Section 0.4 Inverse Trigonometric Functions

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Section 0.4 Inverse Trigonometric Functions"

Transcription

1 Section 0.4 Inverse Trigonometric Functions Short Recall from Trigonometry Definition: A function f is periodic of period T if f(x + T ) = f(x) for all x such that x and x+t are in the domain of f. The smallest such number T > 0 is called the fundamental period. Example y = sin x is a periodic function with fundamental period (or just period) π. sin(x + π) = sin x cos π + cos x sin π = sin x The graph of y = sin x below is obtained by plotting points for 0 x π then using the periodic nature of the function to complete the graph. Note that the domain of y = sin x is (, ) i.e. all reals and range of f is the closed interval [, ]. (Also recall sin x = 0 if x = nπ where n is an integer) Out[4]= 3 3 Figure : y=sin x

2 Example y = cos x is a periodic function with fundamental period (or just period) π. cos(x + π) = cos x cos π sin x sin π = cos x The graph of y = cos x below is also obtained by plotting points for one period (could be for 0 x π or π x π ) then using the periodic nature of the function to complete the graph. Note that the domain of y = cos x is also (, ) i.e all reals and range of f is the closed interval [, ]. (Also recall cos x = 0 if x = nπ/ where n is an odd integer) Out[5]= 3 3 Figure : y=cos x The graph of the remaining four trig functions are shown at the end of these lecture notes and their domains can be written directly looking at their graphs. Notice also that tangent and cotangent have range (, ), where as cosecant and secant have range (, ] [, ). All four functions are periodic: tangent and cotangent have period π whereas cosecant and secant have period π. Inverse Trigonometric Functions When we try to find the the inverse of the trig. functions we have slight difficulty they are not -. The solution out of this problem is to restrict the domain of these functions so that they become one to one. For an example apply the horizontal line test to the graph of y = sin x above. But the function f(x) = y = sin x for π/ x π/ is -.

3 3 The inverse function of this restricted sine function f exits and is denoted by sin or arcsin. It is called the inverse sine function or the arcsine function. Using what we learnt about graphing the inverse functions we can obtain the graph of sin x, reflect the graph with respect to the y = x line to get

4 4 Out[7]= Note that sin x : [ π/, π/] [, ] and arcsin x : [, ] [ π/, π/]. Since the definition of an inverse function says that so we have f (x) = y f(y) = x sin x = y sin y = x and π y π or sin(sin x) = x for x [, ] and sin (sin x) = x for x [ π/, π/] Warning Example sin (sin π) = sin (0) = 0. π is not in the domain of arcsin so not ending up with π is not a surprise. Example Evaluate sin ( 3 ) By the definition of sin we want an angle θ [ π/, π/] where sin θ = so θ = π 3. 3 Example Evaluate sin ( Find θ s.t sin θ = π so θ = 6 ) Example Find the domain of f(x) for f(x) = sin ( x ). Domain of arcsin is [, ] so we are interested in those real numbers x such that x. And this inequality is satisfied if x (, ] [, ). So Domain of f=(, ] [, ) Example Find the inverse of y = cos x. Cosine is, like sine, not - so we cannot find the inverse of it unless we restrict our domain. We will restrict our domain to be [0, π]. As you can check from the graph of cos x is

5 5 - on this interval hence invertible. The inverse cosine function cos or arccos is defined as: y = cos x iff cos y = x and 0 y π So cos x has domain [, ] and range [0, π]. The below graph shows the process of reflecting the graph of y = cos x about the y = x line. Out[6]= so the graph of y = arccos x is Out[3]= Example Evaluate arccos( ) We need to find the angle 0 θ π where cos θ =. Since cosine of our angle is negative we expect our angle to be in the nd quadrant hence θ = 3π/4 or arccos( ) = 3π/4. Example Find the inverse of y = tan x. As in the cases of sine and cosine we need to restrict the domain of tangent to find its inverse. And we will restrict the domain of tan x to the interval ( π/, π/) where it is -. Range of tan x on this domain is all R. The inverse of tangent function tan or arctan is defined just like in the cases of sine and cosine. Domain

