Stat 104 Lecture 16. Statistics 104 Lecture 16 (IPS 6.1) Confidence intervals  the general concept


 Clare Goodman
 2 years ago
 Views:
Transcription
1 Statistics 104 Lecture 16 (IPS 6.1) Outlie for today Cofidece itervals Cofidece itervals for a mea, µ (kow σ) Cofidece itervals for a proportio, p Margi of error ad sample size Review of mai topics for the exam Cofidece itervals  the geeral cocept We wat to make a statemet (iferece) about a populatio parameter (e.g. µ or p; ukow value) usig iformatio from observed sample data (statistic; a estimate such as x or pˆ ) The geeral form of a cofidece iterval is Poit estimate + margi of error or more specifically Poit estimate + (z quatile) x (SD of estimate) (Lower cofidece limit, Upper cofidece limit) 1 2 Cofidece itervals for a mea, µ Cofidece itervals for estimatig a populatio parameter (e.g., mea, µ) are based o the samplig distributio of a statistic (e.g., sample mea) Cofidece itervals We do t eed to take a lot of radom samples to rebuild the samplig distributio ad fid the populatio mea µ at its ceter 3 Sample Populatio µ All we eed is oe SRS of size ad the rely o the properties of the samplig distributio to make a iferece about the populatio mea 4 Cofidece iterval for a mea, µ Recall the cetral limit theorem: if we draw a sample of size from ay populatio with mea µ ad stadard deviatio σ, whe is large ( > 30) σ x ~ Nµ, Whe the stadard deviatio σ of the populatio is kow, the 95% cofidece iterval for a mea, based o a sample of size, is σ σ , x Example: credit card debt Credit card debt for families i the US Assume we do t kow the populatio mea, µ, but we do kow the populatio SD, σ = $1,420 (Most ofte i practice both µ ad σ are ukow) We took a SRS of size = 25 ad calculated a sample mea of $2,410 How accurate is this estimate of $2,410 from our sample? What is the 95% cofidece iterval for the populatio mea, µ? 5 6
2 Example: credit card debt The 95% CI is of the form σ σ , x Isertig the values for x, ad σ 1, 420 1, 420 2, , 2, So the 95% CI is (2, , 2, ) or ($1,853, $2,967) Notes o cofidece itervals From the previous example: Whe = 25, the 95% CI is (2, , 2, ) Whe = 100, the 95% CI is (2, , 2, ) Whe = 1,000, the 95% CI is (2,41088, 2, ) Whe = 10,000, the 95% CI is (2,41028, 2, ) The larger the sample size, the tighter the CI, ad the more accurate our statemet regardig µ Ofte i practice we do t kow σ so we have to estimate it with s, which also varies For large this works well; for < 30 we eed to use a t distributio, rather tha a zdistributio (i 1 week) 7 8 Cofidece itervals for a proportio, p Cofidece itervals for estimatig a populatio proportio (p) are based o the samplig distributio of a statistic (sample proportio, ˆp ) 9 Cofidece itervals for a proportio, p Recall, if we draw a sample of size from a biary populatio (p = Success)), whe p 10 ad (1 p) 10 the pˆ ~ N p, p(1 p) The 95% cofidece iterval for a proportio, based o a sample of size, is ˆ(1 ˆ) ˆ(1 ˆ) ˆ p p p, pˆ p p 10 Example: poverty rate The poverty rate is the proportio of households i the US for which the family s total icome is less tha that family s threshold (1 perso $9,973, 2 persos $12,755, 3 persos $15,577, etc.) The overall US poverty rate was 12.6% i 2005 What is the poverty rate i orther Maie? A radom sample of 100 families i this regio was studied The poverty rate for this sample was 21% What is the 95% cofidece iterval for the poverty rate i orther Maie? 11 Example: poverty rate The 95% CI is of the form ˆ(1 ˆ) ˆ(1 ˆ) ˆ p p p, pˆ p p Isertig the values for ad ˆp 0.21(1 0.21) 0.21(1 0.21) , So the 95% CI is ( , ) or (13%, 29%) 12
