Nasdaq Iceland Bond Indices 01 April 2015

Size: px
Start display at page:

Download "Nasdaq Iceland Bond Indices 01 April 2015"

Transcription

1 Nasdaq Iceland Bond Indces 01 Aprl Fxed duraton Indces Introducton Nasdaq Iceland (the Exchange) began calculatng ts current bond ndces n the begnnng of They were a response to recent changes n Treasury bond ssuance as well as restructurng by the Housng Fnancng Fund (HFF) n the summer of These changes resulted n many of the largest and most actve bond seres beng excluded from the Exchange s prevous ndces, whch were desgned for zero-coupon bonds. Summary Lke ther predecessors, the bond ndces have a fxed duraton, whle the most sgnfcant changes from the prevous method are prncpally the followng: () () () The ndces cover a larger porton of the bond market than dd the earler ndces. In addton to zero-coupon bonds, bonds wth equal nstalments, annutes and coupon bonds are also elgble for ncluson n the ndces. Both bonds lsted at clean prce and drty prce wll be admssble. The changes mean that HFF bonds and all benchmark Treasury bond classes can be consdered for ncluson n the the Exchange s ndces. There can now be more than two bonds n each ndex at any pont n tme, whle ths was prevously lmted to two bonds at a tme. As a result of these changes, the bond ndces wll reflect a larger porton of the market, reducng the lkelhood of extraordnary prce movements n one bond class substantally affectng the ndces. The defnton of the new ndces s broader than that of the prevous ones. The former ndces were lmted to ndvdual bond classes, such as T-bonds and Housng Bonds, whereas the current ndces contan government-guaranteed, ndexed and non-ndexed bonds of varyng maturtes. The ndces wll therefore not be as senstve as the prevous ndces to the ssuers' choce of the type of bonds they

2 ssue,.e. ther choce between the types of payment (such as zero-coupon, annuty or coupon bonds), on the one hand, and between ndexed and non-ndexed classes, on the other. Indces The followng ndces are calculated for government-guaranteed bonds and blls: Name Code Duraton ISIN OMXI 10-year ndexed OMXI10YI 10years IS OMXI 10-year non-ndexed OMXI10YNI 10 years IS OMXI 5-year ndexed OMXI5YI 5 years IS OMXI 5-year non-ndexed OMXI5YNI 5 years IS OMXI 1-year non-ndexed OMXI1YNI 1 year IS OMXI 3-month non-ndexed OMXI3MNI 3 months IS The ndces have been calculated snce n the begnnng of 2005 apart from OMXI5YI, whch was ntroduced n December 2005, and OMXI10YNI, whch was ntroduced n February Hstorcal seres have been constructed extendng back to the begnnng of 1998 except the seres for the OMXI10YNI ndex whch only extends back to the begnnng of The 1-year ndex wll nclude both bonds and blls to attan the one-year duraton. Due to shortage of government-guaranteed short-term securtes, the Exchange decded to use three-month REIBOR nterest rates on the nterbank market n ISK for nterpolaton of OMXI3MNI from and ncludng March 1 untl and ncludng June In February 2011, followng the Natonal Debt Management s frst ever ssuance of a 20-year nomnal treasury bond, the Exchange started calculatng a new 10-year non-ndexed bond ndex (OMXI10YNI). Values for OMXI10YNI were calculated back to the begnnng of 2011 but the ndex had varable duraton untl the new 20-year bond became elgble n the ndex on February 1 st. 2(9)

3 Elgble securtes The general rule for the earler ndces, of consderng benchmark government-guaranteed bonds, wll generally contnue to apply. Benchmark bond classes and blls are generally elgble for ncluson n the ndces on the fourth day of tradng. In constructng hstorcal ndex seres, pre-datng the tme of formal benchmark classes of the Treasury and HFF, the marketablty of bonds, manly as reflected by tradng volume, s taken nto consderaton. If the benchmark system s elmnated n the future, the Exchange wll announce ts response specfcally; such a response wll am at havng "benchmark-equvalent" classes n the ndces and reflect the (probable) tradng volume. The Exchange also reserves the rg to respond to other specal crcumstances and wll gve specfc notce of any actons n such cases. The frst step n ths drecton was mplct n the calculaton of hstorcal ndex values at the ndces ntroducton, snce Housng Authorty Bonds and Housng Bonds were excluded after 1 July Ths acton was justfed on the grounds that these were bonds whch were n the process of dsappearng from the market, and ther prce formaton was not nearly as effcent as prevously. Tradng n these bonds had fallen sharply and agreements wth market makers provded only for bds and not offers. In Aprl 2015 the Exchange started to use prce nformaton for Treasury blls from the Government Debt Management s auctons n addton to prces from the secondary market. Ths was deemed necessary because trades n Treasury blls had become sporadc and therefore nsuffcent prce nformaton was avalable on the secondary market for use n the ndces. Aucton prces are only used for Treasury blls and thus all prce nformaton for other bonds comes solely from the secondary market. Apart from ths, the ndces are revewed monthly n accordance wth the followng rules, whch nclude a number of aspects borrowed from the rules of Oslo Børs. 3(9)