6 6 of arctan x is all R and range is ( π/, π/). And the graph of y = arctan x is: Out[5]= Remark: Note that this is an example of a function with two different horizontal asymptotes. Think of the horizontal asymptotes for the time being the horizontal lines with which graph of y = arctan x becomes snug in the long run (as x becoming larger and larger or smaller and smaller.). Judging our graph based on this rough definition you can say that arctan x becomes snug with y = π/ line as x becomes smaller and smaller and it becomes snug with the y = π/ line as x becomes larger and larger. Example Simplify the expression cos(tan (x)) Let y = tan x then x = tan y where π/ < y < π/. Construct the triangle with angle y, and whose hypotenuse is + x and x = tan y. From here you can easily read cos(tan (x)) = cos y = +x Rest of the inverses y = cot x(x R) cot y = x and y (0, π) y = sec x( x ) sec y = x and y [0, π/) [π, 3π/) y = csc x( x ) csc y = x and y [0, π/) [π, 3π/) Last graph I ll provide will be for sec x below you should try out the other two yourself.

7 7 Out[9]= Pictorial hint for finding the inverse: The way to find the graph of the inverse function is to rotate your paper (which has the graph on it) by π degrees around the main diagonal (the line through the origin at angle π/4 counterclockwise from the x axis.) You will then find that you have to look through your paper at the function but that can usually be done and if you start with the graph of f you are looking at the graph of the inverse function to f.

8 8 Out[6]= 3 3 Figure 3: y=tan x Out[8]= 3 3 Figure 4: y=cot x Out[9]= 3 3 Figure 5: y=sec x Out[0]= 3 3

Pre-Calculus II. where 1 is the radius of the circle and t is the radian measure of the central angle.

Pre-Calculus II. where 1 is the radius of the circle and t is the radian measure of the central angle. Pre-Calculus II 4.2 Trigonometric Functions: The Unit Circle The unit circle is a circle of radius 1, with its center at the origin of a rectangular coordinate system. The equation of this unit circle

More information

Inverse Circular Function and Trigonometric Equation

Inverse Circular Function and Trigonometric Equation Inverse Circular Function and Trigonometric Equation 1 2 Caution The 1 in f 1 is not an exponent. 3 Inverse Sine Function 4 Inverse Cosine Function 5 Inverse Tangent Function 6 Domain and Range of Inverse

More information

y = rsin! (opp) x = z cos! (adj) sin! = y z = The Other Trig Functions

y = rsin! (opp) x = z cos! (adj) sin! = y z = The Other Trig Functions MATH 7 Right Triangle Trig Dr. Neal, WKU Previously, we have seen the right triangle formulas x = r cos and y = rsin where the hypotenuse r comes from the radius of a circle, and x is adjacent to and y

More information

Chapter 6: Periodic Functions

Chapter 6: Periodic Functions Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a triangle, and related to points on a circle. We noticed how the x and y values

More information

Trigonometric Functions: The Unit Circle

Trigonometric Functions: The Unit Circle Trigonometric Functions: The Unit Circle This chapter deals with the subject of trigonometry, which likely had its origins in the study of distances and angles by the ancient Greeks. The word trigonometry

More information

Math Placement Test Practice Problems

Math Placement Test Practice Problems Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211

More information

Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry

Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible

More information

Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round to two decimal places.

Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round to two decimal places. SECTION.1 Simplify. 1. 7π π. 5π 6 + π Find the measure of the angle in degrees between the hour hand and the minute hand of a clock at the time shown. Measure the angle in the clockwise direction.. 1:0.

