Steam Distillation of an Essential Oil

Size: px
Start display at page:

Download "Steam Distillation of an Essential Oil"

Transcription

1 CHEM 333L Organic Chemistry Laboratory Revision 2.1 Steam Distillation of an Essential Oil In this laboratory exercise we will employ Steam Distillation to isolate an Essential Oil from either Mint leaves or Orange rinds. This will involve distilling a mix of the plant material and Water to obtain the Oil, extracting the Oil from the Water, and then isolating the Oil from the extraction solvent. In the end, we will analyze the Oil s composition by separating its constituents using Gas Chromatography. Essential Oils are a mix of fragrant compounds common to a number of plants such as Mint, Lavender, Pine, etc. which are isolated via steam distillation. Because these Oils were once considered to be the essence of the plant, they were initially sought as possible pharmaceuticals and are a part of early medicine's contribution to modern chemistry. Today they are used as flavorings, perfumes and deodorants. Essential Oils are mixtures of organic compounds that are dominated by the Terpenes and the Terpenoids, oxygen containing derivatives of the terpenes. Terpenes themselves are a class of compounds built on the five carbon skeletal fragment of Isoprene. Isoprene However, most terpenes are biologically synthesized from Geranyl Pyrophosphate, which contains two Isoprene units bound together head-to-tail: Geranyl Pyrophosphate So, the carbon backbones of most terpenes contain a multiple of ten Carbon atoms. For example, Limonene, the major constituent of the Oil of Orange has the formula C 10 H 16.

2 P a g e 2 Limonene Limonene with Isoprene Units Identified (Squeeze the rind of an Orange near a lit match and the Limonene released will cause the match's flame to flare as the compound is quite flammable.) The exact composition of these Essential Oils is determined by the plant variety, the plant parts sampled, the time of year the plant is harvested, and the conditions under which the plant is grown. Attempting to distill these Essential Oils directly from the plant material is generally not feasible. In general, most of the Oils' constituents are high boiling and will decompose under the high heat needed to bring them to a boil. Steam distillation is a much gentler method of achieving the same end. In steam distillation, the distilling pot is infused with steam, which carries the Oil s vapor into the distilling head and then into the condenser, where the Oil and Water co-condense. As an alternative, steam is generated in situ in the distilling pot. Steam distillation works because the Water and the Oil are immiscible. Hence, they boil independent of each other.

3 P a g e 3 So, boiling occurs when the sum of the pure vapor pressures equals the atmospheric pressure: P atm = P Wat o + P Oil o (Eq. 1) Thus, a mixture of two immiscible liquids boils at a temperature lower than the Normal Boiling Point or either component of the mixture. Because P Wat o >> P Oil o, the mixture will boil at a temperature slightly less than the normal boiling point of Water. This means the Oil will vaporize under very mild conditions. However, this methodology leaves us with one complication; the distillate is a mixture of Oil and Water. The relative numbers of moles (n) of each component of the distillate will be given by: n Oil / n Wat = P Oil o / P Wat o (Eq. 2) If we know the average molecular weigth (M) of the Oil, then we can estimate the mass (m) of Oil that will be obtained in a given amount of Water: m Oil / m Wat = (P Oil o M Oil ) / (P Wat o M Wat ) (Eq. 3) We now need to Extract the Essential Oil from the co-distilled Water. We will take advantage of the fact that the Oil is insoluble in Water and is soluble in non-polar solvents like Diethyl Ether (CH 3 CH 2 OCH 2 CH 3 ). Ether is added to the Oil- Water mixture in a Separatory Funnel. This funnel allows the two solvents to layer and subsequently we can drain one solvent layer away from the other.

4 P a g e 4 After a few moments of shaking, the Oil will Partition into the Ether layer. Draining the Water layer from the Ether removes the Oil from the Water. The partitioning is almost never complete, so an Extraction is usually carried-out multiple times. The resulting Ether layers are collected and combined. (Caution must be observed when shaking the system. First, the system must be vented continuously because of vapor build-up that occurs within the flask. Second, the shaking cannot be too vigorous or else the system will emulsify. If emulsification occurs, separation of the two layers will become very difficult.) It may seem as though we have traded one problem for another; we now have a mixture of Oil and Ether that must be separated. However, this is not a major problem. The Ether will boil at a low enough temperature that it can simply be boiled off from the Essential Oil. After the Ether is stripped off, our isolation of the Essential Oil is complete. We will distill one of two Essential Oils; Oil of Orange or Mint Oil. The Oil of Orange is an Essential Oil derived from the rind of oranges and some other citrus fruits. It is composed of Limonene, and Pinene, Myrcene, Octanal, Decanal, -3-Carene, and Linalool; with Limonene comprising over 90% of the Oil derived from common orange varieties. Because it is non-polar, Limonene makes a good, environmentally friendly solvent. Limonene Mint Oil is an Essential Oil derived from various mint varietals. The composition of the Oil is dependent on the particular mint variety distilled. For instance, Peppermint s (Mentha x piperita) Oil is composed of Menthol, Menthone and Menthyl Acetate. On the other hand, Spearmint s (Mentha spicata) Oil is composed of Carvone and Limonene.

