Rotation, Rolling, Torque, Angular Momentum


 James Webb
 2 years ago
 Views:
Transcription
1 Halliday, Resnick & Walker Chapter 10 & 11 Rotation, Rolling, Torque, Angular Momentum Physics 1A PHYS1121 Professor Michael Burton Rotation
2 101 Rotational Variables! The motion of rotation! The same laws apply! But new quantities are needed to express them o o Torque Rotational Inertia (or Moment of Inertia)! A rigid body rotates as a unit, locked together! Consider just rotation about a fixed axis! This excludes: o o The Sun, where layers of gas rotate separately A rolling bowling ball, where rotation and translation occur 101 Rotational Variables! The fixed axis is called the axis of rotation! The angular position,!, of a reference line is taken relative to a fixed direction, the zero angular position From side From above
3 101 Rotational Variables! Unit is radians (rad): dimensionless Eq. (101) Eq. (102)! Do not reset! to zero after a full rotation! Knowledge of!(t) yields the kinematics of the rotation! The angular displacement is: 101 Rotational Variables! Clocks are negative! i.e. their angular displacement is in the negative direction!
4 101 Rotational Variables! Average angular velocity: angular displacement during a time interval Eq. (105)! Instantaneous angular velocity: limit as "t " 0 Eq. (106)! If the body is rigid, these equations hold for all points on the body! Magnitude of angular velocity = angular speed 101 Rotational Variables! Average angular acceleration: angular velocity change during a time interval Eq. (107)! Instantaneous angular velocity: limit as "t " 0 Eq. (108)
5 RMM02VD3: Angular Acceleration 101 Rotational Variables! With righthand rule to determine direction, angular velocity & acceleration can be written as vectors! If the body rotates around the vector, then the vector points along the axis of rotation
6 101 Rotational Variables! Angular displacements are not vectors, because the order of rotation matters for rotations around different axes! Does not obey the rule for vector addition! The wheels of a bicycle roll without slipping on a horizontal road. The bicycle is moving due east at a constant velocity. What is the direction of the angular velocity of the wheels? a) down b) west c) east d) north e) south E
7 102 Rotation with Constant Angular Acceleration! The same equations hold as for constant linear acceleration.! Simply change linear quantities to angular ones.! Eqns and are the basic equations: all others can be derived from them Relating the Linear and Angular Variables! Linear and angular variables are related by r, the perpendicular distance from the rotational axis! Position (note! must be in radians):!! is the angular position! Speed:! # is the angular velocity (in radians / s)! The Period (in s) is given by: T = 2"r v = 2"r #r = 2" #
8 103 Relating the Linear and Angular Variables! Tangential acceleration, a t :! $ angular acceleration (radians / s 2 ):! Radial acceleration, a r, can be written in terms of angular velocity: An insect rides the rim of a rotating merrygoround. If the angular speed, #, of the system (i.e. merrygoround + insect) is constant, does the insect have: (a) Radial acceleration? (b) Tangential acceleration? If # is decreasing, does the insect have: (c) Radial acceleration? (d) Tangential acceleration? #
9 104 Kinetic Energy of Rotation! Kinetic energy, summing over all the particles: K = % &m i v 2 i! But for rotation each point has a different velocity???! Write velocity in terms of angular velocity, i.e. v i =#r i! I=!m i r i 2 is the rotational inertia, or moment of inertia! A constant for a rigid object & given rotational axis! Caution: the axis for I must always be specified 104 Kinetic Energy of Rotation! We write I, the moment of inertia, as:! The axis must always be specified.! And rewrite the kinetic energy, K, as:
10 RMM03VD1: Rotational Kinetic Energy 105 Calculating the Moment of Inertia! Integrating over a continuous body: Eq. (1035)! For many shapes the Moment of Inertia has been calculated for commonly used axes
11 105 Calculating the Moment of Inertia 105 Calculating the Moment of Inertia! Parallelaxis theorem:! For body of mass M, about an axis distance h from a centre of mass axis, with moment of inertia I com! Note the axes must be parallel, and the first must go through the centre of mass! Does not relate the moment of inertias for two arbitrary axes