More information

Section 5-9 Inverse Trigonometric Functions

Section 5-9 Inverse Trigonometric Functions 46 5 TRIGONOMETRIC FUNCTIONS Section 5-9 Inverse Trigonometric Functions Inverse Sine Function Inverse Cosine Function Inverse Tangent Function Summar Inverse Cotangent, Secant, and Cosecant Functions

More information

Trigonometry Chapter 3 Lecture Notes

Trigonometry Chapter 3 Lecture Notes Ch Notes Morrison Trigonometry Chapter Lecture Notes Section. Radian Measure I. Radian Measure A. Terminology When a central angle (θ) intercepts the circumference of a circle, the length of the piece

More information

4.6 GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved.

4.6 GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved. 4.6 GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch the graphs of tangent functions. Sketch the graphs of cotangent functions. Sketch

More information

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123 Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from

More information

Integration Involving Trigonometric Functions and Trigonometric Substitution

Integration Involving Trigonometric Functions and Trigonometric Substitution Integration Involving Trigonometric Functions and Trigonometric Substitution Dr. Philippe B. Laval Kennesaw State University September 7, 005 Abstract This handout describes techniques of integration involving

More information

4.1 Radian and Degree Measure

4.1 Radian and Degree Measure Date: 4.1 Radian and Degree Measure Syllabus Objective: 3.1 The student will solve problems using the unit circle. Trigonometry means the measure of triangles. Terminal side Initial side Standard Position

More information

opp (the cotangent function) cot θ = adj opp Using this definition, the six trigonometric functions are well-defined for all angles

opp (the cotangent function) cot θ = adj opp Using this definition, the six trigonometric functions are well-defined for all angles Definition of Trigonometric Functions using Right Triangle: C hp A θ B Given an right triangle ABC, suppose angle θ is an angle inside ABC, label the leg osite θ the osite side, label the leg acent to

More information

2. Right Triangle Trigonometry

2. Right Triangle Trigonometry 2. Right Triangle Trigonometry 2.1 Definition II: Right Triangle Trigonometry 2.2 Calculators and Trigonometric Functions of an Acute Angle 2.3 Solving Right Triangles 2.4 Applications 2.5 Vectors: A Geometric

More information

Angles and Their Measure

Angles and Their Measure Trigonometry Lecture Notes Section 5.1 Angles and Their Measure Definitions: A Ray is part of a line that has only one end point and extends forever in the opposite direction. An Angle is formed by two

More information

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:

More information

5.2 Unit Circle: Sine and Cosine Functions

5.2 Unit Circle: Sine and Cosine Functions Chapter 5 Trigonometric Functions 75 5. Unit Circle: Sine and Cosine Functions In this section, you will: Learning Objectives 5..1 Find function values for the sine and cosine of 0 or π 6, 45 or π 4 and

More information

INVERSE TRIGONOMETRIC FUNCTIONS

INVERSE TRIGONOMETRIC FUNCTIONS Mathematics, in general, is fundamentally the science of self-evident things. FELIX KLEIN. Introduction In Chapter, we have studied that the inverse of a function f, denoted by f, eists if f is one-one

More information

4.3 & 4.8 Right Triangle Trigonometry. Anatomy of Right Triangles

4.3 & 4.8 Right Triangle Trigonometry. Anatomy of Right Triangles 4.3 & 4.8 Right Triangle Trigonometry Anatomy of Right Triangles The right triangle shown at the right uses lower case a, b and c for its sides with c being the hypotenuse. The sides a and b are referred

More information

Section 5.4 More Trigonometric Graphs. Graphs of the Tangent, Cotangent, Secant, and Cosecant Function

Section 5.4 More Trigonometric Graphs. Graphs of the Tangent, Cotangent, Secant, and Cosecant Function Section 5. More Trigonometric Graphs Graphs of the Tangent, Cotangent, Secant, and Cosecant Function 1 REMARK: Many curves have a U shape near zero. For example, notice that the functions secx and x +

