring 2012 Homework # 9, due Wednesday, April 11 8.1.5 How many ways are there to pay a bill of 17 pesos using a currency with coins of values of 1 peso, 2 pesos,

### Section 6-2 Mathematical Induction

6- Mathematical Induction 457 In calculus, it can be shown that e x k0 x k k! x x x3!! 3!... xn n! where the larger n is, the better the approximation. Problems 6 and 6 refer to this series. Note that

### Section IV.1: Recursive Algorithms and Recursion Trees

Section IV.1: Recursive Algorithms and Recursion Trees Definition IV.1.1: A recursive algorithm is an algorithm that solves a problem by (1) reducing it to an instance of the same problem with smaller

### (Refer Slide Time: 01.26)

Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 27 Pigeonhole Principle In the next few lectures

### HOLES 5.1. INTRODUCTION

HOLES 5.1. INTRODUCTION One of the major open problems in the field of art gallery theorems is to establish a theorem for polygons with holes. A polygon with holes is a polygon P enclosing several other

### GRAPH THEORY LECTURE 4: TREES

GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection

### WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

### SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM

SPERNER S LEMMA AND BROUWER S FIXED POINT THEOREM ALEX WRIGHT 1. Intoduction A fixed point of a function f from a set X into itself is a point x 0 satisfying f(x 0 ) = x 0. Theorems which establish the

### Chapter 3. Distribution Problems. 3.1 The idea of a distribution. 3.1.1 The twenty-fold way

Chapter 3 Distribution Problems 3.1 The idea of a distribution Many of the problems we solved in Chapter 1 may be thought of as problems of distributing objects (such as pieces of fruit or ping-pong balls)

### The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

### Solutions for Practice problems on proofs

Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some

### POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).

### Discrete Mathematics Problems

Discrete Mathematics Problems William F. Klostermeyer School of Computing University of North Florida Jacksonville, FL 32224 E-mail: wkloster@unf.edu Contents 0 Preface 3 1 Logic 5 1.1 Basics...............................

### Utah Core Curriculum for Mathematics

Core Curriculum for Mathematics correlated to correlated to 2005 Chapter 1 (pp. 2 57) Variables, Expressions, and Integers Lesson 1.1 (pp. 5 9) Expressions and Variables 2.2.1 Evaluate algebraic expressions

### Homework until Test #2

MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

### Sample Induction Proofs

Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given

### the recursion-tree method

the recursion- method recurrence into a 1 recurrence into a 2 MCS 360 Lecture 39 Introduction to Data Structures Jan Verschelde, 22 November 2010 recurrence into a The for consists of two steps: 1 Guess

### = 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

### Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm

MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following

### CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

### SECTION 10-5 Multiplication Principle, Permutations, and Combinations

10-5 Multiplication Principle, Permutations, and Combinations 761 54. Can you guess what the next two rows in Pascal s triangle, shown at right, are? Compare the numbers in the triangle with the binomial

### CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

### From Perfect Matchings to the Four Colour Theorem

From Perfect Matchings to the Four Colour Theorem Aguilar (Cinvestav), Flores (UNAM), Pérez (HP), Santos (Cantabria), Zaragoza (UAM-A) Universidad Autónoma Metropolitana Unidad Azcapotzalco Departamento

### A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25

### Pythagorean Triples. Chapter 2. a 2 + b 2 = c 2

Chapter Pythagorean Triples The Pythagorean Theorem, that beloved formula of all high school geometry students, says that the sum of the squares of the sides of a right triangle equals the square of the

### Lecture 1: Course overview, circuits, and formulas

Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik

### 5-4 Prime and Composite Numbers

5-4 Prime and Composite Numbers Prime and Composite Numbers Prime Factorization Number of Divisorss Determining if a Number is Prime More About Primes Prime and Composite Numbers Students should recognizee

### Analysis of Algorithms, I

Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications

### COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact

### APPLICATIONS OF THE ORDER FUNCTION

APPLICATIONS OF THE ORDER FUNCTION LECTURE NOTES: MATH 432, CSUSM, SPRING 2009. PROF. WAYNE AITKEN In this lecture we will explore several applications of order functions including formulas for GCDs and

### Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally

Recurrence Relations Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally modeled by recurrence relations. A recurrence relation is an equation which

### Patterns in Pascal s Triangle

Pascal s Triangle Pascal s Triangle is an infinite triangular array of numbers beginning with a at the top. Pascal s Triangle can be constructed starting with just the on the top by following one easy

### Repetition and Loops. Additional Python constructs that allow us to effect the (1) order and (2) number of times that program statements are executed.