5 P a g e 5 Menthol Menthone Menthyl Acetate Carvone In another laboratory exercise we will analyze the Oil obtained using Gas-Liquid Chromatography. By comparing the Gas Chromatographic results with appropriate Standards, we can identify the constituents of the Oil.

6 P a g e 6 Pre-Lab Questions 1. What is the Normal Boiling Point of naturally occurring Limonene? What is the approximate Boiling Point of Limonene during a steam distillation? 2. Quinoline is to be isolated using steam distillation. At 99.6 o C the vapor pressure of Water is 750 Torr and that of Quinoline is 10 Torr. If 100 ml of distillate is collected, approximately how many grams of Quinoline will have distilled over? 3. During an Extraction, a solute (S) will partition itself between the two solvent phases with a Partition Coefficient (K) defined as: S(Solvent 1) S(Solvent 2) K = [S] 2 / [S] 1 Solute S is found to have a partition coefficient of 15 between Solvent 1 and Solvent 2; with 15 times as much in Solvent 2. Suppose 150 ml of a 0.02M solution of S in Solvent 1 is Extracted with 50 ml of Solvent 2. What fraction of S remains in Solvent 1? If three 50 ml extractions are performed, what fraction of S remains in Solvent 1?

7 P a g e 7 Procedure Steam Distillation of the Oil of Orange Week 1 1. Assemble the Distillation apparatus as pictured (roughly) below. Because of the large amount of Orange Ring required, we will use a 500 ml round bottomed flask as the distilling pot. Use a small hot plate as a heat source. We will be generating the Steam directly. Use a 250 ml round bottom flask as a receiver. Use a Claisen connecting tube to connect the distilling pot to the distillation head. Add a Separatory Funnel filled with Water to Claisen tube. This will allow us to easily add Water to the system during the distillation, if needed. Wrap the Claisen in some cotton batting and Aluminum foil to keep it hot during the distillation. Adapted from: Operational Organic Chemistry John W. Lehman 2. Peel three medium Oranges and measure the mass of the peel. Puree the peel with a minimum of Water in a blender. Add the puree to the distilling pot, a 500 ml round bottom flask, using a wide-mouth funnel and a stirring rod. Add enough Water so that the distilling pot is about 2/3 full. Add a boiling chip. Turn on the condenser Water and seal the distilling pot. 3. Begin heating the system slowly. Adjust the heat so that the distilling rate equals about 20 drops per minute. As the mixture boils and distills, you will be losing Water from the distillation mixture. As the level drops in the flask, add small volumes of Water via the

8 P a g e 8 separatory funnel. It is important to watch the Water level because of the high concentration of Sugar in oranges. If the Water level gets too low, the Sugar will carmelize and burn. Also, it is better to add small amounts of Water so that the temperature doesn t drop drastically. Keep the heat at a low, steady level. 4. Collect about 150 ml of distillate. The presence of the Oil in the condensate will cause the drops forming in the condensor to be cloudy. Thus, you can estimate when the condensate no longer contains Oil by noting the absence a cloudy appearance. 5. Transfer the distillate to a stoppered Erlenmeyer Flask. Store the distillate in your drawer until the next lab period. Week 2 6. Transfer your distillate to a 250 ml Separatory Funnel. Add 20 ml of Diethyl Ether and Extract the Oil. Your laboratory instructor will demonstrate the correct use of the Separatory Funnel. (Do not begin this process until you have been given the appropriate instructions by your lab instructor.) There must be no flame sources or hot plates on during the use of Ether. Ether is very, very flammable. 7. Drain the Water layer off into a 250 ml Erlenmeyer Flask. Drain the Ether layer into a small collection flask. 8. Repeat the extraction once more and collect all the Ether fractions in the same Flask. 9. Dry the Ether with a little Anhydrous Sodium Sulfate. This is required because trace amounts of Water will dissolve in the Ether. The Anhydrous Sodium Sulfate will absorb the Water and produce solid Magnesium Sulfate Decahydrate: MgSO 4 (s) + 10 H 2 O MgSO 4 10H 2 O(s) Allow the system to dry for minutes. 10. Decant the liquid into a small beaker. Add a toothpick to the beaker. (This will act as a nucleation site during the boiling.) Place the beaker on a steam bath in the fume hood. Boil off all the Ether. 11. Transfer your Oil to a massed and labeled 4-dram vial. Determine the mass of the Oil. Calculate the percentage Oil in the Orange Peel. 12. Save your Oil for further analysis via Gas Chromatography.