12 A flat disk, a solid sphere, and a hollow sphere each have the same mass m and radius r. The three objects are arranged so that an axis of rotation passes through the centre of each object. The rotation axis is perpendicular to the plane of the flat disk. Which of the three objects has the largest rotational inertia? a) The solid sphere and hollow sphere have the same rotational inertia and it is the largest. b) The hollow sphere has the largest rotational inertia. c) The solid sphere has the largest rotational inertia. d) The flat disk has the largest rotational inertia. e) The flat disk and hollow sphere have the same rotational inertia and it is the largest Calculating the Rotational Inertia Example Calculate the moment of inertia about an axis through one particle in 2 ways: o (a) Summing by particle: o (b) Use parallelaxis theorem
13 Catastrophic release of Rotational Kinetic Energy! 106 Torque! Force needed to rotate an object depends on! (a) the angle of the force and! (b) where it is applied! Resolve force into components to see how it affects rotation! Only tangential component contributes
14 106 Torque! Torque takes these factors into account:! i.e.! Line extended through the applied force is called the line of action of the force! Perpendicular distance from the line of action to the axis is called the moment arm! Unit of torque is the newtonmetre, N m! Note that 1 J = 1 N m, but torques are never expressed in joules, torque is not energy 106 Torque! Torque is positive if it would cause a counterclockwise rotation, otherwise negative! Net torque or resultant torque is the sum of individual torques
15 The corner of a rectangular piece of wood is attached to a rod that is free to rotate as shown. The length of the longer side of the rectangle is 4.0 m, which is twice the length of the shorter side. Two equal forces are applied to two of the corners with magnitudes of 22 N. What is the magnitude of the net torque and direction of rotation on the block, if any? a) 44 N"m, clockwise b) 44 N"m, counterclockwise c) 88 N"m, clockwise d) 88 N"m, counterclockwise e) zero N"m, no rotation 4m 2m RMM05VD1: Torque 130
16 107 Newton's Second Law for Rotation! Rewrite F = ma with rotational variables: Eq. (1042)! Torque causes angular acceleration Figure Work and Rotational Kinetic Energy! The rotational workkinetic energy theorem states: Eq. (1052)! The work done in a rotation about a fixed axis can be calculated by: Eq. (1053)! Which, for a constant torque, reduces to: Eq. (1054)
17 108 Work and Rotational Kinetic Energy! We can relate work to power with the equation: Eq. (1055) 111 Rolling as Translation and Rotation Combined Straight Line Cycloid
18 RMM07VD1: Rolling Motion 1 min 111 Rolling as Translation and Rotation Combined! Consider only objects that roll smoothly (no slip)! The centre of mass (c.o.m.) of the object moves in a straight line parallel to the surface! The object rotates around the c.o.m. as it moves! The rotational motion is defined by: Eq. (111) # Eq. (112) With " = d# dt
19 111 Rolling as Translation and Rotation Combined! Rolling is a combination of translation and rotation.! Result depends on position on the wheel. Spokes at top blurred as they are moving faster than those at bottom Rolling as Translation and Rotation Combined The rear wheel on a bicycle is half the radius of that of the front wheel. (a) When moving is the linear speed on the top of the rear wheel greater than, less than, or the same as the top of the front wheel? i.e. > or = or < (a) Is the angular speed of the real wheel greater than, equal or less than the front wheel? i.e. > or = or <
20 112 Kinetic Energy of Rolling! Combine translational and rotational kinetic energy: KE of rotation about c.o.m. + KE of translation of c.o.m Forces associated with (smooth) Rolling! If a wheel accelerates, its angular speed changes! Friction must act to prevent slip, f s (static friction) Since v com = "R Then dv com = d" dt dt R i.e. a com = #R where # is the angular acceleration Note: if the wheel does slide then the frictional force is the kinetic friction, f k. The motion is not then smooth and the above equation does not apply.