4 1. Bonds can be consdered for ncluson n an ndex f ther duraton falls wthn the perod 1 : [duraton of the ndex * (1 + duraton of the ndex), duraton of the ndex * (1 + duraton of the ndex)] For example: For the 1Y ndex, bonds wth a duraton of 0 to 2 years are elgble For the 5Y ndex, bonds wth a duraton of 2 to 8 years are elgble, For the 10Y ndex, bonds wth a duraton of 4.5 to 15.5 years are elgble. The 3-month ndex devates slgly form ths rule. From the begnnng of 1998 untl 28th of February 2006 only government guaranteed blls wth a duraton under 1 year were elgble (nstead of 0.9 years had the rule above appled). As of June 1, 2006, ths rule contnues to apply but wth the addton that non-ndexed Treasury bonds wth a duraton of 1 year or lower are also elgble. Furthermore, at the same tme the rules were changed n order to ncrease the probablty that the ndex wll have a fxed duraton. The rules were changed n such a manner that f the stuaton arses that no elgble securty wth duraton above three months and less than or equal to one year exsts, then the government-guaranteed securty wth the shortest duraton among those wth duraton above one year wll be selected. Stll, securtes wth a duraton of more than two years do not qualfy. 2. Wherever possble, bonds of both longer and shorter duraton than that of the ndex should be chosen. Thus bonds outsde of the duraton ntervals ndcated above can be consdered f necessary to ensure that the ndex ncludes duratons both longer and shorter than the desgnated ndex duraton. 3. If bonds wth duratons on both sdes of the ndex duraton are not avalable, only one bond shall be chosen for the ndex,.e. the bond wth a duraton closest to the ndex 1 When determnng the elgblty of a bond, ts duraton s rounded to one decmal place. 4(9)

5 duraton. Only under such crcumstances s the ndex duraton varable and wll dffer from ts reference duraton. 4. Elgblty for ndces based on the duraton rules descrbed n steps 1 and 2 above s determned on the 20th of each month (or the frst tradng day followng f the 20th s not a tradng day). 2 The duraton of the bonds as of that date (based on closng yeld that day) s used as reference. Changes under these rules take effect as of the 1 st of the followng month. Please note that ths rule, however, does not prevent new benchmark classes from becomng elgble earler for the ndces, as t apples to classes whch had already been ssued on the last date of revew. As prevously mentoned, new benchmark classes become elgble on the fourth day of tradng. Calculaton of ndex wegs Calculaton of the weg of each bond n the ndex s done n two steps: () All bonds n the ndex wth a duraton less than the ndex duraton are placed n one group (portfolo 1) and all bonds exceedng the ndex duraton n another (portfolo 2). The wegs of bonds n each group s determned usng a normal dstrbuton, wth the mean equal to the ndex duraton and standard devaton equal to 0.25 * (1 + ndex duraton). In partcular, wegs of a bond n portfolo k (k = 1 or 2) s: where 1 F z (1) n k F z s the weg of bond F (.) s the cumulatve probablty functon for the afore-mentoned normal dstrbuton, 2 The rule descrbed n step 3 has an mmedate effect on the day all elgble bonds are on one sde of the ndex target duraton. 5(9)

6 z s the number of standard devatons (absolute value) the duraton of a bond s from the duraton of the ndex, and n k s the number of bonds n group k. () The wegs of the portfolos on each sde of the ndex duraton are determned n the followng manner: If dp 1 s the duraton of portfolo 1, dp 2 s the duraton of portfolo 2 and d ndex s the duraton of the ndex, the weg of portfolo 1 s: d ndex d p2 p1 (2) d d p1 p2 and the weg of portfolo 2 s (3) p2 1 p1 The wegh of bond n the ndex s thus w * (4) pk f the bond s n portfolo k (k = 1 or 2) The duraton of portfolo k s found usng the followng formula: n d pk d (5) 1 where d s the duraton of bond. 6(9)