9 P a g e 9 Steam Distillation of Mint Oil Week 1 1. Assemble the Distillation apparatus as pictured below. Because of the large amount of Mint required, we will use a modified Paint Can as a distilling pot. Use a small hot plat as a heat source. We will be generating the Steam directly. Use a 250 ml round bottom flask as a receiver. 2. Add about one pound of Mint and 400 ml Distilled Water to the "distilling pot". (The Mint should be rather loosely situated in the pot.) 3. Seal the "distilling pot". Begin heating the system slowly. Adjust the heat so that the distilling rate equals about 20 drops per minute. 4. Collect about ml of distillate. The presence of the Oil in the condensate will cause the drops forming in the condensor to be cloudy. Thus, you can estimate when the condensate no longer contains Oil by noting the absence a cloudy appearance.

10 P a g e Transfer the distillate to a stoppered Erlenmeyer Flask. Store the distillate in your drawer until the next lab period. Week 2 6. Transfer your distillate to a 250 ml Separatory Funnel. Add 50 ml of Methylene Chloride and Extract the Mint Oil. Your laboratory instructor will demonstrate the correct use of the Separatory Funnel. (Do not begin this process until you have been given the appropriate instructions by your lab instructor.) 7. Drain the Methylene Chloride layer off into a 250 ml Erlenmeyer Flask. 8. Repeat the extraction twice more and collect all the Methylene Chloride fractions in the same Flask. 9. Dry the Methylene Chloride with a little Anhydrous Magnesium Sulfate. This is required because trace amounts of Water will dissolve in the Methylene Chloride. The Anhydrous Magnesium Sulfate will absorb the Water and produce solid Magnesium Sulfate Heptahydrate: MgSO 4 (s) + 7 H 2 O MgSO 4 7H 2 O(s) Allow the system to dry for minutes. 10. Decant the liquid into a 250 ml round bottomed flask. Use a Rotovap to strip off the Methylene Chloride from the Mint Oil. (Your laboratory instructor will demonstrate the use of the Rotovap.) 11. Transfer your Mint Oil to a labeled 4-dram vial. 12. Save your Mint Oil for further analysis via Gas Chromatography.

11 P a g e 11 Post Lab Questions 1. The condensate from a steam distillation contains 10g of compound A and 18g of Water. At the temperature of the distillation, the vapor pressure of Water is 660 Torr. What is the approximate Molecular Weight of A? 2. Consider Oil of Turpentine. a) What is the source of this Oil? b) What are the major constituents of this Oil? (two) c) Identify the Isoprene backbones in each constituent of this Oil. d) What was the original source of this Oil? 3. In 1800, on the eve of Fredrich Wohler s experiments leading to overthrow of Vitalism, Camphor was one of the few organic compounds known. a) What is the natural source of Camphor? b) Identify the Isoprene backbones in this molecule. c) Provide the IUPAC name for this compound. (Hint: Ketone functionalities are given an one ending. Thus, the following ketone: is given the IUPAC name butan-2-one.)

Steam Distillation of Lemongrass Oil

Steam Distillation of Lemongrass Oil I. Introduction Steam Distillation of Lemongrass Oil When a mixture of cyclohexane and toluene is distilled, the boiling point of these two miscible liquids is between the boiling points of each of the

More information

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation Experiment 8 Preparation of Cyclohexanone by ypochlorite xidation In this experiment we will prepare cyclohexanone from cyclohexanol using hypochlorite oxidation. We will use common household bleach that

More information

ISOLATION OF CAFFEINE FROM TEA

ISOLATION OF CAFFEINE FROM TEA ISLATIN F CAFFEINE FRM TEA Introduction In this experiment, caffeine is isolated from tealeaves. The chief problem with the isolation is that caffeine does not exist alone in the tealeaves, but other natural

More information

Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance

Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance 1 Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance Read pp 142-155, 161-162, Chapter 10 and pp 163-173, Chapter 11, in LTOC. View the videos: 4.2 Extraction (Macroscale);

More information

Isolation of Caffeine from Tea

Isolation of Caffeine from Tea Isolation of Caffeine from Tea Introduction A number of interesting, biologically active compounds have been isolated from plants. Isolating some of these natural products, as they are called, can require

More information

PHYSICAL SEPARATION TECHNIQUES. Introduction

PHYSICAL SEPARATION TECHNIQUES. Introduction PHYSICAL SEPARATION TECHNIQUES Lab #2 Introduction When two or more substances, that do not react chemically, are blended together, the result is a mixture in which each component retains its individual

More information

Separation by Solvent Extraction

Separation by Solvent Extraction Experiment 3 Separation by Solvent Extraction Objectives To separate a mixture consisting of a carboxylic acid and a neutral compound by using solvent extraction techniques. Introduction Frequently, organic

More information

Experiment 5 Preparation of Cyclohexene

Experiment 5 Preparation of Cyclohexene Experiment 5 Preparation of yclohexene In this experiment we will prepare cyclohexene from cyclohexanol using an acid catalyzed dehydration reaction. We will use the cyclohexanol that we purified in our

More information

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid Purpose: a) To purify samples of organic compounds that are solids at room temperature b) To dissociate the impure sample in the minimum

More information

Distillation of Alcohol

Distillation of Alcohol CHEM 121L General Chemistry Laboratory Revision 1.6 Distillation of Alcohol To learn about the separation of substances. To learn about the separation technique of distillation. To learn how to characterize