21 112 Forces associated with smooth Rolling (no slip)! For smooth rolling down a ramp: 1. The gravitational force is vertically down 2. The normal force is perpendicular to the ramp 3. The force of friction points up the slope We make use of the angular version of N2L: Torque " net =I#$ 112 Forces associated with smooth Rolling (no slip) Thus, applying N2L along direction of ramp (x  direction) : f s " Mgsin# = Ma com,x Applying rotational form of N2L about an axis through c.o.m.: Rf s = I com " (the moment arm for the friction force is R; for other forces it is 0) Smoothly rolling, so a com,x = "#R The negative sign because # is positive, but a com,x is negative. a Solve for f s : f s = "I com,x com R 2 gsin# And subsitute to yield : a com,x = " 1+ I com / MR 2
22 113 The YoYo! As a yoyo moves down a string, it loses potential energy mgh but gains rotational and translational kinetic energy! Yoyo accelerating down its string is like a rolling down a ramp: 1. With an angle of Rolling on axle instead of its outer surface 3. Slowed by tension T rather than friction 113 The YoYo gsin" So place " = 90 in a com,x = # 1+ I com / MR 2 g to obtain a com = # 1+ I com / MR with I = 1 2 com 2 MR2 Example Calculate the acceleration of the yoyo: o M = 150 grams, R=2 cm, R 0 = 3 mm, o So I com = MR 2 /2 = 3E5 kg m 2 o Therefore a com = 9.8 m/s 2 / (1 + 3E5 / (0.15 * )) = m/s 2
23 114 Torque Revisited! Previously, torque was defined only for a rotating body and a fixed axis! Now we redefine it for an individual particle that moves along any path relative to a fixed point! The path need not be a circle; torque is now a vector! Direction determined with righthandrule Figure Torque Revisited! The general equation for torque is:! We can also write the magnitude as:! Or, using the perpendicular component of force or the moment arm of F:
24 114 Torque Revisited The position vector r of a particle points along the positive zdirection. (i.e. out of the board remember the right hand rule for xyz and a b) What is the direction of the force that is causing the torque if the torque is (a) Zero (b) In the negative xdirection (c) In the negative ydirection 115 Angular Momentum! Angular momentum is the angular counterpart to linear momentum! Direction given by righthand rule! Perpendicular to both r and p! Magnitude! Particle does need not rotate around O to have angular momentum about it! Unit of angular momentum:! kg m 2 /s, or J s
25 116 Newton's Second Law in Angular Form! We rewrite Newton's second law as:! i.e. Torque is the rate of change of angular momentum! The torque and the angular momentum must be defined with respect to the same point (usually the origin)! Note the similarity to the linear form: 117 Angular Momentum of a Rigid Body! We sum the angular momenta of the particles to find the angular momentum of a system of particles:! The rate of change of the net angular momentum is:! In other words, the net torque is defined by the rate of change of the net angular momentum:! With
26 117 Angular Momentum of a Rigid Body 117 Angular Momentum of a Rigid Body I = 1 2 MR2 I = MR 2 I = 2 5 MR2
27 118 Conservation of Angular Momentum! Since we have a new version of Newton's Second Law, we also have a new conservation law: Eq. (1132)! The law of conservation of angular momentum states that, for an isolated system, (net initial angular momentum) = (net final angular momentum) Eq. (1133) 118 Conservation of Angular Momentum! Since these are vector equations, they are equivalent to the three corresponding scalar equations! This means we can separate axes and write:! If the distribution of mass changes with no external torque, we have:
28 118 Conservation of Angular Momentum Examples! A student spinning on a stool: rotation speeds up when arms are brought in, slows down when arms are extended! A springboard diver: rotational speed is controlled by tucking her arms and legs in, which reduces rotational inertia and increases rotational speed! A long jumper: the angular momentum caused by the torque during the initial jump can be transferred to the rotation of the arms, by windmilling them, keeping the jumper upright
