Confidence Intervals and Sample Size


 Dorcas Shields
 10 months ago
 Views:
Transcription
1 8/7/015 C H A P T E R S E V E N Cofidece Itervals ad Copyright 015 The McGrawHill Compaies, Ic. Permissio required for reproductio or display. 1 Cofidece Itervals ad Outlie 71 Cofidece Itervals for the Mea Whe Is Kow 7 Cofidece Itervals for the Mea Whe Is Ukow 73 for Proportios 74 Cofidece Itervals for Variaces ad Stadard Deviatios CHAPTER 7 Learig Objectives 1 Fid the cofidece iterval for the mea whe is kow. Determie the miimum sample size for fidig a cofidece iterval for the mea. 3 Fid the cofidece iterval for the mea whe is ukow. 4 Fid the cofidece iterval for a proportio. 5 Determie the miimum sample size for fidig a cofidece iterval for a proportio. 6 Fid a cofidece iterval for a variace ad a stadard deviatio. Copyright 015 The McGrawHill Educatio. Compaies, Permissio Ic. Permissio required required for reproductio for reproductio or display. or display Cofidece Itervals for the Mea Whe Is Kow A poit estimate is a specific umerical value estimate of a parameter. The best poit estimate of the populatio mea µ is the sample mea X. Three Properties of a Good Estimator 1. The estimator should be a ubiased estimator. That is, the expected value or the mea of the estimates obtaied from samples of a give size is equal to the parameter beig estimated. Three Properties of a Good Estimator. The estimator should be cosistet. For a cosistet estimator, as sample size icreases, the value of the estimator approaches the value of the parameter estimated
2 8/7/015 Three Properties of a Good Estimator 3. The estimator should be a relatively efficiet estimator; that is, of all the statistics that ca be used to estimate a parameter, the relatively efficiet estimator has the smallest variace. Cofidece Itervals for the Mea Whe Is Kow A iterval estimate of a parameter is a iterval or a rage of values used to estimate the parameter. This estimate may or may ot cotai the value of the parameter beig estimated. Cofidece Level of a Iterval Estimate The cofidece level of a iterval estimate of a parameter is the probability that the iterval estimate will cotai the parameter, assumig that a large umber of samples are selected ad that the estimatio process o the same parameter is repeated Cofidece Iterval A cofidece iterval is a specific iterval estimate of a parameter determied by usig data obtaied from a sample ad by usig the specific cofidece level of the estimate. Formula for the Cofidece Iterval of the Mea for a Specific a X za/ X za/ For a 90% cofidece iterval: z a / 1.65 For a 95% cofidece iterval: z a / 1.96 For a 99% cofidece iterval: z a /.58 Margi of error The margi of error, also called the maximum error of the estimate, is the maximum likely differece betwee the poit estimate of a parameter ad the actual value of the parameter Bluma, 1
3 8/7/015 95% Cofidece Iterval of the Mea Cofidece Iterval for a Mea Roudig Rule Whe you are computig a cofidece iterval for a populatio mea by usig raw data, roud off to oe more decimal place tha the umber of decimal places i the origial data. Whe you are computig a cofidece iterval for a populatio mea by usig a sample mea ad a stadard deviatio, roud off to the same umber of decimal places as give for the mea. Sectio 71 Example 71 Page # Example 71: Days to Sell a Aveo A researcher wishes to estimate the umber of days it takes a automobile dealer to sell a Chevrolet Aveo. A sample of 50 cars had a mea time o the dealer s lot of 54 days. Assume the populatio stadard deviatio to be 6.0 days. Fid the best poit estimate of the populatio mea ad the 95% cofidece iterval of the populatio mea. The best poit estimate of the mea is 54 days. X 54, 6.0, 50,95% z 1.96 X z X z a a Example 71: Days to Sell a Aveo X 54, 6.0, 50,95% z 1.96 X z X z a a Oe ca say with 95% cofidece that the iterval betwee 5 ad 56 days cotais the populatio mea, based o a sample of 50 automobiles. Sectio 71 Example 7 Page #
