Paper Bridge Short Span 25 cm

Size: px
Start display at page:

Download "Paper Bridge Short Span 25 cm"

Transcription

1 Paper Bridge Short Span 25 cm Name Teacher Period TAPE OF ANY KIND IS NOT ALLOWED. HOT GLUE IS NOT ALLOWED. Purpose - To construct a bridge from paper and glue that will support the heaviest load. The minimum supporting mass requirement is 5 pounds. Paper Bridge Record 565 pounds ATTENTION PARENTS AND STUDENTS The bridge project requires the fabrication of bridge components that may require the use of hand or power tools. Common tools used are scissors, knife, electric drill and handsaw or power saw. Follow all manufacturer safety guidelines and directions including the use of safety goggles. Tools should be used under adult supervision. The bridge project requires the fabrication of bridge components that may require the use of white glue. Follow all manufacturer safety guidelines and directions. Requirements 1. The bridge is to be constructed from white 8.5" X 11" or 8.5" X 14" computer/zerox paper and wood toothpicks. THERE ARE NO RESTRICTIONS ON THE USE OF THE TOOTHPICKS. NO OTHER PAPER PRODUCTS ARE ALLOWED. 2. ONLY Elmer's glue (generic white glue) or Elmer's glue stick (generic glue stick) are allowed. NOTE - White glue will not discolor or change the opaque characteristic of the paper. Any white glue or glue stick that discolors the paper is NOT allowed. Allowed Glues 3. Tape of ANY type is NOT allowed. Hot glue is NOT allowed. 4. The MASS of the bridge shall not exceed 200 GRAMS. MASS OF BRIDGE < 200 GRAMS (MASS IS LESS THAN OR EQUAL TO 200 GRAMS)

2 5. The bridge shall be freestanding and must SPAN two level surfaces that are 25 centimeters apart. It is recommended that the minimum length of the bridge be no less than cm (11 inches). LENGTH OF BRIDGE > 25 CM (SUGGESTED MINIMUM LENGTH IS CM OR 11 INCHES) 6. The bridge MUST incorporate a truss design. Students should research truss designs or DESIGN THEIR OWN unique truss design. If a student selects to design his or her own unique truss design, it is recommended that his/her teacher review the design. THE TRUSS MUST PROVIDE THE BRIDGE S STRUCTURAL STRENGTH. 7. NO inverted bridges (trusses are beneath the roadway). 8. All students are REQUIRED to use the bridge design simulation. Bridge Design Simulation The support for the bridge shall be from the top of the level surface. The edges of the level surface cannot be used in any way for support. ACCEPTABLE (table provides only vertical support) UNACCEPTABLE (table is providing horizontal support)

3 10. You must incorporate a "loading zone" at the midpoint of the span along the centerline of the bridge. The loading zone must receive a 5-cm x 10-cm flat block of wood called the loading platform. A halfinch hole must be located at the center of the loading zone and pass completely through the deck and all bridge supports beneath the deck. A bolt will be inserted through the hole from beneath the deck and attached to the loading platform. Your instructor will provide the bolt and loading platform. ½ hole Actual Loading Platform (teacher will provide) Loading Zone The purpose of these pictures is to aid in the explanation of the bridge project requirements. These pictures are NOT intended to be examples of quality construction or design. LOADING ZONE WILL THE BLOCK FIT?

4 11. The bridge must include a decking of paper to provide a suitable road surface at least 5-cm wide across the full span of the bridge. Four conditions must be met: - The deck may not have any gaps. - A block of wood 5-cm x 10-cm x 1-cm representing a car must be able to move along the length of the deck unobstructed from end to end. - The highest point of the deck may be no higher than 5 cm above the tabletop to allow for loading zone reinforcement. - The deck of the bridge must either be flat across its entire span or inclined upwards towards the loading zone. 12. The bridge may NOT be COLORED in any fashion (paints, canyons, markers, etc.). The color of the bridge must reflect the color of the paper and glue used. 13. Failure to meet these specifications will result in grade penalties. See grading rubric for details. Bridge Testing 1. A load (force) will be applied to the loading zone. 2. The load will be increased until structural failure is reached. 3. Structural failure is defined as: a member fails: tears or buckles, a joint fails: breaks or pulls out, the loading platform pulls through the loading zone, the roadway deflects vertically 2 inches, or the bridge is pulled through the 25 centimeter gap. 4. The greatest load applied without partial or complete structural failure will determine the final grade. Refer to the bridge rubric for details. 5. Students can not benefit from accidental grade rubric omissions or mistakes. Omissions and mistakes will be corrected and bridges will be evaluated appropriately.

5 Key to Member Construction Member construction should demand considerable attention. Although researching member construction is an excellent idea, that alone is not enough. One should experiment with various sized and shaped members before deciding on the best design for that person. Due to differing mechanical skills, a member design that is great for one student may be difficult for another. Bridges that take compression and tension into consideration and build the appropriately sized and shaped members are superior to bridges with uniformly constructed members. What will work best for you? Experiment and find out! Basic Member Construction 1. Roll a piece of paper into a tube with a diameter roughly the size of a quarter. 2. Carefully place the tube on the tabletop making sure the tube doesn t unravel. 3. With both hands flat and palms facing down, position the tube along the middle of your fingers. 4. Roll the tube away from yourself while applying a gentle downward force on the tube. 5. Reposition the tube and your hands once the tube has rolled to the bottom of your palms. 6. Repeat until the tube has tightened up to the desired size. 7. Securely the tube from unraveling with glue.