29 118 Conservation of Angular Momentum An insect rides the rim of a rotating disk. As it crawls towards the disk s centre, do the following increase, decrease or stay the same? (a) Moment of Inertia (b) Angular Momentum (c) Angular Speed # 10 Summary Angular Position! Measured around a rotation axis, relative to a reference line: Eq. (101) Angular Displacement A change in angular position Eq. (104) Angular Velocity and Speed Average and instantaneous values: Eq. (105) Angular Acceleration Average and instantaneous values: Eq. (107) Eq. (106) Eq. (108)
30 10 Summary Kinematic Equations Given in Table 101 for constant acceleration Match the linear case Linear and Angular Variables Related Linear and angular displacement, velocity, and acceleration are related by r Rotational Kinetic Energy and Rotational Inertia Eq. (1034) The ParallelAxis Theorem Relate moment of inertia around any parallel axis to value around com axis Eq. (1036) Eq. (1033) 10 Summary Torque Force applied at distance from an axis: Moment arm: perpendicular distance to the rotation axis Work and Rotational Kinetic Energy Eq. (1039) Eq. (1053) Newton's Second Law in Angular Form Eq. (1042) Eq. (1055)
31 11 Summary Rolling Bodies Eq. (112) Eq. (115) Eq. (116) Torque as a Vector! Direction given by the righthand rule Eq. (1114) Angular Momentum of a Particle Newton's Second Law in Angular Form Eq. (1118) Eq. (1123) 11 Summary Angular Momentum of a System of Particles Angular Momentum of a Rigid Body Eq. (1131) Eq. (1126) Eq. (1129) Conservation of Angular Momentum Eq. (1132) Precession of a Gyroscope Eq. (1146) Eq. (1133)
Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.
Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems
More informationPHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013
PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be
More informationPhysics 1A Lecture 10C
Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. Oprah Winfrey Static Equilibrium
More information11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
More informationRotational inertia (moment of inertia)
Rotational inertia (moment of inertia) Define rotational inertia (moment of inertia) to be I = Σ m i r i 2 or r i : the perpendicular distance between m i and the given rotation axis m 1 m 2 x 1 x 2 Moment
More informationCenter of Gravity. We touched on this briefly in chapter 7! x 2
Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.
More informationDynamics of Rotational Motion
Chapter 10 Dynamics of Rotational Motion PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 5_31_2012 Goals for Chapter
More information5.2 Rotational Kinematics, Moment of Inertia
5 ANGULAR MOTION 5.2 Rotational Kinematics, Moment of Inertia Name: 5.2 Rotational Kinematics, Moment of Inertia 5.2.1 Rotational Kinematics In (translational) kinematics, we started out with the position
More informationLecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is
Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.49.6, 10.110.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of
More informationUnit 4 Practice Test: Rotational Motion
Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle
More informationLinear Motion vs. Rotational Motion
Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a
More informationPHYSICS 111 HOMEWORK SOLUTION #10. April 10, 2013
PHYSICS 111 HOMEWORK SOLUTION #10 April 10, 013 0.1 Given M = 4 i + j 3 k and N = i j 5 k, calculate the vector product M N. By simply following the rules of the cross product: i i = j j = k k = 0 i j
More informationPhysics 201 Homework 8
Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 Nm is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kgm 2. What is the
More informationRotation: Moment of Inertia and Torque
Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn
More informationLecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6
Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.
More informationAngular acceleration α
Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 70 Linear and Circular Motion Compared Slide 7 Linear and Circular Kinematics Compared Slide 7
More information3600 s 1 h. 24 h 1 day. 1 day
Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationMidterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
More informationwww.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
More informationPractice Exam Three Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,
More informationPHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013
PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.