4 8/7/015 Example 7: Number of Customers A large departmet store foud that it averages 36 customers per hour. Assume that the stadard deviatio is 9.6 ad a radom sample of 40 hours was used to determie the average. Fid the 99% cofidece iterval of the populatio mea. Example 7: Number of Customers 95% Cofidece Iterval of the Mea Hece, oe ca be 99% cofidet (roudig values) that the mea umber of customers that the store averages is betwee 350 ad 374 customers per hour % Cofidece Iterval of the Mea Fidig z a for 98% CL. Sectio 71 z a.33 Example 73 Page #
5 8/7/015 Example 73: Credit Uio Assets The followig data represet a sample of the assets (i millios of dollars) of 30 credit uios i southwester Pesylvaia. Fid the 90% cofidece iterval of the mea Example 73: Credit Uio Assets Step 1: Fid the mea ad stadard deviatio. Usig techology, we fid X = ad s = Assume Step : Fid α/. 90% CL α/ = Step 3: Fid z α/. 90% CL α/ = 0.05 z.05 = 1.65 Example 73: Credit Uio Assets Step 4: Substitute i the formula. X z X z a a Oe ca be 90% cofidet that the populatio mea of the assets of all credit uios is betwee $6.75 millio ad $ millio, based o a sample of 30 credit uios Commet to computers ad calculator users This chapter ad subsequet chapters iclude examples usig raw data. If you are usig computer or calculator programs to fid the solutios, the aswers you get may vary somewhat from the oes give i the textbook. This is so because computers ad calculators do ot roud the aswers i the itermediate steps ad ca use 1 or more decimal places for computatio. Also, they use more exact values tha those give i the tables i the back of this book. These discrepacies are part ad parcel of statistics. Formula for Miimum Needed for a Iterval Estimate of the Populatio Mea z a where E is the margi of error. If ecessary, roud the aswer up to obtai a whole umber. That is, if there is ay fractio or decimal portio i the aswer, use the ext whole umber for sample size. E Sectio 71 Example 74 Page #
6 8/7/015 Example 74: Depth of a River A scietist wishes to estimate the average depth of a river. He wats to be 99% cofidet that the estimate is accurate withi feet. From a previous study, the stadard deviatio of the depths measured was 4.33 feet. How large a sample is required? a = 0.01(or , za/ =,58 ad E = z a E Therefore, to be 99% cofidet that the estimate is withi feet of the true mea depth, the scietist eeds at least a sample of 3 measuremets Cofidece Itervals for the Mea Whe Is Ukow The value of, whe it is ot kow, must be estimated by usig s, the stadard deviatio of the sample. Whe s is used, especially whe the sample size is small (less tha 30), critical values greater tha the values for z a are used i cofidece itervals i order to keep the iterval at a give level, such as the 95%. These values are take from the Studet t distributio, most ofte called the t distributio. Characteristics of the t Distributio The t distributio is similar to the stadard ormal distributio i these ways: 1. It is bellshaped.. It is symmetric about the mea. 3. The mea, media, ad mode are equal to 0 ad are located at the ceter of the distributio. 4. The curve ever touches the x axis Characteristics of the t Distributio The t distributio differs from the stadard ormal distributio i the followig ways: 1. The variace is greater tha 1.. The t distributio is actually a family of curves based o the cocept of degrees of freedom, which is related to sample size. 3. As the sample size icreases, the t distributio approaches the stadard ormal distributio. Degrees of Freedom The symbol d.f. will be used for degrees of freedom. The degrees of freedom for a cofidece iterval for the mea are foud by subtractig 1 from the sample size. That is, d.f. = 1. Note: For some statistical tests used later i this book, the degrees of freedom are ot equal to 1. Sectio 7 Example 75 Page #