3 Observatios From the previous example: Whe = 100, the 95% CI is (21%  8%, 21% + 8%) Whe = 400, the 95% CI is (21%  4%, 21% + 4%) Whe = 6,000, the 95% CI is (21%  1%, 21% + 1%) The larger the sample size, the tighter the CI, ad the more accurate our statemet regardig p Forp 10 ad (1 p) 10 this works well For other situatios we use biomial tables The margi of error The geeral form of a cofidece iterval Poit estimate + z* x (SD of estimate) Poit estimate + margi of error Margi of error gives the accuracy of the estimate How to reduce the margi of error 1) Icrease sample size 2) Use a lower level of cofidece 3) Reduce SD of estimate Sample size calculatio Cofidece iterval methodology ca be used to determie the sample size eeded Steps 1. Idetify the desired precisio you wat 2. Set the margi of error equal to that precisio 3. Solve for (Always roud up to a iteger) 15 Example  sample size calculatio I a cliical research settig we wat to be able to estimate a respose rate to withi + 10% with 95% cofidece How may patiets do we eed to study? p(1 p) Set 0.10 = 1.96 ad solve for p = 0.5 maximizes p(1 p) (coservative) (0.5) (0.10) = (1.96) So = 100 patiets 16 Example  sample size calculatio We wat to be able to estimate the average credit card debt of US families to withi + $100 with 95% cofidece We kow the stadard deviatio σ = $1,420 How may families do we eed to study? σ Set 100 = 1.96 ad solve for 1,420 = (1.96) = ad = So = 775 families (always roud up) 17 Outlie for today Cofidece itervals Cofidece itervals for a mea, µ (kow σ) Cofidece itervals for a proportio, p Margi of error ad sample size Review of mai topics for the exam 18
4 Geeral cocepts covered so far Visualize (Chapters 12) Orgaizig ad displayig data (descriptive statistics) Coceptualize (Chapter 3) Methods for data collectio (observatioal studies, sample surveys ad cotrolled experimets) Aalyze (Chapters 46.1) Some probability theory ad radom variables Samplig distributios & cofidece itervals Remaider of the course Tests of hypotheses (Chapters 6.27) Populatio parameter µ (z & t procedures) Regressio ad ANOVA (Chapters 1013) Populatio proportio p ad twoway tables IPS Chapter 1 Orgaizig & displayig sigle variables/distributios Categorical versus quatitative variables Fidig the ceter (mea ad media) Fidig the spread (s 2, stadard deviatio (s) & IQR) Effects of liear trasformatios (Y = a + bx) Graphs (boxplots, bar graphs & histograms) Stregths/weakesses of graphig techiques Desity curves smooth curve describes distributio Skewess ad outliers (cout data) & Misc. topics (Chapters 89) IPS Chapter 1 (cotiued) Normal distributio most commo ad importat Geeral Y~N(µ,σ) ad stadard ormal Z~N(0,1) The rule Stadardize Z = (Y µ) / σ ad Z~N(0,1) tables Z to probabilities ad probabilities to Z (quatiles) Always draw a picture of Z~N(0,1) Normal quatile plots to assess ormality Trasformig data to ormality IPS Chapter 2 Relatioships betwee 2 quatitative variables The key graph scatterplots Correlatio (r) ad its properties Respose (Y) ad explaatory (X) variables Leastsquares regressio lie (Y = a +bx) Miimizes the sum of squares i the Y directio sy Slope b= r ad itercept a = y bx s Iterpretig r 2 x IPS Chapter 2 (cotiued) Residuals ad residual plots Outliers, ifluetial poits ad extrapolatio Associatio vs causatio (3 commo relatioships) Establishig causatio by experimet or 5 criteria The ecological fallacy Regressio assumptios to be checked: 1) Y vs X liear, 2) residuals have costat σ 2, 3) residuals have ormal distributio Cosider trasformatios, if ecessary Noliear trasf s Y k & X k for k = ½, log, ½, etc. 23 IPS Chapter 3 Sources of data variatios i reliability observatioal studies (sample surveys) vs experimets 5 major elemets of study desig 3 priciples of desigig experimets  cotrol, radomizatio & replicatio Blockig, placebos, & blidig for experimets Cliical research levels of evidece ad ethics 24