6 Key to Joint Construction Since most bridges will fail at the joints, joint construction should demand maximum attention. Although researching joint construction is an excellent idea, that alone is not enough. One should experiment with various joining techniques before deciding on the best technique for that person. Due to differing mechanical skills, a joining technique that is great for one student may be difficult for another. Excessive use of glue is not the key to building a robust joint. Glue should be used sparingly. Joints that are mitered and fit flush along with reinforcement techniques have proven to be superior to poorly engineered joints reinforced with excessive amounts of glue. Reinforcement techniques may include but are not limited to the following: pinning, slotted connections or gusset plating. What will work best for you? Experiment and find out! Basic Joint Construction Colored paper has been used to show the joints. You may NOT use colored paper. 1. Butt two members of approximately the same size together end-on. 2. Wrap a piece of paper around the two members, centered on the butted ends. 3. Repeat steps 3 through 7 of Basic Member Construction. Click here for larger images.

7 Key to Loading Zone Construction Finally, consider reinforcing the loading zone. A poorly designed and reinforced loading zone may result in structural failure ONLY at the loading zone. This unfortunate over site may leave the rest of the bridge structurally intact. Loading zone reinforcement should not be limited to excess use of glue but may include the construction of additional members (i.e. layers and/or joint construction). Remember the entire weight supported by the bridge is applied at the loading zone. What will work best for you? Experiment and find out! Loading Platform 5 cm X 10 cm X 1 cm (teacher will provide) Complete bridge breaking set-up. You may NOT use colored paper. Bridge Design Worksheet Template and Force Analysis

8 GREEN ZONE Acceptable Bridge Paper Bridge Grading Rubric - Violations ORANGE ZONE Acceptable bridges with MINOR infractions RED ZONE Unacceptable bridges with MAJOR infractions Bridge meets all design requirements Bridge will be tested until structural failure is reached and scored* between 65 and 100. A bridge that receives a failing grade may raise their grade by entering a bridge on the make up day. See orange zone for explanation. Bridge exceeds maximum mass limit by no more than 50 grams Bridge fails to include a proper loading zone. A bridge with one or more of the above infractions will be tested until structural failure is reached and scored* between 60 and 80. A bridge that receives a failing grade may raise their grade by entering a bridge on the make up day. See orange zone for explanation. If a bridge has both an orange zone and a red zone infraction, it will be evaluated according to the red zone infraction. Bridge exceeds maximum mass limit by more than 50 grams Bridge fails to incorporate a properly design loading zone or truss design Bridge fails minimum length requirement Bridge is constructed with disallowed material(s) A bridge with one or more of the above infractions will be tested if structurally possible until structural failure is reached and scored between a 50 and 70. A bridge that can not be tested will receive a grade of zero. Students may raise their grade by entering a bridge meeting all design requirements on the make up day. The make up bridge will be tested until structural failure is reached and scored between 60 and 80. Make up bridges will follow the orange zone rubric. A make up bridge that fails to meet ALL design requirements will not be evaluated. * A bridge that meets the minimum supporting mass requirement will receive a passing grade.

9 Paper Bridge Grading Rubric Scoring Score Green Zone Orange Zone Red Zone 100 A bridge that supports a weight equal to 200 lbs. earns a Bridges that support more than the minimum but less than 200 lbs. will be scaled between and 80. A bridge that supports just the minimum earns an 80. Make up bridges will be scored according to the orange zone rubric below. A bridge that supports a weight equal to or greater than 200 lbs. earns an 80. Bridges that support more than the minimum but less than 200 lbs. will be scaled between 79 and A bridge that supports just the minimum earns a A bridge that supports a mass greater than the 1 lb. but less than the minimum earns a 65. A bridge that supports a mass greater than the 1 lb. but less than the minimum earns a 60. A bridge that supports a weight equal to or greater than 200 lbs. kg earns a 70. Bridges that support more than the minimum but less than 200 lbs. will be scaled between 69 and 60. A bridge that supports just the minimum earns a A bridge that collapses under its own weight earns a zero. A bridge that collapses under its own weight earns a zero. A bridge that supports a mass greater than the 1 lb. but less than the minimum earns a 50. A bridge that collapses under its own weight earns a zero.

10 Paper Bridge Scoring Scale Weight Applied Scoring Zone Green Zone Orange Zone Red Zone 200 pounds pounds pounds pounds pounds pounds pounds pounds pounds pounds pounds pounds pounds pounds pounds pounds pounds pounds pounds pounds Weight = Minimum (5 lbs.) lb. Weight < Minimum Bonus Points One bonus point will be awarded for every 20 lbs. in excess of 200 lbs. Bonus points are awarded ONLY to green zone bridges. Red and orange zone bridges are ineligible for bonus points. Late Grade 10 points will be deducted for each day late.

11 Paper Bridge Score Card Name Name Teacher Period On-Level Mass of Bridge (grams) Weight Supported (lbs.) Score PreAP Mass of Bridge (grams) Efficiency Factor (See Bridge Scoring Spreadsheet) Weight Supported (lbs.) Scoring Weight (See Bridge Scoring Spreadsheet) (lbs.) Score Bridge Check List Criteria Green Zone Orange Zone Red Zone Mass m 200 grams 200 g < m 250 g m > 250 g Length > 25 cm > 25 cm < 25 cm Width 5 cm < 5 cm Loading Zone Fits correctly. Fits incorrectly Does not fit. Materials Permitted Permitted Disallowed Competition Color GREEN ORANGE RED Bridge Testing Questions 1. Draw a stick drawing of your bridge on the grid to the right. 2. On your stick drawing, identify where you predict structural failure occurred. 3. Place a large red X on your bridge where you predict structural failure will occur. 4. Did the structural failure occur where predicted? YES NO 5. Why did the structural failure occur where it did? Was it a design or construction oversight? Explain. Answer on the backside or a separate sheet of paper. 6. How would you improve your design? Answer on the backside or a separate sheet of paper.