7 8/7/015 Example 75: Usig Table F Fid the t α/ value for a 95% cofidece iterval whe the sample size is. Degrees of freedom are d.f. = 1. Formula for a Specific Cofidece Iterval for the Mea Whe Is Ukow ad < 30 s s X ta X ta The degrees of freedom are 1. Sectio 7 Example 76 Page # Example 76: Ifat Growth A radom sample of 10 childre foud that their average growth for the first year was 9.8 iches. Assume the variable is ormally distributed ad the sample stadard deviatio is 0.96 ich. Fid the 95% cofidece iterval of the populatio mea for growth durig the first year. Therefore, oe ca be 95% cofidet that the populatio mea of the firstyear growth is betwee 9.11 ad iches Sectio 7 Example 77 Page #377 Example 77: Home Fires by Cadles The data represet a sample of the umber of home fires started by cadles for the past several years. Fid the 99% cofidece iterval for the mea umber of home fires started by cadles each year Step 1: Fid the mea ad stadard deviatio. The mea is X = ad stadard deviatio s = Step : Fid t α/ i Table F. The cofidece level is 99%, ad the degrees of freedom d.f. = 6 t.005 =
8 8/7/015 Example 77: Home Fires by Cadles Step 3: Substitute i the formula. s s X ta X ta Oe ca be 99% cofidet that the populatio mea umber of home fires started by cadles each year is betwee ad 997.6, based o a sample of home fires occurrig over a period of 7 years. 7.3 for Proportios p = populatio proportio ˆp (read p hat ) = sample proportio For a sample proportio, X X pˆ ad qˆ or qˆ 1 pˆ where X = umber of sample uits that possess the characteristics of iterest ad = sample size. Sectio 73 Example 78 Page # Example 78: Drivig to Work A radom sample of 00 workers foud that 18 drove to work aloe. Fid ˆp ad ˆq where ˆp is the proportio of workers who drove to work aloe. Sice X = 18 ad = % of the people i the survey drive to work aloe, ad 36% drive with others. Formula for a Specific Cofidece Iterval for a Proportio pq ˆ ˆ pˆ z p pˆ z whe p 5 ad q 5. a a pq ˆ ˆ Roudig Rule: Roud off to three decimal places. Sectio 73 Example 79 Page #
9 8/7/015 Example 79: Coverig College Costs A survey coducted by Sallie Mae ad Gallup of 1404 respodets foud that 33 studets paid for their educatio by studet loas. Fid the 90% cofidece of the true proportio of studets who paid for their educatio by studet loas. Example 79: Coverig College Costs Sice α = = 0.10, z α/ = Example 79: Coverig College Costs You ca be 90% cofidet that the percetage of studets who pay for their college educatio by studet loas is betwee 1.1 ad 4.9%. Determie ˆp ad ˆq Determie the critical value Sectio 73 Example 710 Page #384 Example 710: Law weeds A survey of 1898 people foud that 45% of the adults said that dadelios were the toughest weeds to cotrol i their yards. Fid the 95% cofidece iterval of the true proportio who said that dadelios were the toughest weeds to cotrol i their yards You ca say with 95% cofidece that the percetage of adults who cosider dadelios the toughest weeds to cotrol to be betwee 4.8% ad 47.% Formula for Miimum Needed for Iterval Estimate of a Populatio Proportio z ˆˆ a pq E If ecessary, roud up to the ext whole umber
10 8/7/015 Sectio 73 Example 711 Page #386 Example 711: Home Computers A researcher wishes to estimate, with 95% cofidece, the proportio of people who ow a home computer. A previous study shows that 40% of those iterviewed had a computer at home. The researcher wishes to be accurate withi % of the true proportio. Fid the miimum sample size ecessary. z 1.96 ˆˆ a pq E 0.0 The researcher should iterview a sample of at least 305 people. Sectio 73 Example 71 Page # Example 71: Home Computers I Example 711 assume that o pervious study was doe. Fid the miimum sample size ecessary to be accurate withi % of the true populatio. Here ˆp = 0.5 ad ˆq = people must be iterviewed whe ˆp is ukow. This is 96 more people eeded if ˆp is kow 74 Cofidece Itervals for Variaces ad Stadard Deviatios Whe products that fit together (such as pipes) are maufactured, it is importat to keep the variatios of the diameters of the products as small as possible; otherwise, they will ot fit together properly ad will have to be scrapped. I the maufacture of