7 Index calculaton The ndex value s calculated usng the followng formula: I t I P H 1 (6) n t t t wt 1 Pt 1 jt 1 where I t = the ndex value on day t, w t = the weg of bond n the ndex on day t, P t = the drty prce, or settlement prce, of bond on day t, j t-1 = an adjustment factor for nterest payments and nstalments. Ths s the amount of the cash flow (the sum of nstalments and nterest) on day t, H t = an adjustment factor reflectng the renvestment of called bonds (Housng Bonds). Ths s 0 except on the redempton date of called bonds, when the adjustment factor s gven a dfferent value f the yeld on date t dffers from the bond s nomnal yeld. Ths value depends upon the proporton of bonds called and the yeld on the call date (see below for more detals). All bonds are thus placed n the ndex formula on a comparable prce bass,.e. usng the drty prce for all of them, whch makes the prce n the formula dffer from the quoted market prce for both HFF bonds and some classes of Treasury bonds, where the quoted market prce s the clean prce. The adjustment factor j n the equaton denomnator results from the fact that on a cash flow ex-date, and holdng other thngs constant, the drty prce (settlement prce) falls by the amount of ths cash flow. Adjustment for Housng Bonds 7(9)

8 A specal adjustment s made to the calculaton of ndces ncludng Housng Bonds on the redempton date for called Housng Bonds. The reason for ths s that the redempton prce dffers from the market prce of the bonds f ther nomnal nterest rate dffers from the yeld on the date of redempton. Wthout ths adjustment the ndex ncludng such bonds would underestmate (overestmate) the change n value of the underlyng asset portfolo when the redempton prce s hgher (lower) than the market prce of the bond n queston. We can take an example where a% of the class concerned s redeemed on date t. Snce the nomnal nterest rate dffers from the bond s market yeld, the value of the called bonds s a% * (P t + b) and not P t (b > 0 f the nomnal nterest rate s lower than the market yeld and b < 0 f the nomnal nterest rate s hgher than the yeld). Ths makes the adjustment co-effcent H t a% * b (7) Index yeld calculaton The ndces yeld s calculated by consderng the weged cash flow of the underlyng bonds. The calculated yeld s only meant to ndcate the yeld level of the relevant segment of the fxed-ncome market and s therefore for nformatonal purposes only. The ndex values are not based on the calculated yeld. The weged average prce of the ndex s gven by: n 1 w t P, (8) t where P : the prce of bond at tme t, t w : the weg of bond at tme t, t : the weged average prce of the consttuents of ndex h at tme t. The ndex s yeld s obtaned through the followng formula: 8(9)

9 T n st 1 w CF st 1 y t s / 360, (9) where CF : the cash flow from bond at tme s, s y : the yeld of ndex h at tme t. The quantty s-t s calculated accordng to the 30/360 day count rule. 9(9)

Interest Rate Futures

Interest Rate Futures Interest Rate Futures Chapter 6 6.1 Day Count Conventons n the U.S. (Page 129) Treasury Bonds: Corporate Bonds: Money Market Instruments: Actual/Actual (n perod) 30/360 Actual/360 The day count conventon

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

Construction Rules for Morningstar Canada Target Dividend Index SM

Construction Rules for Morningstar Canada Target Dividend Index SM Constructon Rules for Mornngstar Canada Target Dvdend Index SM Mornngstar Methodology Paper October 2014 Verson 1.2 2014 Mornngstar, Inc. All rghts reserved. The nformaton n ths document s the property

More information

S&P/CITIC CHINA BOND INDICES

S&P/CITIC CHINA BOND INDICES October 2006 S&P/CITIC CHINA BOND INDICES INDEX METHODOLOGY Table of Contents Introducton 3 Hghlghts 3 Partnershp 4 Index Famly 4 Elgblty Crtera 5 S&P/CITIC Government Bond Index 5 S&P/CITIC Corporate

More information

Section 5.4 Annuities, Present Value, and Amortization

Section 5.4 Annuities, Present Value, and Amortization Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today

More information

DEFINING %COMPLETE IN MICROSOFT PROJECT

DEFINING %COMPLETE IN MICROSOFT PROJECT CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

Lecture 3: Force of Interest, Real Interest Rate, Annuity

Lecture 3: Force of Interest, Real Interest Rate, Annuity Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and

More information

Traffic-light a stress test for life insurance provisions

Traffic-light a stress test for life insurance provisions MEMORANDUM Date 006-09-7 Authors Bengt von Bahr, Göran Ronge Traffc-lght a stress test for lfe nsurance provsons Fnansnspetonen P.O. Box 6750 SE-113 85 Stocholm [Sveavägen 167] Tel +46 8 787 80 00 Fax

More information

7.5. Present Value of an Annuity. Investigate

7.5. Present Value of an Annuity. Investigate 7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on

More information

Level Annuities with Payments Less Frequent than Each Interest Period

Level Annuities with Payments Less Frequent than Each Interest Period Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Symoblc approach

More information

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression. Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook

More information

Calculation of Sampling Weights

Calculation of Sampling Weights Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

More information

The OC Curve of Attribute Acceptance Plans

The OC Curve of Attribute Acceptance Plans The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

More information

Hollinger Canadian Publishing Holdings Co. ( HCPH ) proceeding under the Companies Creditors Arrangement Act ( CCAA )