More information

Distillation Experiment

Distillation Experiment Distillation Experiment CHM226 Background The distillation process is a very important technique used to separate compounds based on their boiling points. A substance will boil only when the vapor pressure

More information

Experiment #7: Esterification

Experiment #7: Esterification Experiment #7: Esterification Pre-lab: 1. Choose an ester to synthesize. Determine which alcohol and which carboxylic acid you will need to synthesize your ester. Write out the reaction for your specific

More information

Mixtures and Pure Substances

Mixtures and Pure Substances Unit 2 Mixtures and Pure Substances Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances. They

More information

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

SEPARATION OF A MIXTURE OF SUBSTANCES LAB SEPARATION OF A MIXTURE OF SUBSTANCES LAB Purpose: Every chemical has a set of defined physical properties, and when combined they present a unique fingerprint for that chemical. When chemicals are present

More information

CHEM 2423 Extraction of Benzoic Acid EXPERIMENT 6 - Extraction Determination of Distribution Coefficient

CHEM 2423 Extraction of Benzoic Acid EXPERIMENT 6 - Extraction Determination of Distribution Coefficient EXPERIMENT 6 - Extraction Determination of Distribution Coefficient Purpose: a) To purify samples of organic compounds that are solids at room temperature b) To dissociate the impure sample in the minimum

More information

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point.. Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set

More information

Organic Lab 1 Make-up Experiment. Extraction of Caffeine from Beverages. Introduction

Organic Lab 1 Make-up Experiment. Extraction of Caffeine from Beverages. Introduction Organic Lab 1 Make-up Experiment Extraction of Caffeine from Beverages Introduction Few compounds consumed by Americans are surrounded by as much controversy as caffeine. One article tells us that caffeine

More information

CH243: Lab 4 Synthesis of Artificial Flavorings by Fischer Esterification

CH243: Lab 4 Synthesis of Artificial Flavorings by Fischer Esterification H243: Lab 4 Synthesis of Artificial Flavorings by Fischer Esterification PURPSE: To prepare esters by reaction of carboxylic acids and alcohols. To modify a known procedure to prepare an unknown. DISUSSIN:

More information

Determination of a Chemical Formula

Determination of a Chemical Formula 1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl

More information

The Synthesis of trans-dichlorobis(ethylenediamine)cobalt(iii) Chloride

The Synthesis of trans-dichlorobis(ethylenediamine)cobalt(iii) Chloride CHEM 122L General Chemistry Laboratory Revision 2.0 The Synthesis of trans-dichlorobis(ethylenediamine)cobalt(iii) Chloride To learn about Coordination Compounds and Complex Ions. To learn about Isomerism.

More information

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap Introduction A soap is the sodium or potassium salt of a long-chain fatty acid. The fatty acid usually contains 12 to 18 carbon atoms.

More information

EXPERIMENT 12: Empirical Formula of a Compound

EXPERIMENT 12: Empirical Formula of a Compound EXPERIMENT 12: Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

Synthesis of Isopentyl Acetate

Synthesis of Isopentyl Acetate Experiment 8 Synthesis of Isopentyl Acetate Objectives To prepare isopentyl acetate from isopentyl alcohol and acetic acid by the Fischer esterification reaction. Introduction Esters are derivatives of

More information

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER Chemistry 111 Lab: Synthesis of a Copper Complex Page H-1 SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER In this experiment you will synthesize a compound by adding NH 3 to a concentrated

More information

14 Friedel-Crafts Alkylation

14 Friedel-Crafts Alkylation 14 Friedel-Crafts Alkylation 14.1 Introduction Friedel-Crafts alkylation and acylation reactions are a special class of electrophilic aromatic substitution (EAS) reactions in which the electrophile is

More information

The Properties of Water (Instruction Sheet)

The Properties of Water (Instruction Sheet) The Properties of Water (Instruction Sheet) Property : High Polarity Activity #1 Surface Tension: PILE IT ON. Materials: 1 DRY penny, 1 eye dropper, water. 1. Make sure the penny is dry. 2. Begin by estimating

More information

Name Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible

Name  Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible Lab #3: Solubility of rganic Compounds bjectives: - Understanding the relative solubility of organic compounds in various solvents. - Exploration of the effect of polar groups on a nonpolar hydrocarbon

More information

Determination of Molar Mass by Boiling Point Elevation of Urea Solution

Determination of Molar Mass by Boiling Point Elevation of Urea Solution Determination of Molar Mass by Boiling Point Elevation of Urea Solution CHRISTIAN E. MADU, PhD AND BASSAM ATTILI, PhD COLLIN COLLEGE CHEMISTRY DEPARTMENT Purpose of the Experiment Determine the boiling

More information

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

More information

GRIGNARD REACTION: PREPARATION OF TRIPHENYLMETHANOL (12/22/2009)

GRIGNARD REACTION: PREPARATION OF TRIPHENYLMETHANOL (12/22/2009) GRIGNARD REACTIN: PREPARATIN F TRIPHENYLMETHANL (12/22/2009) Grignard reagents are among the most versatile organometallic reagents, and they are the easiest organometallic reagent to prepare. Grignard

More information

Experiment 12- Classification of Matter Experiment

Experiment 12- Classification of Matter Experiment Experiment 12- Classification of Matter Experiment Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances.