12 Paper Bridge Second Bridge? Name Teacher Period

13 Bridge Short Span Pre-Build Questions Name Teacher Period Go to for bridge directions and course calendar to answer the questions below. 1. What type and size paper is allowed in the construction of your bridge? 2. What type of glue is allowed in the construction of your bridge? 3. What types of glue are NOT allowed in the construction of your bridge? 4. Is tape allowed in the construction of your bridge? 5. What are the bridge s mass and length requirements? 6. What is the width of the opening your bridge must span? 7. Should you build your bridge longer, shorter or the same length as the width of the opening? 8. Define truss. 9. Draw a sketch of a simple truss. 10. How must your bridge be supported?

14 11. Describe the size and location of the loading zone. 12. What is the size of the loading platform? 13. How much of the applied breaking force is applied to the loading platform/loading zone? How should the construction of your bridge take this into consideration? 14. What is the minimum width of the roadway? 15. May you decorated or color your bridge? 16. What defines structural failure? 17. How much weight must your bridge support for a passing grade? 18. What grade do you want to earn on this project? How much weight must your bridge support to earn this grade? 19. When is the bridge due? When will testing of the bridges begin? 20. What will happen to your bridge after testing?

15 Bridge TEKS/Objectives Introduction TEKS (1) Physics. In Physics, students conduct laboratory and field investigations, use scientific methods during investigations, and make informed decisions using critical thinking and scientific problem solving. Students study a variety of topics that include: laws of motion; changes within physical systems and conservation of energy and momentum; forces; thermodynamics; characteristics and behavior of waves; and atomic, nuclear, and quantum physics. Students who successfully complete Physics will acquire factual knowledge within a conceptual framework, practice experimental design and interpretation, work collaboratively with colleagues, and develop critical thinking skills. Knowledge and Skills TEKS (1) Scientific processes. The student conducts investigations, for at least 40% of instructional time, using safe, environmentally appropriate, and ethical practices. These investigations must involve actively obtaining and analyzing data with physical equipment, but may also involve experimentation in a simulated environment as well as field observations that extend beyond the classroom. The student is expected to: (A) demonstrate safe practices during laboratory and field investigations; and (B) demonstrate an understanding of the use and conservation of resources and the proper disposal or recycling of materials. (2) Scientific processes. The student uses a systematic approach to answer scientific laboratory and field investigative questions. The student is expected to: (E) design and implement investigative procedures, including making observations, asking well-defined questions, formulating testable hypotheses, identifying variables, selecting appropriate equipment and technology, and evaluating numerical answers for reasonableness; (K) communicate valid conclusions supported by the data through various methods such as lab reports, labeled drawings, graphic organizers, journals, summaries, oral reports, and technology-based reports; and (3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to (A) in all fields of science, analyze, evaluate, and critique scientific explanations by using empirical evidence, logical reasoning, and experimental and observational testing, including examining all sides of scientific evidence of those scientific explanations, so as to encourage critical thinking by the student; (E) research and describe the connections between physics and future careers; and (F) express and interpret relationships symbolically in accordance with accepted theories to make predictions and solve problems mathematically, including problems requiring proportional reasoning and graphical vector addition. (4) Science concepts. The student knows and applies the laws governing motion in a variety of situations. The student is expected to: (D) calculate the effect of forces on objects, including the law of inertia, the relationship between force and acceleration, and the nature of force pairs between objects; (E) develop and interpret free-body force diagrams; and

Stick Together. 3 6 th grade and 3 7 th /8 th grade TEAMS PER CENTER

Stick Together. 3 6 th grade and 3 7 th /8 th grade TEAMS PER CENTER Stick Together MESA DAY CONTEST RULES 2015 2016 LEVEL: Grades 6-8 TYPE OF CONTEST: COMPOSITION OF TEAMS: NUMBER OF TEAMS: SPONSOR: Team 1-2 students per team 3 6 th grade and 3 7 th /8 th grade TEAMS PER

More information

Explore 2: Gathering Momentum

Explore 2: Gathering Momentum Explore : Gathering Momentum Type of Lesson: Learning Goal & Instructional Objectives: Content with Process: Focus on constructing knowledge through active learning. In this investigation, students calculate

More information

Lessons 6 and 7 Foam Bridge Experiment- Forces and Stresses Lab

Lessons 6 and 7 Foam Bridge Experiment- Forces and Stresses Lab Lessons 6 and 7 Foam Bridge Experiment- Forces and Stresses Lab 1. Background All industrial and building materials undergo forces that they must withstand to function as designed. Concrete is strong under

More information

MD5-26 Stacking Blocks Pages 115 116

MD5-26 Stacking Blocks Pages 115 116 MD5-26 Stacking Blocks Pages 115 116 STANDARDS 5.MD.C.4 Goals Students will find the number of cubes in a rectangular stack and develop the formula length width height for the number of cubes in a stack.