Hollinger Canadian Publishing Holdings Co. ( HCPH ) proceeding under the Companies Creditors Arrangement Act ( CCAA ) February 17, 2011 Andrew J. Hatnay ahatnay@kmlaw.ca Dear Sr/Madam: Re: Re: Hollnger Canadan Publshng Holdngs Co. ( HCPH ) proceedng under the Companes Credtors Arrangement Act ( CCAA ) Update on CCAA Proceedngs

More information

Using Series to Analyze Financial Situations: Present Value

Using Series to Analyze Financial Situations: Present Value 2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated

More information

Thursday, December 10, 2009 Noon - 1:50 pm Faraday 143

Thursday, December 10, 2009 Noon - 1:50 pm Faraday 143 1. ath 210 Fnte athematcs Chapter 5.2 and 4.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210

More information

Efficient Project Portfolio as a tool for Enterprise Risk Management

Efficient Project Portfolio as a tool for Enterprise Risk Management Effcent Proect Portfolo as a tool for Enterprse Rsk Management Valentn O. Nkonov Ural State Techncal Unversty Growth Traectory Consultng Company January 5, 27 Effcent Proect Portfolo as a tool for Enterprse

More information

Section 5.3 Annuities, Future Value, and Sinking Funds

Section 5.3 Annuities, Future Value, and Sinking Funds Secton 5.3 Annutes, Future Value, and Snkng Funds Ordnary Annutes A sequence of equal payments made at equal perods of tme s called an annuty. The tme between payments s the payment perod, and the tme

More information

Communication Networks II Contents

Communication Networks II Contents 8 / 1 -- Communcaton Networs II (Görg) -- www.comnets.un-bremen.de Communcaton Networs II Contents 1 Fundamentals of probablty theory 2 Traffc n communcaton networs 3 Stochastc & Marovan Processes (SP

More information

1. Math 210 Finite Mathematics

1. Math 210 Finite Mathematics 1. ath 210 Fnte athematcs Chapter 5.2 and 5.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210

More information

Time Value of Money Module

Time Value of Money Module Tme Value of Money Module O BJECTIVES After readng ths Module, you wll be able to: Understand smple nterest and compound nterest. 2 Compute and use the future value of a sngle sum. 3 Compute and use the

More information

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL

More information

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo

More information

10. (# 45, May 2001). At time t = 0, 1 is deposited into each of Fund X and Fund Y. Fund X accumulates at a force of interest

10. (# 45, May 2001). At time t = 0, 1 is deposited into each of Fund X and Fund Y. Fund X accumulates at a force of interest 1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual e ectve

More information

Simple Interest Loans (Section 5.1) :

Simple Interest Loans (Section 5.1) : Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part

More information

Bond futures. Bond futures contracts are futures contracts that allow investor to buy in the

Bond futures. Bond futures contracts are futures contracts that allow investor to buy in the Bond futures INRODUCION Bond futures contracts are futures contracts that allow nvestor to buy n the future a theoretcal government notonal bond at a gven prce at a specfc date n a gven quantty. Compared

More information

Guide to the Volatility Indices of Deutsche Börse

Guide to the Volatility Indices of Deutsche Börse Volatlty Indces of Deutsche Börse Verson.4 Volatlty Indces of Deutschen Börse Page General Informaton In order to ensure the hghest qualty of each of ts ndces, Deutsche Börse AG exercses the greatest care

More information

Inequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001.

Inequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001. Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.

More information

Chapter 7: Answers to Questions and Problems

Chapter 7: Answers to Questions and Problems 19. Based on the nformaton contaned n Table 7-3 of the text, the food and apparel ndustres are most compettve and therefore probably represent the best match for the expertse of these managers. Chapter

More information

To manage leave, meeting institutional requirements and treating individual staff members fairly and consistently.

To manage leave, meeting institutional requirements and treating individual staff members fairly and consistently. Corporate Polces & Procedures Human Resources - Document CPP216 Leave Management Frst Produced: Current Verson: Past Revsons: Revew Cycle: Apples From: 09/09/09 26/10/12 09/09/09 3 years Immedately Authorsaton:

More information

JPMorgan Commodity Target Volatility Index Series

JPMorgan Commodity Target Volatility Index Series JPMorgan Commodty Target Volatlty Index Seres Index Rules November 2010 All Rghts Reserved 1. Ths Part A: General Rules 1.1 Introducton PART A General Rules Ths Part A: General Rules sets out a general

More information

The Current Employment Statistics (CES) survey,

The Current Employment Statistics (CES) survey, Busness Brths and Deaths Impact of busness brths and deaths n the payroll survey The CES probablty-based sample redesgn accounts for most busness brth employment through the mputaton of busness deaths,

More information

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt. Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces

More information

Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money

Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money Ch. 6 - The Tme Value of Money Tme Value of Money The Interest Rate Smple Interest Compound Interest Amortzng a Loan FIN21- Ahmed Y, Dasht TIME VALUE OF MONEY OR DISCOUNTED CASH FLOW ANALYSIS Very Important

More information

Formula of Total Probability, Bayes Rule, and Applications

Formula of Total Probability, Bayes Rule, and Applications 1 Formula of Total Probablty, Bayes Rule, and Applcatons Recall that for any event A, the par of events A and A has an ntersecton that s empty, whereas the unon A A represents the total populaton of nterest.