More information

Synthesis of Aspirin and Oil of Wintergreen

Synthesis of Aspirin and Oil of Wintergreen Austin Peay State University Department of hemistry hem 1121 autions Purpose Introduction Acetic Anhydride corrosive and a lachrymator all transfers should be done in the vented fume hood Methanol, Ethanol

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL SUPPLEMENTARY MATERIAL (Student Instructions) Determination of the Formula of a Hydrate A Greener Approach Objectives To experimentally determine the formula of a hydrate salt. To learn to think in terms

More information

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD Objective To gain familiarity with basic laboratory procedures, some chemistry of a typical transition element, and the concept of percent yield. Apparatus

More information

Chapter Test A. Elements, Compounds, and Mixtures MULTIPLE CHOICE. chemically combined? MIXs2 a. element b. compound c. mixture d.

Chapter Test A. Elements, Compounds, and Mixtures MULTIPLE CHOICE. chemically combined? MIXs2 a. element b. compound c. mixture d. Assessment Chapter Test A Elements, Compounds, and Mixtures MULTIPLE CHOICE Write the letter of the correct answer in the space provided. 1. What is a pure substance made of two or more elements that are

More information

PREPARATION AND PROPERTIES OF A SOAP

PREPARATION AND PROPERTIES OF A SOAP (adapted from Blackburn et al., Laboratory Manual to Accompany World of Chemistry, 2 nd ed., (1996) Saunders College Publishing: Fort Worth) Purpose: To prepare a sample of soap and to examine its properties.

More information

Non-polar hydrocarbon chain

Non-polar hydrocarbon chain THE SCIENCE OF SOAPS AND DETERGENTS 2000 by David A. Katz. All rights reserved Reproduction permitted for educational purposes as long as the original copyright is included. INTRODUCTION A soap is a salt

More information

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB Purpose: Most ionic compounds are considered by chemists to be salts and many of these are water soluble. In this lab, you will determine the solubility,

More information

PRE-LAB FOR YEAST RESPIRATION AND FERMENTATION

PRE-LAB FOR YEAST RESPIRATION AND FERMENTATION PRE-LAB FOR YEAST RESPIRATION AND FERMENTATION PURPOSE: To identify the products of yeast cultures grown under aerobic and anaerobic conditions STUDENTS' ENTERING COMPETENCIES: Before doing this lab, students

More information

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration. 81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum

More information

Extraction: Separation of Acidic Substances

Extraction: Separation of Acidic Substances Extraction: Separation of Acidic Substances Chemists frequently find it necessary to separate a mixture of compounds by moving a component from one solution or mixture to another. The process most often

More information

EXPERIMENT 9 (Organic Chemistry II) Pahlavan - Cherif Synthesis of Aspirin - Esterification

EXPERIMENT 9 (Organic Chemistry II) Pahlavan - Cherif Synthesis of Aspirin - Esterification EXPERIMENT 9 (rganic hemistry II) Pahlavan - herif Materials Hot plate 125-mL Erlenmeyer flask Melting point capillaries Melting point apparatus Büchner funnel 400-mL beaker Stirring rod hemicals Salicylic

More information

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction General Chemistry I (FC, 09-10) Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant, does not

More information

Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle

Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle EXPERIMENT 5 (Organic Chemistry II) Pahlavan/Cherif Dehydration of Alcohols - Dehydration of Cyclohexanol Purpose - The purpose of this lab is to produce cyclohexene through the acid catalyzed elimination

More information

The Empirical Formula of a Compound

The Empirical Formula of a Compound The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,

More information

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate Pahlavan/Cherif Purpose a) Study electrophilic aromatic substitution reaction (EAS) b) Study regioselectivity

More information

PURIFICATION TECHNIQUES

PURIFICATION TECHNIQUES DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) PURIFICATION TECHNIQUES Hermenegildo García Gómez Departamento de Química Instituto de Tecnología Química Universidad Politécnica de Valencia

More information

Taking Apart the Pieces

Taking Apart the Pieces Lab 4 Taking Apart the Pieces How does starting your morning out right relate to relief from a headache? I t is a lazy Saturday morning and you ve just awakened to your favorite cereal Morning Trails and

More information

Compounds vs mixtures. Physics and Chemistry IES Jaume Salvador i Pedrol February 2009

Compounds vs mixtures. Physics and Chemistry IES Jaume Salvador i Pedrol February 2009 Compounds vs mixtures Physics and Chemistry IES Jaume Salvador i Pedrol February 2009 Compounds Remember that a compound is a substance made up from two or more elements, chemically joined together. This