medicies, the variace ad stadard deviatio of the medicatio i the pills play a importat role i makig sure patiets receive the proper dosage. For these reasos, cofidece itervals for variaces ad stadard deviatios are ecessary. ChiSquare Distributios The chisquare distributio must be used to calculate cofidece itervals for variaces ad stadard deviatios. The chisquare variable is similar to the t variable i that its distributio is a family of curves based o the umber of degrees of freedom. The symbol for chisquare is (Greek letter chi, proouced ki ). A chisquare variable caot be egative, ad the distributios are skewed to the right
11 8/7/015 ChiSquare Distributios At about 100 degrees of freedom, the chisquare distributio becomes somewhat symmetric. The area uder each chisquare distributio is equal to 1.00, or 100%. Example 713: Usig Table G Use the 0.95 ad 0.05 colums ad the row correspodig to 4 d.f. i Table G. Sectio 74 Example 713 Page #393 The value is ; the value is right left Example 713: Usig Table G Fid the values for right ad left for a 90% cofidece iterval whe = 5. To fid right, subtract = Divide by to get To fid left, subtract to get Formula for the Cofidece Iterval for a Variace 1 s 1 s, d.f. = 1 right Formula for the Cofidece Iterval for a Stadard Deviatio 1 s 1 s, d.f. = 1 right left left Cofidece Iterval for a Variace or Stadard Deviatio Roudig Rule Whe you are computig a cofidece iterval for a populatio variace or stadard deviatio by usig raw data, roud off to oe more decimal places tha the umber of decimal places i the origial data. Whe you are computig a cofidece iterval for a populatio variace or stadard deviatio by usig a sample variace or stadard deviatio, roud off to the same umber of decimal places as give for the sample variace or stadard deviatio
12 8/7/015 Sectio 74 Example 714 Page #40 Example 714: Nicotie Cotet Fid the 95% cofidece iterval for the variace ad stadard deviatio of the icotie cotet of cigarettes maufactured if a sample of 0 cigarettes has a stadard deviatio of 1.6 milligrams. To fid right, subtract = Divide by to get To fid left, subtract to get I Table G, the 0.05 ad colums with the d.f. 19 row yield values of 3.85 ad 8.907, respectively. Example 714: Nicotie Cotet 1 s 1 s right left You ca be 95% cofidet that the true variace for the icotie cotet is betwee 1.5 ad 5.5 milligrams You ca be 95% cofidet that the true stadard deviatio is betwee 1. ad.3 milligrams Sectio 74 Example 715 Page #395 Example 715: Named Storms Fid the 90% cofidece iterval for the variace ad stadard deviatio for the umber of amed storms per year i the Atlatic basi. A radom sample of 10 years has bee used. Assume the distributio is approximately ormal Usig techology, we fid the variace of the data is s = I Table G, the 0.05 ad 0.95 colums with the d.f. 9 row yield a value of ad 3.35, respectively. Example 715: Named Storms You ca be 90% cofidet that the true variace for the cost of ski lift tickets is betwee 15.0 ad You ca be 95% cofidet that the stadard deviatio is betwee 3.0 ad 6.8 for amed storms i a sample 10 years
Chapter 7: Confidence Interval and Sample Size
Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum
More informationCh 7.1 pg. 364 #11, 13, 15, 17, 19, 21, 23, 25
Math 7 Elemetary Statistics: A Brief Versio, 5/e Bluma Ch 7.1 pg. 364 #11, 13, 15, 17, 19, 1, 3, 5 11. Readig Scores: A sample of the readig scores of 35 fifthgraders has a mea of 8. The stadard deviatio
More informationConfidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.
Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).
More information3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average
5/8/013 C H 3A P T E R Outlie 3 1 Measures of Cetral Tedecy 3 Measures of Variatio 3 3 3 Measuresof Positio 3 4 Exploratory Data Aalysis Copyright 013 The McGraw Hill Compaies, Ic. C H 3A P T E R Objectives
More informationReview for Test 3. b. Construct the 90% and 95% confidence intervals for the population mean. Interpret the CIs.