More informationRotation. Moment of inertia of a rotating body: w I = r 2 dm
Rotation Moment of inertia of a rotating body: w I = r 2 dm Usually reasonably easy to calculate when Body has symmetries Rotation axis goes through Center of mass Exams: All moment of inertia will be
More informationChapter 8: Rotational Motion of Solid Objects
Chapter 8: Rotational Motion of Solid Objects 1. An isolated object is initially spinning at a constant speed. Then, although no external forces act upon it, its rotational speed increases. This must be
More informationLab 7: Rotational Motion
Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME9472), string with loop at one end and small white bead at the other end (125
More informationNo Brain Too Small PHYSICS. 2 kg
MECHANICS: ANGULAR MECHANICS QUESTIONS ROTATIONAL MOTION (2014;1) Universal gravitational constant = 6.67 10 11 N m 2 kg 2 (a) The radius of the Sun is 6.96 10 8 m. The equator of the Sun rotates at a
More informationPHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
More informationPhysics 41 HW Set 1 Chapter 15
Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,
More informationPHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
More informationPHYS 1014M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
PHYS 1014M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in
More informationPHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
More informationPHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
More informationPhysics 125 Practice Exam #3 Chapters 67 Professor Siegel
Physics 125 Practice Exam #3 Chapters 67 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
More informationIMPORTANT NOTE ABOUT WEBASSIGN:
Week 8 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationRotational Inertia Demonstrator
WWW.ARBORSCI.COM Rotational Inertia Demonstrator P33545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended
More informationTennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an Fgrade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
More informationChapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.
Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed
More informationcharge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the
This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2D collisions, and centerofmass, with some problems requiring
More informationHalliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 131 Newton's Law
More informationLecture Presentation Chapter 7 Rotational Motion
Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class
More informationAcceleration due to Gravity
Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationChapter 24 Physical Pendulum
Chapter 4 Physical Pendulum 4.1 Introduction... 1 4.1.1 Simple Pendulum: Torque Approach... 1 4. Physical Pendulum... 4.3 Worked Examples... 4 Example 4.1 Oscillating Rod... 4 Example 4.3 Torsional Oscillator...
More informationChapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular
More informationChapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis
Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis 21.1 Introduction... 1 21.2 Translational Equation of Motion... 1 21.3 Translational and Rotational Equations of Motion... 1
More information1) The gure below shows the position of a particle (moving along a straight line) as a function of time. Which of the following statements is true?
Physics 2A, Sec C00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to ll your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationChapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
More informationChapter 11 Equilibrium
11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of
More informationLecture L222D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L  D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L3 for
More informationCHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
More informationPhysics 1653 Exam 3  Review Questions
Physics 1653 Exam 3  Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but
More informationAP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s
AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital
More information8.012 Physics I: Classical Mechanics Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE
More informationE X P E R I M E N T 8
E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:
More informationHomework 4. problems: 5.61, 5.67, 6.63, 13.21
Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find
More informationAP Physics: Rotational Dynamics 2
Name: Assignment Due Date: March 30, 2012 AP Physics: Rotational Dynamics 2 Problem A solid cylinder with mass M, radius R, and rotational inertia 1 2 MR2 rolls without slipping down the inclined plane
More informationProblem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITSPilani
Problem 6.40 and 6.4 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITSPilani 6.40 A wheel with fine teeth is attached to the end of a spring with constant k and unstretched length
More informationChapter 7 Homework solutions
Chapter 7 Homework solutions 8 Strategy Use the component form of the definition of center of mass Solution Find the location of the center of mass Find x and y ma xa + mbxb (50 g)(0) + (10 g)(5 cm) x
More informationKINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES
KINEMTICS OF PRTICLES RELTIVE MOTION WITH RESPECT TO TRNSLTING XES In the previous articles, we have described particle motion using coordinates with respect to fixed reference axes. The displacements,
More informationTorque Analyses of a Sliding Ladder
Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform
More informationSample Questions for the AP Physics 1 Exam
Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiplechoice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each
More informationD Alembert s principle and applications
Chapter 1 D Alembert s principle and applications 1.1 D Alembert s principle The principle of virtual work states that the sum of the incremental virtual works done by all external forces F i acting in
More informationPHYSICS 149: Lecture 15
PHYSICS 149: Lecture 15 Chapter 6: Conservation of Energy 6.3 Kinetic Energy 6.4 Gravitational Potential Energy Lecture 15 Purdue University, Physics 149 1 ILQ 1 Mimas orbits Saturn at a distance D. Enceladus
More informationMechanics 2. Revision Notes
Mechanics 2 Revision Notes November 2012 Contents 1 Kinematics 3 Constant acceleration in a vertical plane... 3 Variable acceleration... 5 Using vectors... 6 2 Centres of mass 8 Centre of mass of n particles...