More information

1. Measuring association using correlation and regression

1. Measuring association using correlation and regression How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a

More information

Interest Rate Forwards and Swaps

Interest Rate Forwards and Swaps Interest Rate Forwards and Swaps Forward rate agreement (FRA) mxn FRA = agreement that fxes desgnated nterest rate coverng a perod of (n-m) months, startng n m months: Example: Depostor wants to fx rate

More information

FINANCIAL MATHEMATICS

FINANCIAL MATHEMATICS 3 LESSON FINANCIAL MATHEMATICS Annutes What s an annuty? The term annuty s used n fnancal mathematcs to refer to any termnatng sequence of regular fxed payments over a specfed perod of tme. Loans are usually

More information

A) 3.1 B) 3.3 C) 3.5 D) 3.7 E) 3.9 Solution.

A) 3.1 B) 3.3 C) 3.5 D) 3.7 E) 3.9 Solution. ACTS 408 Instructor: Natala A. Humphreys SOLUTION TO HOMEWOR 4 Secton 7: Annutes whose payments follow a geometrc progresson. Secton 8: Annutes whose payments follow an arthmetc progresson. Problem Suppose

More information

Small pots lump sum payment instruction

Small pots lump sum payment instruction For customers Small pots lump sum payment nstructon Please read these notes before completng ths nstructon About ths nstructon Use ths nstructon f you re an ndvdual wth Aegon Retrement Choces Self Invested

More information

LIFETIME INCOME OPTIONS

LIFETIME INCOME OPTIONS LIFETIME INCOME OPTIONS May 2011 by: Marca S. Wagner, Esq. The Wagner Law Group A Professonal Corporaton 99 Summer Street, 13 th Floor Boston, MA 02110 Tel: (617) 357-5200 Fax: (617) 357-5250 www.ersa-lawyers.com

More information

In our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount owed is. P (1 + i) A

In our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount owed is. P (1 + i) A Amortzed loans: Suppose you borrow P dollars, e.g., P = 100, 000 for a house wth a 30 year mortgage wth an nterest rate of 8.25% (compounded monthly). In ths type of loan you make equal payments of A dollars

More information

Course outline. Financial Time Series Analysis. Overview. Data analysis. Predictive signal. Trading strategy

Course outline. Financial Time Series Analysis. Overview. Data analysis. Predictive signal. Trading strategy Fnancal Tme Seres Analyss Patrck McSharry patrck@mcsharry.net www.mcsharry.net Trnty Term 2014 Mathematcal Insttute Unversty of Oxford Course outlne 1. Data analyss, probablty, correlatons, vsualsaton

More information

Forecasting the Direction and Strength of Stock Market Movement

Forecasting the Direction and Strength of Stock Market Movement Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye cjngwe@stanford.edu mchen5@stanford.edu nanye@stanford.edu Abstract - Stock market s one of the most complcated systems

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

Multiple discount and forward curves

Multiple discount and forward curves Multple dscount and forward curves TopQuants presentaton 21 ovember 2012 Ton Broekhuzen, Head Market Rsk and Basel coordnator, IBC Ths presentaton reflects personal vews and not necessarly the vews of

More information

GS $ High Yield Index GS $ HYTop Index. Rules and Methodology

GS $ High Yield Index GS $ HYTop Index. Rules and Methodology Goldman Sachs Global Credt Strategy Credt Indces GS $ Hgh Yeld Index GS $ HYTop Index Rules and Methodology Global Credt Strategy gs-cr-ndces@ny.emal.gs.com Important dsclosures appear at the back of ths

More information

Nordea G10 Alpha Carry Index

Nordea G10 Alpha Carry Index Nordea G10 Alpha Carry Index Index Rules v1.1 Verson as of 10/10/2013 1 (6) Page 1 Index Descrpton The G10 Alpha Carry Index, the Index, follows the development of a rule based strategy whch nvests and

More information

TASE Trading Guide. Regulations to The Third Part of the Rules

TASE Trading Guide. Regulations to The Third Part of the Rules TASE Tradng Gude Regulatons to The Thrd Part of the Rules Ths s not an offcal translaton and has no bndng force. Whlst reasonable care and skll have been exercsed n the preparaton hereof, no translaton