Review for Test 3 1 From a radom sample of 36 days i a recet year, the closig stock prices of Hasbro had a mea of $1931 From past studies we kow that the populatio stadard deviatio is $237 a Should you
More informationConfidence Intervals
Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more
More informationDetermining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
More informationPractice Problems for Test 3
Practice Problems for Test 3 Note: these problems oly cover CIs ad hypothesis testig You are also resposible for kowig the samplig distributio of the sample meas, ad the Cetral Limit Theorem Review all
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationReview for 1 sample CI Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review for 1 sample CI Name MULTIPLE CHOICE. Choose the oe alterative that best completes the statemet or aswers the questio. Fid the margi of error for the give cofidece iterval. 1) A survey foud that
More informationCHAPTER 7: Central Limit Theorem: CLT for Averages (Means)
CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationUsing Excel to Construct Confidence Intervals
OPIM 303 Statistics Ja Stallaert Usig Excel to Costruct Cofidece Itervals This hadout explais how to costruct cofidece itervals i Excel for the followig cases: 1. Cofidece Itervals for the mea of a populatio
More information1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More informationLesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) types of data scatter plots measure of directio measure of stregth Computatio covariatio of X ad Y uique variatio i X ad Y measurig
More informationOverview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals
Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of
More informationStat 104 Lecture 2. Variables and their distributions. DJIA: monthly % change, 2000 to Finding the center of a distribution. Median.
Stat 04 Lecture Statistics 04 Lecture (IPS. &.) Outlie for today Variables ad their distributios Fidig the ceter Measurig the spread Effects of a liear trasformatio Variables ad their distributios Variable:
More informationMeasures of Central Tendency
Measures of Cetral Tedecy A studet s grade will be determied by exam grades ( each exam couts twice ad there are three exams, HW average (couts oce, fial exam ( couts three times. Fid the average if the
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationZTEST / ZSTATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown
ZTEST / ZSTATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large TTEST / TSTATISTIC: used to test hypotheses about
More informationKey Ideas Section 81: Overview hypothesis testing Hypothesis Hypothesis Test Section 82: Basics of Hypothesis Testing Null Hypothesis
Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, Pvalue Type I Error, Type II Error, Sigificace Level, Power Sectio 81: Overview Cofidece Itervals (Chapter 7) are
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationStatistical inference: example 1. Inferential Statistics
Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either
More informationMath C067 Sampling Distributions
Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters
More informationx : X bar Mean (i.e. Average) of a sample
A quick referece for symbols ad formulas covered i COGS14: MEAN OF SAMPLE: x = x i x : X bar Mea (i.e. Average) of a sample x i : X sub i This stads for each idividual value you have i your sample. For
More information5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
More informationSampling Distribution And Central Limit Theorem
() Samplig Distributio & Cetral Limit Samplig Distributio Ad Cetral Limit Samplig distributio of the sample mea If we sample a umber of samples (say k samples where k is very large umber) each of size,
More informationOnesample test of proportions
Oesample test of proportios The Settig: Idividuals i some populatio ca be classified ito oe of two categories. You wat to make iferece about the proportio i each category, so you draw a sample. Examples:
More informationLesson 15 ANOVA (analysis of variance)
Outlie Variability betwee group variability withi group variability total variability Fratio Computatio sums of squares (betwee/withi/total degrees of freedom (betwee/withi/total mea square (betwee/withi
More information15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011
15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes highdefiitio
More informationCenter, Spread, and Shape in Inference: Claims, Caveats, and Insights
Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the
More informationStandard Errors and Confidence Intervals
Stadard Errors ad Cofidece Itervals Itroductio I the documet Data Descriptio, Populatios ad the Normal Distributio a sample had bee obtaied from the populatio of heights of 5yearold boys. If we assume
More informationStatistical Methods. Chapter 1: Overview and Descriptive Statistics
Geeral Itroductio Statistical Methods Chapter 1: Overview ad Descriptive Statistics Statistics studies data, populatio, ad samples. Descriptive Statistics vs Iferetial Statistics. Descriptive Statistics
More informationThis document contains a collection of formulas and constants useful for SPC chart construction. It assumes you are already familiar with SPC.