More information

EXPERIMENT 2 (Organic Chemistry II) Pahlavan/Cherif Diels-Alder Reaction Preparation of ENDO-NORBORNENE-5, 6-CIS-CARBOXYLIC ANHYDRIDE

EXPERIMENT 2 (Organic Chemistry II) Pahlavan/Cherif Diels-Alder Reaction Preparation of ENDO-NORBORNENE-5, 6-CIS-CARBOXYLIC ANHYDRIDE EXPERIMENT 2 (rganic Chemistry II) Pahlavan/Cherif Diels-Alder Reaction Preparation of END-NRBRNENE-5, 6-CIS-CARBXYLIC ANYDRIDE Purpose a) Study conjugated dienes b) Study diene and dienophile c) Study

More information

Page 1 of 5. Purification of Cholesterol An Oxidative Addition-Reductive Elimination Sequence

Page 1 of 5. Purification of Cholesterol An Oxidative Addition-Reductive Elimination Sequence Page 1 of 5 Purification of Cholesterol An Oxidative Addition-Reductive Elimination Sequence From your lectures sessions in CEM 2010 you have learned that elimination reactions may occur when alkyl halides

More information

CHM220 Nucleophilic Substitution Lab. Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon*

CHM220 Nucleophilic Substitution Lab. Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon* CHM220 Nucleophilic Substitution Lab Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon* Purpose: To convert a primary alcohol to an alkyl bromide using an S N 2 reaction

More information

Physical and Chemical Properties and Changes

Physical and Chemical Properties and Changes Physical and Chemical Properties and Changes An understanding of material things requires an understanding of the physical and chemical characteristics of matter. A few planned experiments can help you

More information

Recrystallization II 23

Recrystallization II 23 Recrystallization II 23 Chem 355 Jasperse RECRYSTALLIZATIN-Week 2 1. Mixed Recrystallization of Acetanilide 2. Mixed Recrystallization of Dibenzylacetone 3. Recrystallization of an Unknown Background Review:

More information

EXPERIMENT FIVE. Preparation of Cyclohexene from Cyclohexanol: an Elimination Reaction DISCUSSION

EXPERIMENT FIVE. Preparation of Cyclohexene from Cyclohexanol: an Elimination Reaction DISCUSSION EXPERIMENT FIVE Preparation of Cyclohexene from Cyclohexanol: an Elimination Reaction DISCUSSION A secondary alcohol, such as cyclohexanol, undergoes dehydration by an E1 mechanism. The key intermediate

More information

Molar Mass of Butane

Molar Mass of Butane Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine the molar mass of butane using Dalton s Law of Partial Pressures

More information

Recovery of Elemental Copper from Copper (II) Nitrate

Recovery of Elemental Copper from Copper (II) Nitrate Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform

More information

Chemistry of Biodiesel Production. Teacher Notes. DAY 1: Biodiesel synthesis (50 minutes)

Chemistry of Biodiesel Production. Teacher Notes. DAY 1: Biodiesel synthesis (50 minutes) Chemistry of Biodiesel Production Teacher Notes DAY 1: Biodiesel synthesis (50 minutes) NOTE: The lab preparation instructions / lab protocol assumes classes of 32 students, with 8 groups of 4 students

More information

Solubility Curve of Sugar in Water

Solubility Curve of Sugar in Water Solubility Curve of Sugar in Water INTRODUCTION Solutions are homogeneous mixtures of solvents (the larger volume of the mixture) and solutes (the smaller volume of the mixture). For example, a hot chocolate

More information

Hands-On Labs SM-1 Lab Manual

Hands-On Labs SM-1 Lab Manual EXPERIMENT 4: Separation of a Mixture of Solids Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate.

More information

METHOD 3510C SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION

METHOD 3510C SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION METHOD 3510C SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION 1.0 SCOPE AND APPLICATION 1.1 This method describes a procedure for isolating organic compounds from aqueous samples. The method also describes concentration

More information

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1 Name: Lab Instructor: PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1. What is a hydrocarbon? 2. What products form in the complete combustion of a hydrocarbon? 3. Combustion is an exothermic reaction. What

More information

Liquid/liquid Extraction 63 LIQUID/LIQUID SEPARATION: EXTRACTION OF ACIDS OR BASES FROM NEUTRAL ORGANICS

Liquid/liquid Extraction 63 LIQUID/LIQUID SEPARATION: EXTRACTION OF ACIDS OR BASES FROM NEUTRAL ORGANICS Liquid/liquid Extraction 63 LIQUID/LIQUID SEPARATION: EXTRACTION OF ACIDS OR BASES FROM NEUTRAL ORGANICS Background Extraction is one of humankind s oldest chemical operations. The preparation of a cup

More information

Carbon. Extraction of Essential Oils from Spices using Steam Distillation. Carbon

Carbon. Extraction of Essential Oils from Spices using Steam Distillation. Carbon Extraction of Essential Oils from Spices using Steam Distillation Contents Objectives 1 Introduction 1 Extraction of trans-anethole from star anise 2 Extraction of trans-cinnamaldehyde from cinnamon 5