More information

Joe Pimbley, unpublished, 2005. Yield Curve Calculations

Joe Pimbley, unpublished, 2005. Yield Curve Calculations Joe Pmbley, unpublshed, 005. Yeld Curve Calculatons Background: Everythng s dscount factors Yeld curve calculatons nclude valuaton of forward rate agreements (FRAs), swaps, nterest rate optons, and forward

More information

8.4. Annuities: Future Value. INVESTIGATE the Math. 504 8.4 Annuities: Future Value

8.4. Annuities: Future Value. INVESTIGATE the Math. 504 8.4 Annuities: Future Value 8. Annutes: Future Value YOU WILL NEED graphng calculator spreadsheet software GOAL Determne the future value of an annuty earnng compound nterest. INVESTIGATE the Math Chrstne decdes to nvest $000 at

More information

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange

More information

3. Present value of Annuity Problems

3. Present value of Annuity Problems Mathematcs of Fnance The formulae 1. A = P(1 +.n) smple nterest 2. A = P(1 + ) n compound nterest formula 3. A = P(1-.n) deprecaton straght lne 4. A = P(1 ) n compound decrease dmshng balance 5. P = -

More information

Mathematics of Finance

Mathematics of Finance CHAPTER 5 Mathematcs of Fnance 5.1 Smple and Compound Interest 5.2 Future Value of an Annuty 5.3 Present Value of an Annuty; Amortzaton Revew Exercses Extended Applcaton: Tme, Money, and Polynomals Buyng

More information

Question 2: What is the variance and standard deviation of a dataset?

Question 2: What is the variance and standard deviation of a dataset? Queston 2: What s the varance and standard devaton of a dataset? The varance of the data uses all of the data to compute a measure of the spread n the data. The varance may be computed for a sample of

More information

MAPP. MERIS level 3 cloud and water vapour products. Issue: 1. Revision: 0. Date: 9.12.1998. Function Name Organisation Signature Date

MAPP. MERIS level 3 cloud and water vapour products. Issue: 1. Revision: 0. Date: 9.12.1998. Function Name Organisation Signature Date Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPP-ATBD-ClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller

More information

SIMPLE LINEAR CORRELATION

SIMPLE LINEAR CORRELATION SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.

More information

Texas Instruments 30X IIS Calculator

Texas Instruments 30X IIS Calculator Texas Instruments 30X IIS Calculator Keystrokes for the TI-30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the

More information

What is Candidate Sampling

What is Candidate Sampling What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

More information

10.2 Future Value and Present Value of an Ordinary Simple Annuity

10.2 Future Value and Present Value of an Ordinary Simple Annuity 348 Chapter 10 Annutes 10.2 Future Value and Present Value of an Ordnary Smple Annuty In compound nterest, 'n' s the number of compoundng perods durng the term. In an ordnary smple annuty, payments are

More information

Documentation about calculation methods used for the electricity supply price index (SPIN 35.1),

Documentation about calculation methods used for the electricity supply price index (SPIN 35.1), STATISTICS SWEDEN Documentaton (6) ES/PR-S 0-- artn Kullendorff arcus rdén Documentaton about calculaton methods used for the electrct suppl prce ndex (SPIN 35.), home sales (HPI) The ndex fgure for electrct

More information

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy 4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.

More information

YIELD CURVE FITTING 2.0 Constructing Bond and Money Market Yield Curves using Cubic B-Spline and Natural Cubic Spline Methodology.

YIELD CURVE FITTING 2.0 Constructing Bond and Money Market Yield Curves using Cubic B-Spline and Natural Cubic Spline Methodology. YIELD CURVE FITTING 2.0 Constructng Bond and Money Market Yeld Curves usng Cubc B-Splne and Natural Cubc Splne Methodology Users Manual YIELD CURVE FITTING 2.0 Users Manual Authors: Zhuosh Lu, Moorad Choudhry

More information

Analysis of Premium Liabilities for Australian Lines of Business

Analysis of Premium Liabilities for Australian Lines of Business Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton

More information

Mathematics of Finance

Mathematics of Finance 5 Mathematcs of Fnance 5.1 Smple and Compound Interest 5.2 Future Value of an Annuty 5.3 Present Value of an Annuty;Amortzaton Chapter 5 Revew Extended Applcaton:Tme, Money, and Polynomals Buyng a car

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

Capital International Global Equities Fund (Hedged)

Capital International Global Equities Fund (Hedged) Captal Internatonal Global Equtes Fund (Hedged) Product dsclosure statement Contents 1. About Captal Group Investment Management Lmted 2. How Global Equtes Fund (Hedged) works 3. Benefts of nvestng n Global

More information

Morningstar After-Tax Return Methodology

Morningstar After-Tax Return Methodology Mornngstar After-Tax Return Methodology Mornngstar Research Report March 1, 2013 2013 Mornngstar, Inc. All rghts reserved. The nformaton n ths document s the property of Mornngstar, Inc. Reproducton or

More information

Underwriting Risk. Glenn Meyers. Insurance Services Office, Inc.