SPC Formulas ad Tables 1 This documet cotais a collectio of formulas ad costats useful for SPC chart costructio. It assumes you are already familiar with SPC. Termiology Geerally, a bar draw over a symbol
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More informationRepeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.
5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers
More informationAQA STATISTICS 1 REVISION NOTES
AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if
More informationExample Consider the following set of data, showing the number of times a sample of 5 students check their per day:
Sectio 82: Measures of cetral tedecy Whe thikig about questios such as: how may calories do I eat per day? or how much time do I sped talkig per day?, we quickly realize that the aswer will vary from day
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More informationSTATISTICAL METHODS FOR BUSINESS
STATISTICAL METHODS FOR BUSINESS UNIT 7: INFERENTIAL TOOLS. DISTRIBUTIONS ASSOCIATED WITH SAMPLING 7.1. Distributios associated with the samplig process. 7.2. Iferetial processes ad relevat distributios.
More informationEstimating the Mean and Variance of a Normal Distribution
Estimatig the Mea ad Variace of a Normal Distributio Learig Objectives After completig this module, the studet will be able to eplai the value of repeatig eperimets eplai the role of the law of large umbers
More informationNormal Distribution.
Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued
More information7. Sample Covariance and Correlation
1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y
More informationGCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.
GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea  add up all
More informationPSYCHOLOGICAL STATISTICS
UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics
More informationResearch Method (I) Knowledge on Sampling (Simple Random Sampling)
Research Method (I) Kowledge o Samplig (Simple Radom Samplig) 1. Itroductio to samplig 1.1 Defiitio of samplig Samplig ca be defied as selectig part of the elemets i a populatio. It results i the fact
More informationCHAPTER 11 Financial mathematics
CHAPTER 11 Fiacial mathematics I this chapter you will: Calculate iterest usig the simple iterest formula ( ) Use the simple iterest formula to calculate the pricipal (P) Use the simple iterest formula
More informationMultiserver Optimal Bandwidth Monitoring for QoS based Multimedia Delivery Anup Basu, Irene Cheng and Yinzhe Yu
Multiserver Optimal Badwidth Moitorig for QoS based Multimedia Delivery Aup Basu, Iree Cheg ad Yizhe Yu Departmet of Computig Sciece U. of Alberta Architecture Applicatio Layer Request receptio coectio
More information0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9%
Sectio 10 Aswer Key: 0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9% 1) A simple radom sample of New Yorkers fids that 87 are
More information9.8: THE POWER OF A TEST
9.8: The Power of a Test CD91 9.8: THE POWER OF A TEST I the iitial discussio of statistical hypothesis testig, the two types of risks that are take whe decisios are made about populatio parameters based
More informationBasic Elements of Arithmetic Sequences and Series
MA40S PRECALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic
More informationSTA 2023 Practice Questions Exam 2 Chapter 7 sec 9.2. Case parameter estimator standard error Estimate of standard error
STA 2023 Practice Questios Exam 2 Chapter 7 sec 9.2 Formulas Give o the test: Case parameter estimator stadard error Estimate of stadard error Samplig Distributio oe mea x s t (1) oe p ( 1 p) CI: prop.
More informationDescriptive statistics deals with the description or simple analysis of population or sample data.