More information

Austin Peay State University Department of Chemistry CHEM 1111. Empirical Formula of a Compound

Austin Peay State University Department of Chemistry CHEM 1111. Empirical Formula of a Compound Cautions Magnesium ribbon is flammable. Nitric acid (HNO 3 ) is toxic, corrosive and contact with eyes or skin may cause severe burns. Ammonia gas (NH 3 ) is toxic and harmful. Hot ceramic crucibles and

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

Making Biodiesel from Virgin Vegetable Oil: Teacher Manual

Making Biodiesel from Virgin Vegetable Oil: Teacher Manual Making Biodiesel from Virgin Vegetable Oil: Teacher Manual Learning Goals: Students will understand how to produce biodiesel from virgin vegetable oil. Students will understand the effect of an exothermic

More information

Extraction of Caffeine from Energy Drinks

Extraction of Caffeine from Energy Drinks Boston University OpenBU Chemistry http://open.bu.edu Organic Chemistry Laboratory Experiments 2011-07-14 Extraction of Caffeine from Energy Drinks Mulcahy, Seann P. http://hdl.handle.net/2144/1418 Boston

More information

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed:

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed: Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Your Name: Date: Partner(s) Names: Objectives: React magnesium metal with hydrochloric acid, collecting the hydrogen over water. Calculate the grams

More information

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C 1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

More information

Table 1. Common esters used for flavors and fragrances

Table 1. Common esters used for flavors and fragrances ESTERS An Introduction to rganic hemistry Reactions 2012, 2006, 1990, 1982 by David A. Katz. All rights reserved. Reproduction permitted for educationa use provided original copyright is included. In contrast

More information

Experiment #10: Liquids, Liquid Mixtures and Solutions

Experiment #10: Liquids, Liquid Mixtures and Solutions Experiment #10: Liquids, Liquid Mixtures and Solutions Objectives: This experiment is a broad survey of the physical properties of liquids. We will investigate solvent/solute mixtures. We will study and

More information

Experiment 8 Synthesis of Aspirin

Experiment 8 Synthesis of Aspirin Experiment 8 Synthesis of Aspirin Aspirin is an effective analgesic (pain reliever), antipyretic (fever reducer) and anti-inflammatory agent and is one of the most widely used non-prescription drugs. The

More information

Distillation vaporization sublimation. vapor pressure normal boiling point.

Distillation vaporization sublimation. vapor pressure normal boiling point. Distillation Distillation is an important commercial process that is used in the purification of a large variety of materials. However, before we begin a discussion of distillation, it would probably be

More information

Experiment 5: Phase diagram for a three-component system (Dated: April 12, 2010)

Experiment 5: Phase diagram for a three-component system (Dated: April 12, 2010) Experiment 5: Phase diagram for a three-component system (Dated: April 12, 2010) I. INTRODUCTION It is sometimes necessary to know the mutual solubilities of liquids in a two-phase system. For example,

More information

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g) CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26

More information

HEXANES. Insoluble in water, soluble in ether, alcohol, and acetone. Neutral to methyl orange (ph indicator) Not more than 0.

HEXANES. Insoluble in water, soluble in ether, alcohol, and acetone. Neutral to methyl orange (ph indicator) Not more than 0. HEXANES Prepared at the 51st JECFA (1998), published in FNP 52 Add 6 (1998) superseding specifications prepared at the 14th JECFA (1970), published in NMRS 48B (1971) and in FNP 52 (1992). ADI "limited

More information

1. The Determination of Boiling Point

1. The Determination of Boiling Point 1. The Determination of Boiling Point Objective In this experiment, you will first check your thermometer for errors by determining the temperature of two stable equilibrium systems. You will then use

More information

8.9 - Flash Column Chromatography Guide

8.9 - Flash Column Chromatography Guide 8.9 - Flash Column Chromatography Guide Overview: Flash column chromatography is a quick and (usually) easy way to separate complex mixtures of compounds. We will be performing relatively large scale separations

More information

Determination of the Percentage Oxygen in Air

Determination of the Percentage Oxygen in Air CHEM 121L General Chemistry Laboratory Revision 1.1 Determination of the Percentage Oxygen in Air In this laboratory exercise we will determine the percentage by volume of Oxygen in Air. We will do this

More information

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4) Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical

More information

Experiment 7: Titration of an Antacid

Experiment 7: Titration of an Antacid 1 Experiment 7: Titration of an Antacid Objective: In this experiment, you will standardize a solution of base using the analytical technique known as titration. Using this standardized solution, you will

More information

DYES AND DYEING 2003 by David A. Katz. All rights reserved. Permission for classroom use provided original copyright is included.

DYES AND DYEING 2003 by David A. Katz. All rights reserved. Permission for classroom use provided original copyright is included. DYES AND DYEING 2003 by David A. Katz. All rights reserved. Permission for classroom use provided original copyright is included. Dyeing of textiles has been practiced for thousands of years with the first

More information

# 12 Condensation Polymerization: Preparation of Two Types of Polyesters

# 12 Condensation Polymerization: Preparation of Two Types of Polyesters # 12 Condensation Polymerization: Preparation of Two Types of Polyesters Submitted by: Arturo Contreras, Visiting Scholar, Center for Chemical Education, Miami University, Middletown, OH; 1996 1997. I.