Underwriting Risk. Glenn Meyers. Insurance Services Office, Inc. Underwrtng Rsk By Glenn Meyers Insurance Servces Offce, Inc. Abstract In a compettve nsurance market, nsurers have lmted nfluence on the premum charged for an nsurance contract. hey must decde whether

More information

Tuition Fee Loan application notes

Tuition Fee Loan application notes Tuton Fee Loan applcaton notes for new part-tme EU students 2012/13 About these notes These notes should be read along wth your Tuton Fee Loan applcaton form. The notes are splt nto three parts: Part 1

More information

Texas Instruments 30Xa Calculator

Texas Instruments 30Xa Calculator Teas Instruments 30Xa Calculator Keystrokes for the TI-30Xa are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the tet, check

More information

Number of Levels Cumulative Annual operating Income per year construction costs costs ($) ($) ($) 1 600,000 35,000 100,000 2 2,200,000 60,000 350,000

Number of Levels Cumulative Annual operating Income per year construction costs costs ($) ($) ($) 1 600,000 35,000 100,000 2 2,200,000 60,000 350,000 Problem Set 5 Solutons 1 MIT s consderng buldng a new car park near Kendall Square. o unversty funds are avalable (overhead rates are under pressure and the new faclty would have to pay for tself from

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

Fixed income risk attribution

Fixed income risk attribution 5 Fxed ncome rsk attrbuton Chthra Krshnamurth RskMetrcs Group chthra.krshnamurth@rskmetrcs.com We compare the rsk of the actve portfolo wth that of the benchmark and segment the dfference between the two

More information

Staff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall

Staff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall SP 2005-02 August 2005 Staff Paper Department of Appled Economcs and Management Cornell Unversty, Ithaca, New York 14853-7801 USA Farm Savngs Accounts: Examnng Income Varablty, Elgblty, and Benefts Brent

More information

Hedging Interest-Rate Risk with Duration

Hedging Interest-Rate Risk with Duration FIXED-INCOME SECURITIES Chapter 5 Hedgng Interest-Rate Rsk wth Duraton Outlne Prcng and Hedgng Prcng certan cash-flows Interest rate rsk Hedgng prncples Duraton-Based Hedgng Technques Defnton of duraton

More information

0.02t if 0 t 3 δ t = 0.045 if 3 < t

0.02t if 0 t 3 δ t = 0.045 if 3 < t 1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual effectve

More information

MINIMISING INVENTORY COSTS BY PROPERLY CHOOSING THE LEVEL OF SAFETY STOCK

MINIMISING INVENTORY COSTS BY PROPERLY CHOOSING THE LEVEL OF SAFETY STOCK ECONOMIC AND BUSINESS REVIEW VOL. No. 2 2009 09 7 09 MINIMISING INVENTORY COSTS BY PROPERLY CHOOSING THE LEVEL OF SAFETY STOCK LILJANA FERBAR TRATAR* ABSTRACT: Markets are everyday becomng ever more demandng

More information

ESTIMATING THE MARKET VALUE OF FRANKING CREDITS: EMPIRICAL EVIDENCE FROM AUSTRALIA

ESTIMATING THE MARKET VALUE OF FRANKING CREDITS: EMPIRICAL EVIDENCE FROM AUSTRALIA ESTIMATING THE MARKET VALUE OF FRANKING CREDITS: EMPIRICAL EVIDENCE FROM AUSTRALIA Duc Vo Beauden Gellard Stefan Mero Economc Regulaton Authorty 469 Wellngton Street, Perth, WA 6000, Australa Phone: (08)

More information

An empirical study for credit card approvals in the Greek banking sector

An empirical study for credit card approvals in the Greek banking sector An emprcal study for credt card approvals n the Greek bankng sector Mara Mavr George Ioannou Bergamo, Italy 17-21 May 2004 Management Scences Laboratory Department of Management Scence & Technology Athens

More information

9. PPI Calculation in Practice

9. PPI Calculation in Practice 9. PPI Calculaton n Practce A. Introducton 9.1 Ths chapter provdes a general descrpton of the ways PPIs are calculated n practce. The methods used n dfferent countres are not exactly the same, but they

More information

Mathematics of Finance

Mathematics of Finance Mathematcs of Fnance 5 C H A P T E R CHAPTER OUTLINE 5.1 Smple Interest and Dscount 5.2 Compound Interest 5.3 Annutes, Future Value, and Snkng Funds 5.4 Annutes, Present Value, and Amortzaton CASE STUDY