Descriptive statistics Some basic cocepts A populatio is a fiite or ifiite collectio of idividuals or objects. Ofte it is impossible or impractical to get data o all the members of the populatio ad a small
More informationChapter 10. Hypothesis Tests Regarding a Parameter. 10.1 The Language of Hypothesis Testing
Chapter 10 Hypothesis Tests Regardig a Parameter A secod type of statistical iferece is hypothesis testig. Here, rather tha use either a poit (or iterval) estimate from a simple radom sample to approximate
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More informationhp calculators HP 12C Statistics  average and standard deviation Average and standard deviation concepts HP12C average and standard deviation
HP 1C Statistics  average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics
More informationHypergeometric Distributions
7.4 Hypergeometric Distributios Whe choosig the startig lieup for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you
More information, a Wishart distribution with n 1 degrees of freedom and scale matrix.
UMEÅ UNIVERSITET Matematiskstatistiska istitutioe Multivariat dataaalys D MSTD79 PA TENTAMEN 00409 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multivariat dataaalys D, 5 poäg.. Assume that
More informationChapter 7  Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7  Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
More informationStatistical Inference: Hypothesis Testing for Single Populations
Chapter 9 Statistical Iferece: Hypothesis Testig for Sigle Populatios A foremost statistical mechaism for decisio makig is the hypothesis test. The cocept of hypothesis testig lies at the heart of iferetial
More informationMEP Pupil Text 9. The mean, median and mode are three different ways of describing the average.
9 Data Aalysis 9. Mea, Media, Mode ad Rage I Uit 8, you were lookig at ways of collectig ad represetig data. I this uit, you will go oe step further ad fid out how to calculate statistical quatities which
More information1 Hypothesis testing for a single mean
BST 140.65 Hypothesis Testig Review otes 1 Hypothesis testig for a sigle mea 1. The ull, or status quo, hypothesis is labeled H 0, the alterative H a or H 1 or H.... A type I error occurs whe we falsely
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationInference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval
Chapter 8 Tests of Statistical Hypotheses 8. Tests about Proportios HT  Iferece o Proportio Parameter: Populatio Proportio p (or π) (Percetage of people has o health isurace) x Statistic: Sample Proportio
More informationThis is arithmetic average of the x values and is usually referred to simply as the mean.
prepared by Dr. Adre Lehre, Dept. of Geology, Humboldt State Uiversity http://www.humboldt.edu/~geodept/geology51/51_hadouts/statistical_aalysis.pdf STATISTICAL ANALYSIS OF HYDROLOGIC DATA This hadout
More informationCOMPARISON OF THE EFFICIENCY OF SCONTROL CHART AND EWMAS 2 CONTROL CHART FOR THE CHANGES IN A PROCESS
COMPARISON OF THE EFFICIENCY OF SCONTROL CHART AND EWMAS CONTROL CHART FOR THE CHANGES IN A PROCESS Supraee Lisawadi Departmet of Mathematics ad Statistics, Faculty of Sciece ad Techoology, Thammasat
More informationTI83, TI83 Plus or TI84 for NonBusiness Statistics
TI83, TI83 Plu or TI84 for NoBuie Statitic Chapter 3 Eterig Data Pre [STAT] the firt optio i already highlighted (:Edit) o you ca either pre [ENTER] or. Make ure the curor i i the lit, ot o the lit
More informationTHE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
More informationA Guide to the Pricing Conventions of SFE Interest Rate Products
A Guide to the Pricig Covetios of SFE Iterest Rate Products SFE 30 Day Iterbak Cash Rate Futures Physical 90 Day Bak Bills SFE 90 Day Bak Bill Futures SFE 90 Day Bak Bill Futures Tick Value Calculatios
More informationLECTURE 13: Crossvalidation
LECTURE 3: Crossvalidatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Threeway data partitioi Itroductio to Patter Aalysis Ricardo GutierrezOsua Texas A&M
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationNow here is the important step
LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"
More informationProbability & Statistics Chapter 9 Hypothesis Testing
I Itroductio to Probability & Statistics A statisticia s most importat job is to draw ifereces about populatios based o samples take from the populatio Methods for drawig ifereces about parameters: ) Make
More informationUSING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR
USING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR Objective:. Improve calculator skills eeded i a multiple choice statistical eamiatio where the eam allows the studet to use a scietific calculator..