More information

1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives

1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives TRIGONOMETRY Chapter Trigonometry Objectives After studying this chapter you should be able to handle with confidence a wide range of trigonometric identities; be able to express linear combinations of

More information

INVERSE TRIGONOMETRIC FUNCTIONS. Colin Cox

INVERSE TRIGONOMETRIC FUNCTIONS. Colin Cox INVERSE TRIGONOMETRIC FUNCTIONS Colin Cox WHAT IS AN INVERSE TRIG FUNCTION? Used to solve for the angle when you know two sides of a right triangle. For example if a ramp is resting against a trailer,

More information

Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring

Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring Page 1 9 Trigonometry of Right Triangles Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring 90. The side opposite to the right angle is the longest

More information

Trigonometry Hard Problems

Trigonometry Hard Problems Solve the problem. This problem is very difficult to understand. Let s see if we can make sense of it. Note that there are multiple interpretations of the problem and that they are all unsatisfactory.

More information

GRE Prep: Precalculus

GRE Prep: Precalculus GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach

More information

Evaluating trigonometric functions

Evaluating trigonometric functions MATH 1110 009-09-06 Evaluating trigonometric functions Remark. Throughout this document, remember the angle measurement convention, which states that if the measurement of an angle appears without units,

More information

Mathematical Procedures

Mathematical Procedures CHAPTER 6 Mathematical Procedures 168 CHAPTER 6 Mathematical Procedures The multidisciplinary approach to medicine has incorporated a wide variety of mathematical procedures from the fields of physics,

More information

Graphing Trigonometric Skills

Graphing Trigonometric Skills Name Period Date Show all work neatly on separate paper. (You may use both sides of your paper.) Problems should be labeled clearly. If I can t find a problem, I ll assume it s not there, so USE THE TEMPLATE

More information

1. Introduction sine, cosine, tangent, cotangent, secant, and cosecant periodic

1. Introduction sine, cosine, tangent, cotangent, secant, and cosecant periodic 1. Introduction There are six trigonometric functions: sine, cosine, tangent, cotangent, secant, and cosecant; abbreviated as sin, cos, tan, cot, sec, and csc respectively. These are functions of a single

More information

Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015

Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015 Harold s s Cheat Sheet 8 December 05 Algebra Constant Linear Identity f(x) c f(x) x Range: [c, c] Undefined (asymptote) Restrictions: c is a real number Ay + B 0 g(x) x Restrictions: m 0 General Fms: Ax

More information

Section 3.1 Radian Measure

Section 3.1 Radian Measure Section.1 Radian Measure Another way of measuring angles is with radians. This allows us to write the trigonometric functions as functions of a real number, not just degrees. A central angle is an angle

More information

SOLVING TRIGONOMETRIC INEQUALITIES (CONCEPT, METHODS, AND STEPS) By Nghi H. Nguyen

SOLVING TRIGONOMETRIC INEQUALITIES (CONCEPT, METHODS, AND STEPS) By Nghi H. Nguyen SOLVING TRIGONOMETRIC INEQUALITIES (CONCEPT, METHODS, AND STEPS) By Nghi H. Nguyen DEFINITION. A trig inequality is an inequality in standard form: R(x) > 0 (or < 0) that contains one or a few trig functions

More information

WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS.

WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS. WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS. DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE Contributor: U.N.Iyer Department of Mathematics and Computer Science, CP 315, Bronx Community College, University

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved. 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

4.7 Solving Problems with Inverse Trig Functions

4.7 Solving Problems with Inverse Trig Functions 4. Solving Problems with Inverse Trig Functions 4.. Inverse trig functions create right triangles An inverse trig function has an angle (y or θ) as its output. That angle satisfies a certain trig expression

More information

Dear Accelerated Pre-Calculus Student:

Dear Accelerated Pre-Calculus Student: Dear Accelerated Pre-Calculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, college-preparatory mathematics course that will also