More information

Section 2.3 Present Value of an Annuity; Amortization

Section 2.3 Present Value of an Annuity; Amortization Secton 2.3 Present Value of an Annuty; Amortzaton Prncpal Intal Value PV s the present value or present sum of the payments. PMT s the perodc payments. Gven r = 6% semannually, n order to wthdraw $1,000.00

More information

Finite Math Chapter 10: Study Guide and Solution to Problems

Finite Math Chapter 10: Study Guide and Solution to Problems Fnte Math Chapter 10: Study Gude and Soluton to Problems Basc Formulas and Concepts 10.1 Interest Basc Concepts Interest A fee a bank pays you for money you depost nto a savngs account. Prncpal P The amount

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12 14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

More information

Financial Mathemetics

Financial Mathemetics Fnancal Mathemetcs 15 Mathematcs Grade 12 Teacher Gude Fnancal Maths Seres Overvew In ths seres we am to show how Mathematcs can be used to support personal fnancal decsons. In ths seres we jon Tebogo,

More information

Simon Acomb NAG Financial Mathematics Day

Simon Acomb NAG Financial Mathematics Day 1 Why People Who Prce Dervatves Are Interested In Correlaton mon Acomb NAG Fnancal Mathematcs Day Correlaton Rsk What Is Correlaton No lnear relatonshp between ponts Co-movement between the ponts Postve

More information

An Overview of Financial Mathematics

An Overview of Financial Mathematics An Overvew of Fnancal Mathematcs Wllam Benedct McCartney July 2012 Abstract Ths document s meant to be a quck ntroducton to nterest theory. It s wrtten specfcally for actuaral students preparng to take

More information

Uncrystallised funds pension lump sum payment instruction

Uncrystallised funds pension lump sum payment instruction For customers Uncrystallsed funds penson lump sum payment nstructon Don t complete ths form f your wrapper s derved from a penson credt receved followng a dvorce where your ex spouse or cvl partner had

More information

CHAPTER 14 MORE ABOUT REGRESSION

CHAPTER 14 MORE ABOUT REGRESSION CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp

More information

1 Example 1: Axis-aligned rectangles

1 Example 1: Axis-aligned rectangles COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton

More information

Multiple-Period Attribution: Residuals and Compounding

Multiple-Period Attribution: Residuals and Compounding Multple-Perod Attrbuton: Resduals and Compoundng Our revewer gave these authors full marks for dealng wth an ssue that performance measurers and vendors often regard as propretary nformaton. In 1994, Dens

More information

1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)

1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP) 6.3 / -- Communcaton Networks II (Görg) SS20 -- www.comnets.un-bremen.de Communcaton Networks II Contents. Fundamentals of probablty theory 2. Emergence of communcaton traffc 3. Stochastc & Markovan Processes

More information

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered

More information

Ameriprise Financial Services, Inc. or RiverSource Life Insurance Company Account Registration

Ameriprise Financial Services, Inc. or RiverSource Life Insurance Company Account Registration CED0105200808 Amerprse Fnancal Servces, Inc. 70400 Amerprse Fnancal Center Mnneapols, MN 55474 Incomng Account Transfer/Exchange/ Drect Rollover (Qualfed Plans Only) for Amerprse certfcates, Columba mutual

More information

ANALYSIS OF FINANCIAL FLOWS

ANALYSIS OF FINANCIAL FLOWS ANALYSIS OF FINANCIAL FLOWS AND INVESTMENTS II 4 Annutes Only rarely wll one encounter an nvestment or loan where the underlyng fnancal arrangement s as smple as the lump sum, sngle cash flow problems

More information

Reporting Forms ARF 113.0A, ARF 113.0B, ARF 113.0C and ARF 113.0D FIRB Corporate (including SME Corporate), Sovereign and Bank Instruction Guide

Reporting Forms ARF 113.0A, ARF 113.0B, ARF 113.0C and ARF 113.0D FIRB Corporate (including SME Corporate), Sovereign and Bank Instruction Guide Reportng Forms ARF 113.0A, ARF 113.0B, ARF 113.0C and ARF 113.0D FIRB Corporate (ncludng SME Corporate), Soveregn and Bank Instructon Gude Ths nstructon gude s desgned to assst n the completon of the FIRB

More information

S&P U.S. Corporate Bond Indices Methodology

S&P U.S. Corporate Bond Indices Methodology S&P U.S. Corporate Bond Indces Methodology S&P Dow Jones Indces: Index Methodology March 2015 Table of Contents Introducton 3 Index Famly 3 Elgblty Crtera 4 Elgblty Factors 4 Tmng of Changes 5 Monthly

More information

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna wangtngzhong2@sna.cn Abstract.

More information