More information

Science Grade 05 Unit 04 Exemplar Lesson 01: Types of Energy

Science Grade 05 Unit 04 Exemplar Lesson 01: Types of Energy Grade 05 Unit 04 Exemplar Lesson 01: Types of Energy This lesson is one approach to teaching the State Standards associated with this unit. Districts are encouraged to customize this lesson by supplementing

More information

[4] SA1.2 The student demonstrates an understanding of the processes of science by observing,

[4] SA1.2 The student demonstrates an understanding of the processes of science by observing, Frost Depth Levels Overview: In this lesson, students explore the active layer above permafrost and begin a long-term investigation of frost depth. (NOTE: This lesson requires a frost tube in your community.

More information

Force and Motion: Ramp It Up

Force and Motion: Ramp It Up Force and Motion: Grade Level: 4-5 Time: 3 class periods By: Carrie D. Perry (Bedford County Public Schools) Overview After watching an engaging video on Olympic alpine skiers, students then participate

More information

Music Makers. paper clips

Music Makers. paper clips Fifth Grade Science Design Brief Music Makers Background: We know that sound is a form of energy produced and transmitted by vibrating matter and that pitch is determined by the frequency of a vibrating

More information

The University of Texas at Austin. Gravity and Orbits

The University of Texas at Austin. Gravity and Orbits UTeach Outreach The University of Texas at Austin Gravity and Orbits Time of Lesson: 60-75 minutes Content Standards Addressed in Lesson: TEKS6.11B understand that gravity is the force that governs the

More information

Explore 3: Crash Test Dummies

Explore 3: Crash Test Dummies Explore : Crash Test Dummies Type of Lesson: Learning Goal & Instructiona l Objectives Content with Process: Focus on constructing knowledge through active learning. Students investigate Newton s first

More information

I. ASSESSSMENT TASK OVERVIEW & PURPOSE:

I. ASSESSSMENT TASK OVERVIEW & PURPOSE: Performance Based Learning and Assessment Task Surface Area of Boxes I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In the Surface Area of Boxes activity, students will first discuss what surface area is and

More information

(D) record and organize data using pictures, numbers, and words; and

(D) record and organize data using pictures, numbers, and words; and How strong is the magnet? Source: Zembal Saul, Carla, Katherine L. McNeill, and Kimber Hershberger. What's Your Evidence?: Engaging K 5 Students in Constructing Explanations in Science. Boston: Pearson,

More information

7.4A/7.4B STUDENT ACTIVITY #1

7.4A/7.4B STUDENT ACTIVITY #1 7.4A/7.4B STUDENT ACTIVITY #1 Write a formula that could be used to find the radius of a circle, r, given the circumference of the circle, C. The formula in the Grade 7 Mathematics Chart that relates the

More information

Build a Bridge. Based on the book

Build a Bridge. Based on the book Fifth Grade English Design Brief Build a Bridge Based on the book Bridge to Terabithia by Katherine Paterson Background: You have just completed reading the book Bridge to Terabithia. Jess has asked for

More information

How to Build Your Own CornHole Game

How to Build Your Own CornHole Game How to Build Your Own CornHole Game DIMENSIONS Here is a diagram with the basic measurements for the Cornhole board game. SUPPLIES 1/2 thick sheet of plywood one 4 x4 or two 2 x4 s 8 long 2 4 s (4) 4 1/2

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

Light Energy. Countdown: Experiment 1: 1 tomato paste can (without top or bottom) table lamp white poster board, 7 x 9

Light Energy. Countdown: Experiment 1: 1 tomato paste can (without top or bottom) table lamp white poster board, 7 x 9 Light Energy Grade Level: 5 Time Required: 1-2 class periods Suggested TEKS: Science - 5.8 Suggested SCANS: Information. Acquires and evaluates information. National Science and Math Standards Science

More information

Lab for Deflection and Moment of Inertia

Lab for Deflection and Moment of Inertia Deflection and Moment of Inertia Subject Area(s) Associated Unit Lesson Title Physics Wind Effects on Model Building Lab for Deflection and Moment of Inertia Grade Level (11-12) Part # 2 of 3 Lesson #

More information

Air Pressure Pressure in the real world

Air Pressure Pressure in the real world Air Pressure Pressure in the real world OBJECTIVES Students will conduct experiments and collect data. Students will learn how air pressure affects real-world phenomena. Students will gain an understanding

More information

Introduction. The Contest. The challenge can be stated quite simply.

Introduction. The Contest. The challenge can be stated quite simply. Introduction As you may be aware, the year s TechnoChallenge includes a popsicle stick bridge building contest. This is a fun and easy event to run in your classroom, and it connects to well to the science

More information

Provided by TryEngineering - www.tryengineering.org

Provided by TryEngineering - www.tryengineering.org Provided by TryEngineering - L e s s o n F o c u s Lesson focuses on sports engineering and advanced materials development. Students work in a team to devise a racquet out of everyday materials that could

More information

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of Newton s Second Law Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart will be developed

More information

Suggested Activities Processes that Shape the Earth: Earth s Structure and Plate Tectonics

Suggested Activities Processes that Shape the Earth: Earth s Structure and Plate Tectonics Suggested Activities Processes that Shape the Earth: Earth s Structure and Plate Tectonics From Harcourt Science Teacher Ed. Source (Grade Level) Title Pages Concept Harcourt Science (4) The Layers of

More information

How to Access Bentley MicroStation PowerDraft Step by Step Instructions:

How to Access Bentley MicroStation PowerDraft Step by Step Instructions: How to Access Bentley MicroStation PowerDraft Step by Step Instructions: Insert Bentley DVD into the computers D drive. Go to my computer and then right click on the D Drive and select OPEN. You will see

More information

Volume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms.