More information

Right Triangle Trigonometry

Right Triangle Trigonometry Section 6.4 OBJECTIVE : Right Triangle Trigonometry Understanding the Right Triangle Definitions of the Trigonometric Functions otenuse osite side otenuse acent side acent side osite side We will be concerned

More information

D.3. Angles and Degree Measure. Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

More information

Trigonometry. An easy way to remember trigonometric properties is:

Trigonometry. An easy way to remember trigonometric properties is: Trigonometry It is possible to solve many force and velocity problems by drawing vector diagrams. However, the degree of accuracy is dependent upon the exactness of the person doing the drawing and measuring.

More information

Algebra and Geometry Review (61 topics, no due date)

Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

More information

RIGHT TRIANGLE TRIGONOMETRY

RIGHT TRIANGLE TRIGONOMETRY RIGHT TRIANGLE TRIGONOMETRY The word Trigonometry can be broken into the parts Tri, gon, and metry, which means Three angle measurement, or equivalently Triangle measurement. Throughout this unit, we will

More information

Section 2.7 One-to-One Functions and Their Inverses

Section 2.7 One-to-One Functions and Their Inverses Section. One-to-One Functions and Their Inverses One-to-One Functions HORIZONTAL LINE TEST: A function is one-to-one if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.

More information

Roots and Coefficients of a Quadratic Equation Summary

Roots and Coefficients of a Quadratic Equation Summary Roots and Coefficients of a Quadratic Equation Summary For a quadratic equation with roots α and β: Sum of roots = α + β = and Product of roots = αβ = Symmetrical functions of α and β include: x = and

More information

POLAR COORDINATES DEFINITION OF POLAR COORDINATES

POLAR COORDINATES DEFINITION OF POLAR COORDINATES POLAR COORDINATES DEFINITION OF POLAR COORDINATES Before we can start working with polar coordinates, we must define what we will be talking about. So let us first set us a diagram that will help us understand

More information

Solutions to Exercises, Section 5.1

Solutions to Exercises, Section 5.1 Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

More information

Tangent and Secant Transformations (pp. 1 of 7)

Tangent and Secant Transformations (pp. 1 of 7) Unit: 0 Lesson: 0 Tangent and Secant Transformations pp. of 7) The graph to the right shows the tangent function, tan x, in a trig window ZOOM 7). Sketch in the asymptotes with dotted lines. At what x-values

More information

MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.

MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4. MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin

More information

Section 6-3 Double-Angle and Half-Angle Identities

Section 6-3 Double-Angle and Half-Angle Identities 6-3 Double-Angle and Half-Angle Identities 47 Section 6-3 Double-Angle and Half-Angle Identities Double-Angle Identities Half-Angle Identities This section develops another important set of identities

More information

Section 10.7 Parametric Equations

Section 10.7 Parametric Equations 299 Section 10.7 Parametric Equations Objective 1: Defining and Graphing Parametric Equations. Recall when we defined the x- (rcos(θ), rsin(θ)) and y-coordinates on a circle of radius r as a function of

More information

a cos x + b sin x = R cos(x α)

a cos x + b sin x = R cos(x α) a cos x + b sin x = R cos(x α) In this unit we explore how the sum of two trigonometric functions, e.g. cos x + 4 sin x, can be expressed as a single trigonometric function. Having the ability to do this

More information

Trigonometry LESSON ONE - Degrees and Radians Lesson Notes

Trigonometry LESSON ONE - Degrees and Radians Lesson Notes 210 180 = 7 6 Trigonometry Example 1 Define each term or phrase and draw a sample angle. Angle Definitions a) angle in standard position: Draw a standard position angle,. b) positive and negative angles:

More information

Calculus with Analytic Geometry I Exam 10 Take Home part

Calculus with Analytic Geometry I Exam 10 Take Home part Calculus with Analytic Geometry I Exam 10 Take Home part Textbook, Section 47, Exercises #22, 30, 32, 38, 48, 56, 70, 76 1 # 22) Find, correct to two decimal places, the coordinates of the point on the

More information

Chapter 6 Trigonometric Functions of Angles

Chapter 6 Trigonometric Functions of Angles 6.1 Angle Measure Chapter 6 Trigonometric Functions of Angles In Chapter 5, we looked at trig functions in terms of real numbers t, as determined by the coordinates of the terminal point on the unit circle.