New Topic Repetition and Loops Additional Python constructs that allow us to effect the (1) order and (2) number of times that program statements are executed. These constructs are the 1. while loop and

### Unknown Angle Problems with Inscribed Angles in Circles

: Unknown Angle Problems with Inscribed Angles in Circles Student Outcomes Use the inscribed angle theorem to find the measures of unknown angles. Prove relationships between inscribed angles and central

### Divisor graphs have arbitrary order and size

Divisor graphs have arbitrary order and size arxiv:math/0606483v1 [math.co] 20 Jun 2006 Le Anh Vinh School of Mathematics University of New South Wales Sydney 2052 Australia Abstract A divisor graph G

### a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

### In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.

MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target

### 1.4 Factors and Prime Factorization

1.4 Factors and Prime Factorization Recall from Section 1.2 that the word factor refers to a number which divides into another number. For example, 3 and 6 are factors of 18 since 3 6 = 18. Note also that

### k, then n = p2α 1 1 pα k

Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

### SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

### SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me

SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines

### Geometry Chapter 2: Geometric Reasoning Lesson 1: Using Inductive Reasoning to Make Conjectures Inductive Reasoning:

Geometry Chapter 2: Geometric Reasoning Lesson 1: Using Inductive Reasoning to Make Conjectures Inductive Reasoning: Conjecture: Advantages: can draw conclusions from limited information helps us to organize

### 6.2 Permutations continued

6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

### 1.1 Logical Form and Logical Equivalence 1

Contents Chapter I The Logic of Compound Statements 1.1 Logical Form and Logical Equivalence 1 Identifying logical form; Statements; Logical connectives: not, and, and or; Translation to and from symbolic

### MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

### Math 115 Spring 2011 Written Homework 5 Solutions

. Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence

### MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.

MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on

### 4. An isosceles triangle has two sides of length 10 and one of length 12. What is its area?

1 1 2 + 1 3 + 1 5 = 2 The sum of three numbers is 17 The first is 2 times the second The third is 5 more than the second What is the value of the largest of the three numbers? 3 A chemist has 100 cc of

### Let s just do some examples to get the feel of congruence arithmetic.

Basic Congruence Arithmetic Let s just do some examples to get the feel of congruence arithmetic. Arithmetic Mod 7 Just write the multiplication table. 0 1 2 3 4 5 6 0 0 0 0 0 0 0 0 1 0 1 2 3 4 5 6 2 0

### (x + a) n = x n + a Z n [x]. Proof. If n is prime then the map

22. A quick primality test Prime numbers are one of the most basic objects in mathematics and one of the most basic questions is to decide which numbers are prime (a clearly related problem is to find

### LECTURE NOTES ON MATHEMATICAL INDUCTION

LECTURE NOTES ON MATHEMATICAL INDUCTION PETE L CLARK Contents 1 Introduction 1 The (Pedagogically) First Induction Proof 4 3 The (Historically) First(?) Induction Proof 5 4 Closed Form Identities 6 5 More

### Homework 5 Solutions

Homework 5 Solutions 4.2: 2: a. 321 = 256 + 64 + 1 = (01000001) 2 b. 1023 = 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = (1111111111) 2. Note that this is 1 less than the next power of 2, 1024, which

### Continued Fractions. Darren C. Collins

Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history

### MATH 22. THE FUNDAMENTAL THEOREM of ARITHMETIC. Lecture R: 10/30/2003

MATH 22 Lecture R: 10/30/2003 THE FUNDAMENTAL THEOREM of ARITHMETIC You must remember this, A kiss is still a kiss, A sigh is just a sigh; The fundamental things apply, As time goes by. Herman Hupfeld

### We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b

In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

### P. Jeyanthi and N. Angel Benseera

Opuscula Math. 34, no. 1 (014), 115 1 http://dx.doi.org/10.7494/opmath.014.34.1.115 Opuscula Mathematica A TOTALLY MAGIC CORDIAL LABELING OF ONE-POINT UNION OF n COPIES OF A GRAPH P. Jeyanthi and N. Angel

### Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

### Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014

Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014 3.4: 1. If m is any integer, then m(m + 1) = m 2 + m is the product of m and its successor. That it to say, m 2 + m is the

### Connectivity and cuts

Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every

### Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

### Balanced Binary Search Tree

AVL Trees / Slide 1 Balanced Binary Search Tree Worst case height of binary search tree: N-1 Insertion, deletion can be O(N) in the worst case We want a tree with small height Height of a binary tree with

### Today s Topics. Primes & Greatest Common Divisors

Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime

### CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

### or (ⴚ), to enter negative numbers

. Using negative numbers Add, subtract, multiply and divide positive and negative integers Use the sign change key to input negative numbers into a calculator Why learn this? Manipulating negativ e numbers

### Answers to some of the exercises.

Answers to some of the exercises. Chapter 2. Ex.2.1 (a) There are several ways to do this. Here is one possibility. The idea is to apply the k-center algorithm first to D and then for each center in D

### CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Linda Shapiro Winter 2015

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis Linda Shapiro Today Registration should be done. Homework 1 due 11:59 pm next Wednesday, January 14 Review math essential

### Functions and Equations

Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

### 13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant

æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the