Volume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms. Volume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game

More information

Bar Graphs with Intervals Grade Three

Bar Graphs with Intervals Grade Three Bar Graphs with Intervals Grade Three Ohio Standards Connection Data Analysis and Probability Benchmark D Read, interpret and construct graphs in which icons represent more than a single unit or intervals

More information

2016 Bridge Competition Guidelines Grades 9 and 10

2016 Bridge Competition Guidelines Grades 9 and 10 2016 Bridge Competition Guidelines Grades 9 and 10 The TRAnsportation and Civil Engineering (TRAC) Program THE PURPOSE OF TRAC: The TRAC program is a new and inventive way of introducing students to the

More information

2016 MDOT Bridge Competition Guidelines Grades 11 and 12

2016 MDOT Bridge Competition Guidelines Grades 11 and 12 2016 MDOT Bridge Competition Guidelines Grades 11 and 12 The Transportation and Civil Engineering (TRAC) Program THE PURPOSE OF TRAC: The TRAC program is an inventive way of introducing students to the

More information

Name Class Date Laboratory Investigation 4B Chapter 4: Cell Structure

Name Class Date Laboratory Investigation 4B Chapter 4: Cell Structure Name Class Date Laboratory Investigation 4B Chapter 4: Cell Structure The Microscope: A Tool of the Scientist You may refer to pages 66-67, 72-73 in your textbook for a general discussion of microscopes.

More information

How to Build a Strawberry Pyramid Watch the how-to video here.

How to Build a Strawberry Pyramid Watch the how-to video here. How to Build a Strawberry Pyramid Watch the how-to video here. This simple, elegant strawberry pyramid can be built by a single person in just one afternoon. Cut the lumber yourself if you have some woodworking

More information

BUILDINGA 1/10 SCALE FLATBED TRAILER

BUILDINGA 1/10 SCALE FLATBED TRAILER VOLUME 1, ISSUE 1 BUILDINGA 1/10 SCALE FLATBED TRAILER BUILT, DESIGNED & WRITTEN BY NATHAN MYERS MATERIALS: FEATURES: While the design was kept simple to allow anyone to be able to build their own trailer,

More information

Teaching Time: One 25-minute period. Lesson Summary Students use iron filings to observe the 2 and 3- D field lines around a magnet.

Teaching Time: One 25-minute period. Lesson Summary Students use iron filings to observe the 2 and 3- D field lines around a magnet. Lesson Summary Students use iron filings to observe the 2 and 3- D field lines around a magnet. Prior Knowledge & Skills Completed the lesson: The Earth as a Magnet: Exploring Interactions in Geospace

More information

Buoyancy Boats Florida Sunshine State Science Standards: Objectives Engage: Explore:

Buoyancy Boats Florida Sunshine State Science Standards: Objectives Engage: Explore: Buoyancy Boats Florida Sunshine State Science Standards: SC.C.2.3.1 The student knows that many forces act at a distance. SC.C.2.3.2 The student knows common contact forces. SC.C.2.3.3 The student knows

More information

Science Grade 06 Unit 05 Exemplar Lesson 01: Advantages and Disadvantages of Energy Resources

Science Grade 06 Unit 05 Exemplar Lesson 01: Advantages and Disadvantages of Energy Resources Grade 06 Unit 05 Exemplar Lesson 01: Advantages and Disadvantages of Energy Resources This lesson is one approach to teaching the State Standards associated with this unit. Districts are encouraged to

More information

TRAC Cable-stayed Bridge Competition Guidelines Grades 11 and 12 2012-2013

TRAC Cable-stayed Bridge Competition Guidelines Grades 11 and 12 2012-2013 TRAC Cable-stayed Bridge Competition Guidelines Grades 11 and 12 2012-2013 The TRAnsportation and Civil Engineering (TRAC) Program THE PURPOSE OF TRAC: The TRAC program is a new and inventive way of introducing

More information

Conservation of Momentum Greg Kifer

Conservation of Momentum Greg Kifer SCIENCE EXPERIMENTS ON FILE Revised Edition 6.7-1 Conservation of Momentum Greg Kifer Topic Conservation of momentum Time 1 hour! Safety Please click on the safety icon to view the safety precautions.

More information

What is Energy? 1 45 minutes Energy and You: Energy Picnic Science, Physical Education Engage

What is Energy? 1 45 minutes Energy and You: Energy Picnic Science, Physical Education Engage Unit Grades K-3 Awareness Teacher Overview What is energy? Energy makes change; it does things for us. It moves cars along the road and boats over the water. It bakes a cake in the oven and keeps ice frozen

More information

Creating Graphs. Learning Objective-To create graphs that show data.