More information

Complex Numbers Basic Concepts of Complex Numbers Complex Solutions of Equations Operations on Complex Numbers

Complex Numbers Basic Concepts of Complex Numbers Complex Solutions of Equations Operations on Complex Numbers Complex Numbers Basic Concepts of Complex Numbers Complex Solutions of Equations Operations on Complex Numbers Identify the number as real, complex, or pure imaginary. 2i The complex numbers are an extension

More information

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.

More information

( ) b.! = 7" 4 has coordinates 2. ( ) d.! = has coordinates! ( ) b.! = 7" 3 has coordinates 1

( ) b.! = 7 4 has coordinates 2. ( ) d.! = has coordinates! ( ) b.! = 7 3 has coordinates 1 Chapter 4: Circular Functions Lesson 4.. 4-. a.! b.! c. i. 0!! " radians 80! " 6 radians 4-. a. and b. ii. iii. 45!! " radians 80! " 4 radians 60!! " radians 80! " radians 4-. Possible patterns that can

More information

Chapter 5 The Trigonometric Functions

Chapter 5 The Trigonometric Functions P a g e 40 Chapter 5 The Trigonometric Functions Section 5.1 Angles Initial side Terminal side Standard position of an angle Positive angle Negative angle Coterminal Angles Acute angle Obtuse angle Complementary

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that

More information

Core Maths C3. Revision Notes

Core Maths C3. Revision Notes Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...

More information

Right Triangles 4 A = 144 A = 16 12 5 A = 64

Right Triangles 4 A = 144 A = 16 12 5 A = 64 Right Triangles If I looked at enough right triangles and experimented a little, I might eventually begin to notice a relationship developing if I were to construct squares formed by the legs of a right

More information

Geometry Mathematics Curriculum Guide Unit 6 Trig & Spec. Right Triangles 2016 2017

Geometry Mathematics Curriculum Guide Unit 6 Trig & Spec. Right Triangles 2016 2017 Unit 6: Trigonometry and Special Right Time Frame: 14 Days Primary Focus This topic extends the idea of triangle similarity to indirect measurements. Students develop properties of special right triangles,

More information

How to Graph Trigonometric Functions

How to Graph Trigonometric Functions How to Graph Trigonometric Functions This handout includes instructions for graphing processes of basic, amplitude shifts, horizontal shifts, and vertical shifts of trigonometric functions. The Unit Circle

More information

Pre-Calculus Review Problems Solutions

Pre-Calculus Review Problems Solutions MATH 1110 (Lecture 00) August 0, 01 1 Algebra and Geometry Pre-Calculus Review Problems Solutions Problem 1. Give equations for the following lines in both point-slope and slope-intercept form. (a) The

More information

TOPIC 3: CONTINUITY OF FUNCTIONS

TOPIC 3: CONTINUITY OF FUNCTIONS TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let

More information

Algebra 2/Trigonometry Practice Test

Algebra 2/Trigonometry Practice Test Algebra 2/Trigonometry Practice Test Part I Answer all 27 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. For each question, write on the separate

More information

1.7 Cylindrical and Spherical Coordinates

1.7 Cylindrical and Spherical Coordinates 56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.7 Cylindrical and Spherical Coordinates 1.7.1 Review: Polar Coordinates The polar coordinate system is a two-dimensional coordinate system in which the