More informationChapter 13. Gravitation
Chapter 13 Gravitation 13.2 Newton s Law of Gravitation In vector notation: Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the gravitational constant. G = 6.67
More informationNewton s Laws of Motion
Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first
More informationSo if ω 0 increases 3fold, the stopping angle increases 3 2 = 9fold.
Name: MULTIPLE CHOICE: Questions 111 are 5 points each. 1. A safety device brings the blade of a power mower from an angular speed of ω 1 to rest in 1.00 revolution. At the same constant angular acceleration,
More informationTorque and Rotary Motion
Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straightforward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,
More informationTIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.
More informationFundamental Mechanics: Supplementary Exercises
Phys 131 Fall 2015 Fundamental Mechanics: Supplementary Exercises 1 Motion diagrams: horizontal motion A car moves to the right. For an initial period it slows down and after that it speeds up. Which of
More informationVELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
More informationPhysics 126 Practice Exam #3 Professor Siegel
Physics 126 Practice Exam #3 Professor Siegel Name: Lab Day: 1. Which one of the following statements concerning the magnetic force on a charged particle in a magnetic field is true? A) The magnetic force
More informationCh 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79
Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life?  car brakes  driving around a turn  walking  rubbing your hands together
More informationLab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
More informationChapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
More informationExam 3 Review Questions PHY Exam 3
Exam 3 Review Questions PHY 2425  Exam 3 Section: 8 1 Topic: Conservation of Linear Momentum Type: Numerical 1 An automobile of mass 1300 kg has an initial velocity of 7.20 m/s toward the north and a
More informationCentripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.
Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.
More informationA ball, attached to a cord of length 1.20 m, is set in motion so that it is swinging backwards and forwards like a pendulum.
MECHANICS: SIMPLE HARMONIC MOTION QUESTIONS THE PENDULUM (2014;2) A pendulum is set up, as shown in the diagram. The length of the cord attached to the bob is 1.55 m. The bob has a mass of 1.80 kg. The
More informationChapter 6 Circular Motion
Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example
More informationHalliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 131 Newton's Law
More informationLecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
More informationMechanics lecture 7 Moment of a force, torque, equilibrium of a body
G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and
More informationBHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.
BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (15641642): 1 st true scientist and 1 st person to use
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
More informationPhysics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.
Physics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and noncontact forces. Whats a
More informationForce on Moving Charges in a Magnetic Field
[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after
More informationReview Assessment: Lec 02 Quiz
COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationChapter 11 Work. Chapter Goal: To develop a deeper understanding of energy and its conservation Pearson Education, Inc.
Chapter 11 Work Chapter Goal: To develop a deeper understanding of energy and its conservation. Motivation * * There are also ways to gain or lose energy that are thermal, but we will not study these in
More informationPhysics 11 Assignment KEY Dynamics Chapters 4 & 5
Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problemsolving questions, draw appropriate free body diagrams and use the aforementioned problemsolving method.. Define the following
More informationFall 12 PHY 122 Homework Solutions #8
Fall 12 PHY 122 Homework Solutions #8 Chapter 27 Problem 22 An electron moves with velocity v= (7.0i  6.0j)10 4 m/s in a magnetic field B= (0.80i + 0.60j)T. Determine the magnitude and direction of the
More informationNewton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.
Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:
More informationPhysics 1120: Simple Harmonic Motion Solutions
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured
More information7. Kinetic Energy and Work
Kinetic Energy: 7. Kinetic Energy and Work The kinetic energy of a moving object: k = 1 2 mv 2 Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic
More information3 Work, Power and Energy
3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy
More informationCh 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43
Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state
More informationHW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 1030 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 1033 ). The bullet emerges from the
More informationConceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions
Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge
More information