Creating Graphs. Learning Objective-To create graphs that show data. Creating Graphs Summary- Key Words- Students will be able to identify graphs, components of graphs, interpret graphs, and construct various types of graphs. Pictograph Bar Graph Circle Graph Background

More information

KITCHENS. Tip PAGE 1 FITTING YOUR KITCHEN GUIDE. How to mark out a kitchen. Tools required for installing a kitchen STEP ONE STEP TWO STEP THREE

KITCHENS. Tip PAGE 1 FITTING YOUR KITCHEN GUIDE. How to mark out a kitchen. Tools required for installing a kitchen STEP ONE STEP TWO STEP THREE FITTING YOUR KITCHEN GUIDE How to mark out a kitchen PAGE 1 Before starting on the installation, measure 870mm from the lowest point of the floor and mark a datum line around the room to indicate where

More information

Name Partners Date. Energy Diagrams I

Name Partners Date. Energy Diagrams I Name Partners Date Visual Quantum Mechanics The Next Generation Energy Diagrams I Goal Changes in energy are a good way to describe an object s motion. Here you will construct energy diagrams for a toy

More information

OA3-10 Patterns in Addition Tables

OA3-10 Patterns in Addition Tables OA3-10 Patterns in Addition Tables Pages 60 63 Standards: 3.OA.D.9 Goals: Students will identify and describe various patterns in addition tables. Prior Knowledge Required: Can add two numbers within 20

More information

Interaction at a Distance

Interaction at a Distance Interaction at a Distance Lesson Overview: Students come in contact with and use magnets every day. They often don t consider that there are different types of magnets and that they are made for different

More information

Exploring Animal Environments

Exploring Animal Environments Third Grade Science Design Brief Exploring Animal Environments forest - desert - grassland rainforest - marshland - swamp - pond - river - ocean - stream Background: In our studies of science, we have

More information

If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ

If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces

More information

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 5 THE SPRING CONSTANT

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 5 THE SPRING CONSTANT GENERAL SCIENCE LABORATORY 1110L Lab Experiment 5 THE SPRING CONSTANT Objective: To determine the spring constant of a spiral spring Apparatus: Pendulum clamp, aluminum pole, large clamp, assorted masses,

More information

Unit: Charge Differentiated Task Light it Up!

Unit: Charge Differentiated Task Light it Up! The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

Perpetual Flow Diagram

Perpetual Flow Diagram Perpetual Flow Diagram 12 Introductory Exercise Using "Perpetual Flow" to Construct Good Questioning Introduction The importance of good questioning techniques in teaching cannot be undervalued. Effective

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

High Flying Balloons

High Flying Balloons Second Grade Science Design Brief High Flying Balloons Background: In our study of science we have been investigating the three stages of matter: solids, liquids and gases. You will use your knowledge

More information

Radius Compensation G40, G41, & G42 (cutter radius compensation for machining centers, tool nose radius compensation for turning centers)

Radius Compensation G40, G41, & G42 (cutter radius compensation for machining centers, tool nose radius compensation for turning centers) Radius Compensation G40, G41, & G42 (cutter radius compensation for machining centers, tool nose radius compensation for turning centers) These features are commonly well covered in most basic CNC courses.

More information

The Force Table Vector Addition and Resolution

The Force Table Vector Addition and Resolution Name School Date The Force Table Vector Addition and Resolution Vectors? I don't have any vectors, I'm just a kid. From Flight of the Navigator Explore the Apparatus/Theory We ll use the Force Table Apparatus

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

Law of Conservation of Matter

Law of Conservation of Matter Law of onservation of Matter Type of Lesson: ontent with Process: Focus on constructing knowledge though active learning. IP ontent TEKS: 8 Investigate and identify the law of conservation of mass. Learning

More information

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003 Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

More information

30 minutes in class, 2 hours to make the first time

30 minutes in class, 2 hours to make the first time Asking questions and defining problems Developing and using models Planning and carrying out investigations 30 minutes in class, 2 hours to make the first time 3 12 x 24 x ¾ inch plywood boards 1 x 12

More information

2015 MDOT Bridge Competition Guidelines Grades 9 and 10

2015 MDOT Bridge Competition Guidelines Grades 9 and 10 2015 MDOT Bridge Competition Guidelines Grades 9 and 10 The TRAnsportation and Civil Engineering (TRAC) Program THE PURPOSE OF TRAC: The TRAC program is an inventive way of introducing students to the

More information

Lab 1: The metric system measurement of length and weight

Lab 1: The metric system measurement of length and weight Lab 1: The metric system measurement of length and weight Introduction The scientific community and the majority of nations throughout the world use the metric system to record quantities such as length,

More information

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

More information

-To discuss the technical and social implications of the design and construction of bridges

-To discuss the technical and social implications of the design and construction of bridges bridge A structure spanning and providing passage over a gap or barrier Building Bridges Unit 5 Project Student Objectives -To discuss the technical and social implications of the design and construction

More information

North Carolina FFA Association Agricultural Mechanics Career Development Event

North Carolina FFA Association Agricultural Mechanics Career Development Event North Carolina FFA Association Three (3) of the following Agricultural Mechanics Performance Skills will be selected for the state competition. North Carolina FFA Association Agricultural Mechanics Performance

More information

Chapter 4: The Concept of Area

Chapter 4: The Concept of Area Chapter 4: The Concept of Area Defining Area The area of a shape or object can be defined in everyday words as the amount of stuff needed to cover the shape. Common uses of the concept of area are finding

More information

Barbie Bungee Jump. High School Physics

Barbie Bungee Jump. High School Physics Barbie Bungee Jump High School Physics Kris Bertelsen Augusta Middle/High School Concept: The change in energy storage systems during a bungee jump activity demonstrates how energy can be transferred from

More information

Name Date Class. As you read about the properties of air, fill in the detail boxes that explain the main idea in the graphic organizer below.