5 IPS Chapter 4 Radomess ad probability Rules of probability ad idepedet evets A c ) = 1 A) For disjoit evets A or B) = A) + B) For idepedet evets A ad B) = A) x B) [for biomial distributio ad samplig] Simple probability (# elemets i A / # elemets i S) [for biomial (p = 1/2) & future procedures] B A) A) Bayes s rule A B) = c c B A) A) + B A ) A ) IPS Chapter 4 (cotiued) Discrete ad cotiuous radom variables probability distributios (for both types) desity curves for cotiuous radom variables meas ad variaces of radom variables Expl: for discrete r.v. s E( X ) = µ = xp i i rules for variaces of idepedet RV s σ 2 X  Y = σ2 X + σ2 Y [will use for samplig distributios from two populatios] IPS Chapter 5.1 Samplig distributio for couts ad proportios The biomial distributio B(,p) 4 characteristics of biomial distributio Probability distributio of # of successes i trials k k X = k) = p (1 p) k Mea = p ad variace = p(1p) Couts equivalet to sample proportio ( ˆp ) Both ca be approximated with ormal distributio if p ad (1p) > 10 (use a correctio for cotiuity) 27 IPS Sectio 5.2 Samplig distributio for sample meas Cetral limit theorem: if > 30 σ Basis of most iferece x ~ Nµ, methods for meas Our goal is to make ifereces about a populatio parameter (e.g. µ, p) from iformatio i a sample We do this by studyig the (theoretical) samplig distributio of sample statistics ( e.g. x ad pˆ ) We oly observe a sigle sample, but after we kow the theoretical samplig distributio, the we kow the reliability of a sigle sample statistic 28 IPS Chapter 6.1 Cofidece itervals (1 st of 2 mai types of iferece) Geeral form: poit estimate + margi of error poit estimate + z α/2 (SD of estimate) Iterpretatio of a 95% CI  i repeated samplig 95% of CIs will cover the populatio parameter Cofidece iterval for mea µ σ σ  z α 2, x + zα 2 CI ca be used to determie sample size Set margi of error = desired precisio & solve for 29 The last word Midterm Exam March 14 th  Brig oe doublesided sheet of otes  You will eed a hadheld calculator  Exam is closedbook  Covers Lectures 116, IPS chapters Before ext class, look over IPS
1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationZTEST / ZSTATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown
ZTEST / ZSTATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large TTEST / TSTATISTIC: used to test hypotheses about
More informationAQA STATISTICS 1 REVISION NOTES
AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationOverview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals
Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationChapter 7  Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7  Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
More informationConfidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.
Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).
More information1 Hypothesis testing for a single mean
BST 140.65 Hypothesis Testig Review otes 1 Hypothesis testig for a sigle mea 1. The ull, or status quo, hypothesis is labeled H 0, the alterative H a or H 1 or H.... A type I error occurs whe we falsely
More informationDetermining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationKey Ideas Section 81: Overview hypothesis testing Hypothesis Hypothesis Test Section 82: Basics of Hypothesis Testing Null Hypothesis
Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, Pvalue Type I Error, Type II Error, Sigificace Level, Power Sectio 81: Overview Cofidece Itervals (Chapter 7) are
More informationResearch Method (I) Knowledge on Sampling (Simple Random Sampling)
Research Method (I) Kowledge o Samplig (Simple Radom Samplig) 1. Itroductio to samplig 1.1 Defiitio of samplig Samplig ca be defied as selectig part of the elemets i a populatio. It results i the fact
More information7. Sample Covariance and Correlation
1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y
More informationPSYCHOLOGICAL STATISTICS
UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics
More informationCHAPTER 7: Central Limit Theorem: CLT for Averages (Means)
CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:
More informationStatistical Methods. Chapter 1: Overview and Descriptive Statistics
Geeral Itroductio Statistical Methods Chapter 1: Overview ad Descriptive Statistics Statistics studies data, populatio, ad samples. Descriptive Statistics vs Iferetial Statistics. Descriptive Statistics
More informationStat 104 Lecture 2. Variables and their distributions. DJIA: monthly % change, 2000 to Finding the center of a distribution. Median.