More informationUnit 8: Inference for Proportions. Chapters 8 & 9 in IPS
Uit 8: Iferece for Proortios Chaters 8 & 9 i IPS Lecture Outlie Iferece for a Proortio (oe samle) Iferece for Two Proortios (two samles) Cotigecy Tables ad the χ test Iferece for Proortios IPS, Chater
More informationChapter 10 Student Lecture Notes 101
Chapter 0 tudet Lecture Notes 0 Basic Busiess tatistics (9 th Editio) Chapter 0 Twoample Tests with Numerical Data 004 PreticeHall, Ic. Chap 0 Chapter Topics Comparig Two Idepedet amples Z test for
More informationwhere: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return
EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationTopic 5: Confidence Intervals (Chapter 9)
Topic 5: Cofidece Iterval (Chapter 9) 1. Itroductio The two geeral area of tatitical iferece are: 1) etimatio of parameter(), ch. 9 ) hypothei tetig of parameter(), ch. 10 Let X be ome radom variable with
More informationASSUMPTIONS/CONDITIONS FOR HYPOTHESIS TESTS and CONFIDENCE INTERVALS
ASSUMPTIONS/CONDITIONS FOR HYPOTHESIS TESTS ad CONFIDENCE INTERVALS Oe of the importat tak whe applyig a tatitical tet (or cofidece iterval) i to check that the aumptio of the tet are ot violated. Oeample
More informationOutput Analysis (2, Chapters 10 &11 Law)
B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should
More informationCHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
More informationQuadrat Sampling in Population Ecology
Quadrat Samplig i Populatio Ecology Backgroud Estimatig the abudace of orgaisms. Ecology is ofte referred to as the "study of distributio ad abudace". This beig true, we would ofte like to kow how may
More informationDescriptive Statistics Summary Tables
Chapter 201 Descriptive Statistics Summary Tables Itroductio This procedure is used to summarize cotiuous data. Large volumes of such data may be easily summarized i statistical tables of meas, couts,
More informationQuadratics  Revenue and Distance
9.10 Quadratics  Reveue ad Distace Objective: Solve reveue ad distace applicatios of quadratic equatios. A commo applicatio of quadratics comes from reveue ad distace problems. Both are set up almost
More information3. Covariance and Correlation
Virtual Laboratories > 3. Expected Value > 1 2 3 4 5 6 3. Covariace ad Correlatio Recall that by takig the expected value of various trasformatios of a radom variable, we ca measure may iterestig characteristics
More informationMEI Structured Mathematics. Module Summary Sheets. Statistics 2 (Version B: reference to new book)
MEI Mathematics i Educatio ad Idustry MEI Structured Mathematics Module Summary Sheets Statistics (Versio B: referece to ew book) Topic : The Poisso Distributio Topic : The Normal Distributio Topic 3:
More informationCS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible sixfigure salaries i whole dollar amouts are there that cotai at least
More informationUnit 20 Hypotheses Testing
Uit 2 Hypotheses Testig Objectives: To uderstad how to formulate a ull hypothesis ad a alterative hypothesis about a populatio proportio, ad how to choose a sigificace level To uderstad how to collect
More informationMathematical goals. Starting points. Materials required. Time needed
Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios
More informationCHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
More informationHypothesis testing: one sample
Hypothesis testig: oe sample Describig iformatios Flowchart for QMS 202 Drawig coclusios Forecastig Improve busiess processes Data Collectio Probability & Probability Distributio Regressio Aalysis Timeseries
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationGregory Carey, 1998 Linear Transformations & Composites  1. Linear Transformations and Linear Composites
Gregory Carey, 1998 Liear Trasformatios & Composites  1 Liear Trasformatios ad Liear Composites I Liear Trasformatios of Variables Meas ad Stadard Deviatios of Liear Trasformatios A liear trasformatio
More informationConfidence intervals and hypothesis tests
Chapter 2 Cofidece itervals ad hypothesis tests This chapter focuses o how to draw coclusios about populatios from sample data. We ll start by lookig at biary data (e.g., pollig), ad lear how to estimate
More information