Name Date Class. As you read about the properties of air, fill in the detail boxes that explain the main idea in the graphic organizer below. Name Date Class The Atmosphere Guided Reading and Study Air Pressure This section describes several properties of air, including density and air pressure. The section also explains how air pressure is

More information

Micro. Pitts Special for the RFFS-100 by Chris O Riley

Micro. Pitts Special for the RFFS-100 by Chris O Riley Micro Pitts Special for the RFFS-100 by Chris O Riley F1 F2 F3 F4 1 2 3 4 All wood 1/32 inch sheet unless otherwise stated. F1 F2 F3 F4 Small balsa blocks for LG reinforcement Small balsa blocks for LG

More information

www.cornholesupplies.com

www.cornholesupplies.com www.cornholesupplies.com How To Build Regulation Cornhole Boards Home of the Original Cornhole Bags and Boards Supply List: 1-4' X 8' Piece of Plywood (pre sanded) 4-2" X 4" X 8' Studs (2 by 4s make sure

More information

Open-Ended Problem-Solving Projections

Open-Ended Problem-Solving Projections MATHEMATICS Open-Ended Problem-Solving Projections Organized by TEKS Categories TEKSING TOWARD STAAR 2014 GRADE 7 PROJECTION MASTERS for PROBLEM-SOLVING OVERVIEW The Projection Masters for Problem-Solving

More information

Magnetic Fields and Their Effects

Magnetic Fields and Their Effects Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations

Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations Math Buddies -Grade 4 13-1 Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations Goal: Identify congruent and noncongruent figures Recognize the congruence of plane

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

Spring Scale Engineering

Spring Scale Engineering Spring Scale Engineering Provided by TryEngineering - Lesson Focus Lesson focuses on the engineering behind building a spring scale and its use as a measuring device. Students work in teams to design,

More information

Title ID Number Sequence and Duration Age Level Essential Question Learning Objectives. Lead In

Title ID Number Sequence and Duration Age Level Essential Question Learning Objectives. Lead In Title ID Number Sequence and Duration Age Level Essential Question Learning Objectives Lesson Activity Barbie Bungee (75-80 minutes) MS-M-A1 Lead In (15-20 minutes) Activity (45-50 minutes) Closure (10

More information

Rockets: Taking Off! Racing Balloon

Rockets: Taking Off! Racing Balloon Rockets: Taking Off! For every action there is an equal and opposite reaction. Rockets and Balloons What happens when you blow up a balloon then let it go? Does the balloon move through the air? Did you

More information

Lab: Observing Osmosis in Gummi Bears

Lab: Observing Osmosis in Gummi Bears Name Period Date Points Lab: Observing Osmosis in Gummi Bears Haribo macht Kinder froh und Erwachsene ebenso! 1 Laboratory: Observing Osmosis in Gummy Bears (28 points) Purpose: To investigate the movement

More information

This Performance Standards include four major components. They are

This Performance Standards include four major components. They are Eighth Grade Science Curriculum Approved July 12, 2004 The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science at the eighth grade level.

More information

Circuits and Boolean Expressions

Circuits and Boolean Expressions Circuits and Boolean Expressions Provided by TryEngineering - Lesson Focus Boolean logic is essential to understanding computer architecture. It is also useful in program construction and Artificial Intelligence.

More information

K. D. FRAME ASSEMBLY FOR CLOSED STEEL STUD WALLS...Ins 10. FRAME INSTALLATION DETAILS FOR CLOSED STEEL STUD WALLS...Ins 11

K. D. FRAME ASSEMBLY FOR CLOSED STEEL STUD WALLS...Ins 10. FRAME INSTALLATION DETAILS FOR CLOSED STEEL STUD WALLS...Ins 11 K. D. FRAME ASSEMBLY FOR MASONRY WALLS...........................Ins 2 FRAME INSTALLATION DETAILS FOR MASONRY WALLS......................Ins 3 INSTALLING EXISTING MASONRY WALL ANCHORS IN FRAME..................Ins

More information

Experiment 7: Forces and Torques on Magnetic Dipoles

Experiment 7: Forces and Torques on Magnetic Dipoles MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics 8. Spring 5 OBJECTIVES Experiment 7: Forces and Torques on Magnetic Dipoles 1. To measure the magnetic fields due to a pair of current-carrying

More information

EXERCISE # 1.Metric Measurement & Scientific Notation

EXERCISE # 1.Metric Measurement & Scientific Notation EXERCISE # 1.Metric Measurement & Scientific Notation Student Learning Outcomes At the completion of this exercise, students will be able to learn: 1. How to use scientific notation 2. Discuss the importance

More information

TopSky DLG Installation Manual

TopSky DLG Installation Manual TopSky DLG Installation Manual Attention: Because after the compound materials solidify, there will be ammonia iris on the surface, which affect the bonding strength afterwards. Please polish with sandpaper

More information

How to Build a Poker Table

How to Build a Poker Table How to Build a Poker Table www.pokertablematerials.com 10-Person Poker Table- 96 x 48 These are step by step instructions for building a poker table. The table will measure 48" x 96" and have a 4" wide

More information

KNITTING MACHINE Quick Tips for Knitting Success

KNITTING MACHINE Quick Tips for Knitting Success Visit our website: www.nsiinnovations.com KNITTING MACHINE Quick Tips for Knitting Success Intended for Adult Use No. 7590-08 Addendum BEFORE YOU START: Before you start knitting, wind your yarn into an

More information

Sink or Float? DELTA SCIENCE READER Overview... 113 Before Reading... 114 Guide the Reading... 115 After Reading... 120

Sink or Float? DELTA SCIENCE READER Overview... 113 Before Reading... 114 Guide the Reading... 115 After Reading... 120 T ABLE OF CONTENTS ABOUT DELTA SCIENCE MODULES Program Introduction................... iii Teacher s Guide..................... iv Delta Science Readers............... vi Equipment and Materials Kit.........