Stat 04 Lecture Statistics 04 Lecture (IPS. &.) Outlie for today Variables ad their distributios Fidig the ceter Measurig the spread Effects of a liear trasformatio Variables ad their distributios Variable:
More informationUsing Excel to Construct Confidence Intervals
OPIM 303 Statistics Ja Stallaert Usig Excel to Costruct Cofidece Itervals This hadout explais how to costruct cofidece itervals i Excel for the followig cases: 1. Cofidece Itervals for the mea of a populatio
More informationChapter 14 Nonparametric Statistics
Chapter 14 Noparametric Statistics A.K.A. distributiofree statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationSimple Linear Regression
Simple Liear Regressio We have bee itroduced to the otio that a categorical variable could deped o differet levels of aother variable whe we discussed cotigecy tables. We ll exted this idea to the case
More information3. Covariance and Correlation
Virtual Laboratories > 3. Expected Value > 1 2 3 4 5 6 3. Covariace ad Correlatio Recall that by takig the expected value of various trasformatios of a radom variable, we ca measure may iterestig characteristics
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationNotes on Hypothesis Testing
Probability & Statistics Grishpa Notes o Hypothesis Testig A radom sample X = X 1,..., X is observed, with joit pmf/pdf f θ x 1,..., x. The values x = x 1,..., x of X lie i some sample space X. The parameter
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationPractice Problems for Test 3
Practice Problems for Test 3 Note: these problems oly cover CIs ad hypothesis testig You are also resposible for kowig the samplig distributio of the sample meas, ad the Cetral Limit Theorem Review all
More informationMaximum Likelihood Estimators.
Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationInference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval
Chapter 8 Tests of Statistical Hypotheses 8. Tests about Proportios HT  Iferece o Proportio Parameter: Populatio Proportio p (or π) (Percetage of people has o health isurace) x Statistic: Sample Proportio
More informationChapter 10. Hypothesis Tests Regarding a Parameter. 10.1 The Language of Hypothesis Testing
Chapter 10 Hypothesis Tests Regardig a Parameter A secod type of statistical iferece is hypothesis testig. Here, rather tha use either a poit (or iterval) estimate from a simple radom sample to approximate
More informationSampling Distribution And Central Limit Theorem
() Samplig Distributio & Cetral Limit Samplig Distributio Ad Cetral Limit Samplig distributio of the sample mea If we sample a umber of samples (say k samples where k is very large umber) each of size,
More informationReview for Test 3. b. Construct the 90% and 95% confidence intervals for the population mean. Interpret the CIs.
Review for Test 3 1 From a radom sample of 36 days i a recet year, the closig stock prices of Hasbro had a mea of $1931 From past studies we kow that the populatio stadard deviatio is $237 a Should you
More informationDescriptive statistics deals with the description or simple analysis of population or sample data.
Descriptive statistics Some basic cocepts A populatio is a fiite or ifiite collectio of idividuals or objects. Ofte it is impossible or impractical to get data o all the members of the populatio ad a small
More informationMEI Structured Mathematics. Module Summary Sheets. Statistics 2 (Version B: reference to new book)
MEI Mathematics i Educatio ad Idustry MEI Structured Mathematics Module Summary Sheets Statistics (Versio B: referece to ew book) Topic : The Poisso Distributio Topic : The Normal Distributio Topic 3:
More informationGCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.
GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea  add up all
More informationConfidence Intervals
Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more
More informationOnesample test of proportions
Oesample test of proportios The Settig: Idividuals i some populatio ca be classified ito oe of two categories. You wat to make iferece about the proportio i each category, so you draw a sample. Examples:
More informationSTATISTICAL METHODS FOR BUSINESS
STATISTICAL METHODS FOR BUSINESS UNIT 7: INFERENTIAL TOOLS. DISTRIBUTIONS ASSOCIATED WITH SAMPLING 7.1. Distributios associated with the samplig process. 7.2. Iferetial processes ad relevat distributios.