More information

Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide.

Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide. The Empirical Formula of a Copper Oxide Reading assignment: Chang, Chemistry 10 th edition, pp. 55-58. Goals The reaction of hydrogen gas with a copper oxide compound will be studied quantitatively. By

More information

Apparatus error for each piece of equipment = 100 x margin of error quantity measured

Apparatus error for each piece of equipment = 100 x margin of error quantity measured 1) Error Analysis Apparatus Errors (uncertainty) Every time you make a measurement with a piece of apparatus, there is a small margin of error (i.e. uncertainty) in that measurement due to the apparatus

More information

Laboratory 28: Properties of Lipids

Laboratory 28: Properties of Lipids Introduction Lipids are naturally occuring substances that are arbitrarily grouped together on the basis of their insolubility in water (a polar solvent) and solubility in nonpolar solvents. Lipids include

More information

Experiment 3 Limiting Reactants

Experiment 3 Limiting Reactants 3-1 Experiment 3 Limiting Reactants Introduction: Most chemical reactions require two or more reactants. Typically, one of the reactants is used up before the other, at which time the reaction stops. The

More information

2 MATTER. 2.1 Physical and Chemical Properties and Changes

2 MATTER. 2.1 Physical and Chemical Properties and Changes 2 MATTER Matter is the material of which the universe is composed. It has two characteristics: It has mass; and It occupies space (i.e., it has a volume). Matter can be found in three generic states: Solid;

More information

SODIUM CARBOXYMETHYL CELLULOSE

SODIUM CARBOXYMETHYL CELLULOSE SODIUM CARBOXYMETHYL CELLULOSE Prepared at the 28th JECFA (1984), published in FNP 31/2 (1984) and in FNP 52 (1992). Metals and arsenic specifications revised at the 55 th JECFA (2000). An ADI not specified

More information

Project 5: Scoville Heat Value of Foods HPLC Analysis of Capsaicinoids

Project 5: Scoville Heat Value of Foods HPLC Analysis of Capsaicinoids Willamette University Chemistry Department 2013 Project 5: HPLC Analysis of Capsaicinoids LABORATORY REPORT: Formal Writing Exercises PRE-LAB ASSIGNMENT Read the entire laboratory project and section 28C

More information

Phase Diagram of tert-butyl Alcohol

Phase Diagram of tert-butyl Alcohol Phase Diagram of tert-butyl Alcohol Bill Ponder Department of Chemistry Collin College Phase diagrams are plots illustrating the relationship of temperature and pressure relative to the phase (or state

More information

Properties and Classifications of Matter

Properties and Classifications of Matter PS-3.1 Distinguish chemical properties of matter (including reactivity) from physical properties of matter (including boiling point, freezing/melting point, density [with density calculations], solubility,

More information

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008 Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid

More information

The Molar Mass of a Gas

The Molar Mass of a Gas The Molar Mass of a Gas Goals The purpose of this experiment is to determine the number of grams per mole of a gas by measuring the pressure, volume, temperature, and mass of a sample. Terms to Know Molar

More information

Separation and Identification of Plant Pigments Dr. Gergens - SD Mesa College

Separation and Identification of Plant Pigments Dr. Gergens - SD Mesa College Separation and Identification of Plant Pigments Dr. Gergens - SD Mesa College PURPOSE In this experiment, the photosynthetic pigments common to all flowering plants will be extracted by liquidliquid extraction.

More information

Polarity and Properties Lab PURPOSE: To investigate polar and non-polar molecules and the affect of polarity on molecular properties.

Polarity and Properties Lab PURPOSE: To investigate polar and non-polar molecules and the affect of polarity on molecular properties. Name!!!! date Polarity and Properties Lab PURPOSE: To investigate polar and non-polar molecules and the affect of polarity on molecular properties. STATION 1: Oil and water do not mix. We all know that.

More information

DETERMINING THE MOLAR MASS OF CARBON DIOXIDE

DETERMINING THE MOLAR MASS OF CARBON DIOXIDE DETERMINING THE MOLAR MASS OF CARBON DIOXIDE PURPOSE: The goal of the experiment is to determine the molar mass of carbon dioxide and compare the experimentally determined value to the theoretical value.

More information

To remove solvent: 1. You must have ebullation to concentrate at atmospheric pressure--use a boiling stone, a capillary tube, or agitation.

To remove solvent: 1. You must have ebullation to concentrate at atmospheric pressure--use a boiling stone, a capillary tube, or agitation. Crystallization is used to purify a solid. The process requires a suitable solvent. A suitable solvent is one which readily dissolves the solid (solute) when the solvent is hot but not when it is cold.

More information

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT -----------------------------------------------------------------------------------------------------------------------------

More information