More information

Unit 7: Normal Curves

Unit 7: Normal Curves Unit 7: Normal Curves Summary of Video Histograms of completely unrelated data often exhibit similar shapes. To focus on the overall shape of a distribution and to avoid being distracted by the irregularities

More information

Polymer Activity from the:

Polymer Activity from the: Polymer Activity from the: Grades: 6-8 Teachers may reproduce this activity for their use. Investigation Purpose: to discover the memory of at various temperatures Background: The potential energy stored

More information

Muscles and Bones. Lesson aim. Lesson objectives. Lesson Outcomes. Curriculum links. Suggested age group suitability.

Muscles and Bones. Lesson aim. Lesson objectives. Lesson Outcomes. Curriculum links. Suggested age group suitability. Muscles and Bones Lesson aim To familiarise students with the function of the skeleton and how muscles attached to the skeleton allow us to move. Lesson objectives Students will be expected to: Work effectively

More information

Perimeter, Area and Volume What Do Units Tell You About What Is Being Measured? Overview

Perimeter, Area and Volume What Do Units Tell You About What Is Being Measured? Overview Perimeter, Area and Volume What Do Units Tell You About What Is Being Measured? Overview Summary of Lessons: This set of lessons was designed to develop conceptual understanding of the unique attributes

More information

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

More information

TABLE TENNIS TABLE TENNIS

TABLE TENNIS TABLE TENNIS 1 The Official Special Olympics Sports Rules for Table Tennis shall govern all Special Olympics competitions. As an international sports program, Special Olympics has created these rules based upon International

More information

DIY CABINET REFACING INSTALLATION GUIDE

DIY CABINET REFACING INSTALLATION GUIDE DIY CABINET REFACING INSTALLATION GUIDE CABINET REFACING INSTALLATION Are you ready to reface your outdated cabinets? This guide will show you how to install your new Facelifters Cabinet Refacing Products

More information

Installing Shutters using Fasteners

Installing Shutters using Fasteners Installing Shutters using Fasteners Electric drill, ¼" drill bit, 3 8" drill bit, hammer, and shutter fasteners. (¼" carbide drill bit is required for stucco, hardboard, fiber cement, brick or masonry.)

More information

Integrated Physics & Chemistry Supply List (2010)

Integrated Physics & Chemistry Supply List (2010) Integrated Physics & Chemistry Supply List (2010) Integrated Physics and Chemistry is a physical science course covering basic concepts found in chemistry and physics. Topics included in the study are

More information

Getting to Know Newton

Getting to Know Newton Introduction Overview This first program introduces students to the idea of motion, and the forces that start the movement of an object. Students are introduced to Isaac Newton who is best known for the

More information

FIFTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES

FIFTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES FIFTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES PLATE TECTONIC CYCLE OVERVIEW OF FIFTH GRADE VOLCANOES WEEK 1. PRE: Exploring the rocks produced by volcanoes. LAB: Comparing igneous rocks.

More information

Experiment 2: Conservation of Momentum

Experiment 2: Conservation of Momentum Experiment 2: Conservation of Momentum Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Use the equations

More information

RETURN TO THE MOON. Lesson Plan

RETURN TO THE MOON. Lesson Plan RETURN TO THE MOON Lesson Plan INSTRUCTIONS FOR TEACHERS Grade Level: 9-12 Curriculum Links: Earth and Space (SNC 1D: D2.1, D2.2, D2.3, D2.4) Group Size: Groups of 2-4 students Preparation time: 1 hour

More information

The entire document shall be read and understood before proceeding with a test. ISTA 3B 2013 - Page 1 of 35

The entire document shall be read and understood before proceeding with a test. ISTA 3B 2013 - Page 1 of 35 Packaged-Products for Less-Than-Truckload (LTL) Shipment ISTA 3 Series General Simulation Performance Test PROCEDURE VERSION DATE Last TECHNICAL Change: NOVEMBER 2012 Last EDITORIAL Change: JANUARY 2013

More information

How does your heart pump blood in one direction?

How does your heart pump blood in one direction? Have a Heart How does your heart pump blood in one direction? Description How does your heart move blood in one direction, around in a loop? In this activity, you will make a model of one of the heart

More information

0.75 75% ! 3 40% 0.65 65% Percent Cards. This problem gives you the chance to: relate fractions, decimals and percents

0.75 75% ! 3 40% 0.65 65% Percent Cards. This problem gives you the chance to: relate fractions, decimals and percents Percent Cards This problem gives you the chance to: relate fractions, decimals and percents Mrs. Lopez makes sets of cards for her math class. All the cards in a set have the same value. Set A 3 4 0.75

More information

Paper Airplanes. Linsey Fordyce. Fall 2014. TEFB 413 Section # 504

Paper Airplanes. Linsey Fordyce. Fall 2014. TEFB 413 Section # 504 Model- Based Inquiry Learning Lesson Plan Paper Airplanes Linsey Fordyce Fall 2014 TEFB 413 Section # 504 1. BACKGROUND INFORMATION OF LESSON LESSON OBJECTIVES Students will investigate through model-

More information