More informationCenter, Spread, and Shape in Inference: Claims, Caveats, and Insights
Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the
More informationNonlife insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring
Nolife isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy
More informationSTA 2023 Practice Questions Exam 2 Chapter 7 sec 9.2. Case parameter estimator standard error Estimate of standard error
STA 2023 Practice Questios Exam 2 Chapter 7 sec 9.2 Formulas Give o the test: Case parameter estimator stadard error Estimate of stadard error Samplig Distributio oe mea x s t (1) oe p ( 1 p) CI: prop.
More information15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011
15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes highdefiitio
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationChapter 7: Confidence Interval and Sample Size
Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum
More informationMath C067 Sampling Distributions
Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More informationCh 7.1 pg. 364 #11, 13, 15, 17, 19, 21, 23, 25
Math 7 Elemetary Statistics: A Brief Versio, 5/e Bluma Ch 7.1 pg. 364 #11, 13, 15, 17, 19, 1, 3, 5 11. Readig Scores: A sample of the readig scores of 35 fifthgraders has a mea of 8. The stadard deviatio
More informationJoint Probability Distributions and Random Samples
STAT5 Sprig 204 Lecture Notes Chapter 5 February, 204 Joit Probability Distributios ad Radom Samples 5. Joitly Distributed Radom Variables Chapter Overview Joitly distributed rv Joit mass fuctio, margial
More informationDiscrete Random Variables and Probability Distributions. Random Variables. Chapter 3 3.1
UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig
More information3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average
5/8/013 C H 3A P T E R Outlie 3 1 Measures of Cetral Tedecy 3 Measures of Variatio 3 3 3 Measuresof Positio 3 4 Exploratory Data Aalysis Copyright 013 The McGraw Hill Compaies, Ic. C H 3A P T E R Objectives
More informationDescriptive Statistics
Descriptive Statistics We leared to describe data sets graphically. We ca also describe a data set umerically. Measures of Locatio Defiitio The sample mea is the arithmetic average of values. We deote
More informationStandard Errors and Confidence Intervals
Stadard Errors ad Cofidece Itervals Itroductio I the documet Data Descriptio, Populatios ad the Normal Distributio a sample had bee obtaied from the populatio of heights of 5yearold boys. If we assume
More informationLesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) types of data scatter plots measure of directio measure of stregth Computatio covariatio of X ad Y uique variatio i X ad Y measurig
More informationConfidence intervals and hypothesis tests
Chapter 2 Cofidece itervals ad hypothesis tests This chapter focuses o how to draw coclusios about populatios from sample data. We ll start by lookig at biary data (e.g., pollig), ad lear how to estimate
More information9.8: THE POWER OF A TEST
9.8: The Power of a Test CD91 9.8: THE POWER OF A TEST I the iitial discussio of statistical hypothesis testig, the two types of risks that are take whe decisios are made about populatio parameters based
More informationMeasures of Central Tendency
Measures of Cetral Tedecy A studet s grade will be determied by exam grades ( each exam couts twice ad there are three exams, HW average (couts oce, fial exam ( couts three times. Fid the average if the
More informationAnalyzing Longitudinal Data from Complex Surveys Using SUDAAN
Aalyzig Logitudial Data from Complex Surveys Usig SUDAAN Darryl Creel Statistics ad Epidemiology, RTI Iteratioal, 312 Trotter Farm Drive, Rockville, MD, 20850 Abstract SUDAAN: Software for the Statistical
More informationChapter 5 Discrete Probability Distributions
Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide Chapter 5 Discrete Probability Distributios Radom Variables Discrete Probability Distributios Epected Value ad Variace Poisso Distributio
More informationStatistical inference: example 1. Inferential Statistics
Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either
More informationReview for 1 sample CI Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review for 1 sample CI Name MULTIPLE CHOICE. Choose the oe alterative that best completes the statemet or aswers the questio. Fid the margi of error for the give cofidece iterval. 1) A survey foud that
More informationNormal Distribution.
Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued
More informationOutput Analysis (2, Chapters 10 &11 Law)
B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should
More informationx : X bar Mean (i.e. Average) of a sample
A quick referece for symbols ad formulas covered i COGS14: MEAN OF SAMPLE: x = x i x : X bar Mea (i.e. Average) of a sample x i : X sub i This stads for each idividual value you have i your sample. For
More informationASSUMPTIONS/CONDITIONS FOR HYPOTHESIS TESTS and CONFIDENCE INTERVALS
ASSUMPTIONS/CONDITIONS FOR HYPOTHESIS TESTS ad CONFIDENCE INTERVALS Oe of the importat tak whe applyig a tatitical tet (or cofidece iterval) i to check that the aumptio of the tet are ot violated. Oeample
More informationRobust and Resistant Regression
Chapter 13 Robust ad Resistat Regressio Whe the errors are ormal, least squares regressio is clearly best but whe the errors are oormal, other methods may be cosidered. A particular cocer is logtailed
More informationMultiserver Optimal Bandwidth Monitoring for QoS based Multimedia Delivery Anup Basu, Irene Cheng and Yinzhe Yu
Multiserver Optimal Badwidth Moitorig for QoS based Multimedia Delivery Aup Basu, Iree Cheg ad Yizhe Yu Departmet of Computig Sciece U. of Alberta Architecture Applicatio Layer Request receptio coectio
More informationSample size for clinical trials
Outcome variables for trials British Stadards Istitutio Study Day Sample size for cliical trials Marti Blad Prof. of Health Statistics Uiversity of York http://martiblad.co.uk A outcome variable is oe
More informationCorrelation. example 2
Correlatio Iitially developed by Sir Fracis Galto (888) ad Karl Pearso (8) Sir Fracis Galto 8 correlatio is a much abused word/term correlatio is a term which implies that there is a associatio betwee
More informationNow here is the important step
LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"
More informationOverview of some probability distributions.
Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability
More informationHypothesis testing: one sample
Hypothesis testig: oe sample Describig iformatios Flowchart for QMS 202 Drawig coclusios Forecastig Improve busiess processes Data Collectio Probability & Probability Distributio Regressio Aalysis Timeseries
More informationExploratory Data Analysis
1 Exploratory Data Aalysis Exploratory data aalysis is ofte the rst step i a statistical aalysis, for it helps uderstadig the mai features of the particular sample that a aalyst is usig. Itelliget descriptios
More informationEstimating the Mean and Variance of a Normal Distribution
Estimatig the Mea ad Variace of a Normal Distributio Learig Objectives After completig this module, the studet will be able to eplai the value of repeatig eperimets eplai the role of the law of large umbers
More informationCovariance and correlation
Covariace ad correlatio The mea ad sd help us summarize a buch of umbers which are measuremets of just oe thig. A fudametal ad totally differet questio is how oe thig relates to aother. Stat 0: Quatitative
More informationExample Consider the following set of data, showing the number of times a sample of 5 students check their per day:
Sectio 82: Measures of cetral tedecy Whe thikig about questios such as: how may calories do I eat per day? or how much time do I sped talkig per day?, we quickly realize that the aswer will vary from day
More informationChapter 9: Correlation and Regression: Solutions
Chapter 9: Correlatio ad Regressio: Solutios 9.1 Correlatio I this sectio, we aim to aswer the questio: Is there a relatioship betwee A ad B? Is there a relatioship betwee the umber of emploee traiig hours
More informationHypergeometric Distributions
7.4 Hypergeometric Distributios Whe choosig the startig lieup for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you
More informationThis is arithmetic average of the x values and is usually referred to simply as the mean.
prepared by Dr. Adre Lehre, Dept. of Geology, Humboldt State Uiversity http://www.humboldt.edu/~geodept/geology51/51_hadouts/statistical_aalysis.pdf STATISTICAL ANALYSIS OF HYDROLOGIC DATA This hadout
More informationQuadrat Sampling in Population Ecology
Quadrat Samplig i Populatio Ecology Backgroud Estimatig the abudace of orgaisms. Ecology is ofte referred to as the "study of distributio ad abudace". This beig true, we would ofte like to kow how may
More informationUnit 8: Inference for Proportions. Chapters 8 & 9 in IPS
Uit 8: Iferece for Proortios Chaters 8 & 9 i IPS Lecture Outlie Iferece for a Proortio (oe samle) Iferece for Two Proortios (two samles) Cotigecy Tables ad the χ test Iferece for Proortios IPS, Chater
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More informationGregory Carey, 1998 Linear Transformations & Composites  1. Linear Transformations and Linear Composites
Gregory Carey, 1998 Liear Trasformatios & Composites  1 Liear Trasformatios ad Liear Composites I Liear Trasformatios of Variables Meas ad Stadard Deviatios of Liear Trasformatios A liear trasformatio
More informationBiology 171L Environment and Ecology Lab Lab 2: Descriptive Statistics, Presenting Data and Graphing Relationships
Biology 171L Eviromet ad Ecology Lab Lab : Descriptive Statistics, Presetig Data ad Graphig Relatioships Itroductio Log lists of data are ofte ot very useful for idetifyig geeral treds i the data or the
More informationUSING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR
USING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR Objective:. Improve calculator skills eeded i a multiple choice statistical eamiatio where the eam allows the studet to use a scietific calculator..
More informationConfidence Intervals for Linear Regression Slope
Chapter 856 Cofidece Iterval for Liear Regreio Slope Itroductio Thi routie calculate the ample ize eceary to achieve a pecified ditace from the lope to the cofidece limit at a tated cofidece level for
More informationOMG! Excessive Texting Tied to Risky Teen Behaviors
BUSIESS WEEK: EXECUTIVE EALT ovember 09, 2010 OMG! Excessive Textig Tied to Risky Tee Behaviors Kids who sed more tha 120 a day more likely to try drugs, alcohol ad sex, researchers fid TUESDAY, ov. 9
More information0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 KolmogorovSmirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
More informationUnit 20 Hypotheses Testing
Uit 2 Hypotheses Testig Objectives: To uderstad how to formulate a ull hypothesis ad a alterative hypothesis about a populatio proportio, ad how to choose a sigificace level To uderstad how to collect
More informationDescriptive Statistics Summary Tables
Chapter 201 Descriptive Statistics Summary Tables Itroductio This procedure is used to summarize cotiuous data. Large volumes of such data may be easily summarized i statistical tables of meas, couts,
More informationTHE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
More informationChapter XIV: Fundamentals of Probability and Statistics *
Objectives Chapter XIV: Fudametals o Probability ad Statistics * Preset udametal cocepts o probability ad statistics Review measures o cetral tedecy ad dispersio Aalyze methods ad applicatios o descriptive
More informationA Mathematical Perspective on Gambling
A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal
More informationChapter 10 Student Lecture Notes 101
Chapter 0 tudet Lecture Notes 0 Basic Busiess tatistics (9 th Editio) Chapter 0 Twoample Tests with Numerical Data 004 PreticeHall, Ic. Chap 0 Chapter Topics Comparig Two Idepedet amples Z test for
More informationThis document contains a collection of formulas and constants useful for SPC chart construction. It assumes you are already familiar with SPC.
SPC Formulas ad Tables 1 This documet cotais a collectio of formulas ad costats useful for SPC chart costructio. It assumes you are already familiar with SPC. Termiology Geerally, a bar draw over a symbol
More informationTopic 5: Confidence Intervals (Chapter 9)
Topic 5: Cofidece Iterval (Chapter 9) 1. Itroductio The two geeral area of tatitical iferece are: 1) etimatio of parameter(), ch. 9 ) hypothei tetig of parameter(), ch. 10 Let X be ome radom variable with
More informationOutline. Determine Confidence Interval. EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Confidence Interval for The Mean.
EEC 686/785 Modelig & Performace Evaluatio of Computer Systems Lecture 9 Departmet of Electrical ad Computer Egieerig Clevelad State Uiversity webig@ieee.org (based o Dr. Raj jai s lecture otes) Outlie
More informationLesson 15 ANOVA (analysis of variance)
Outlie Variability betwee group variability withi group variability total variability Fratio Computatio sums of squares (betwee/withi/total degrees of freedom (betwee/withi/total mea square (betwee/withi
More information