More information

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

More information

Solution Guide for Chapter 6: The Geometry of Right Triangles

Solution Guide for Chapter 6: The Geometry of Right Triangles Solution Guide for Chapter 6: The Geometry of Right Triangles 6. THE THEOREM OF PYTHAGORAS E-. Another demonstration: (a) Each triangle has area ( ). ab, so the sum of the areas of the triangles is 4 ab

More information

Graphing Calculator Manual TI-83. Kathy V. Rodgers

Graphing Calculator Manual TI-83. Kathy V. Rodgers Graphing Calculator Manual Kathy V. Rodgers University of Southern Indiana Evansville, Indiana to accompany Trigonometry, 5th Ed. Charles P. McKeague and Mark Turner Preface Technology, used appropriately,

More information

TOMS RIVER REGIONAL SCHOOLS MATHEMATICS CURRICULUM

TOMS RIVER REGIONAL SCHOOLS MATHEMATICS CURRICULUM Content Area: Mathematics Course Title: Precalculus Grade Level: High School Right Triangle Trig and Laws 3-4 weeks Trigonometry 3 weeks Graphs of Trig Functions 3-4 weeks Analytic Trigonometry 5-6 weeks

More information

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

More information

3 Unit Circle Trigonometry

3 Unit Circle Trigonometry 0606_CH0_-78.QXP //0 :6 AM Page Unit Circle Trigonometr In This Chapter. The Circular Functions. Graphs of Sine and Cosine Functions. Graphs of Other Trigonometric Functions. Special Identities.5 Inverse

More information

Calculus. Contents. Paul Sutcliffe. Office: CM212a.

Calculus. Contents. Paul Sutcliffe. Office: CM212a. Calculus Paul Sutcliffe Office: CM212a. www.maths.dur.ac.uk/~dma0pms/calc/calc.html Books One and several variables calculus, Salas, Hille & Etgen. Calculus, Spivak. Mathematical methods in the physical

More information

Trigonometry Review Workshop 1

Trigonometry Review Workshop 1 Trigonometr Review Workshop Definitions: Let P(,) be an point (not the origin) on the terminal side of an angle with measure θ and let r be the distance from the origin to P. Then the si trig functions

More information

Chapter 5: Trigonometric Functions of Angles

Chapter 5: Trigonometric Functions of Angles Chapter 5: Trigonometric Functions of Angles In the previous chapters we have explored a variety of functions which could be combined to form a variety of shapes. In this discussion, one common shape has

More information

Period of Trigonometric Functions

Period of Trigonometric Functions Period of Trigonometric Functions In previous lessons we have learned how to translate any primary trigonometric function horizontally or vertically, and how to Stretch Vertically (change Amplitude). In

More information

Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

More information

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary) Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

More information

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1 Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

Lesson 1: Exploring Trigonometric Ratios

Lesson 1: Exploring Trigonometric Ratios Lesson 1: Exploring Trigonometric Ratios Common Core Georgia Performance Standards MCC9 12.G.SRT.6 MCC9 12.G.SRT.7 Essential Questions 1. How are the properties of similar triangles used to create trigonometric

More information

Chapter 7 Outline Math 236 Spring 2001

Chapter 7 Outline Math 236 Spring 2001 Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will

More information

Trigonometry for AC circuits

Trigonometry for AC circuits Trigonometry for AC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Trigonometry for AC circuits

Trigonometry for AC circuits Trigonometry for AC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Lesson Plan. Students will be able to define sine and cosine functions based on a right triangle

Lesson Plan. Students will be able to define sine and cosine functions based on a right triangle Lesson Plan Header: Name: Unit Title: Right Triangle Trig without the Unit Circle (Unit in 007860867) Lesson title: Solving Right Triangles Date: Duration of Lesson: 90 min. Day Number: Grade Level: 11th/1th

More information

Volume and Surface Area of a Sphere

Volume and Surface Area of a Sphere Volume and Surface rea of a Sphere Reteaching 111 Math ourse, Lesson 111 The relationship between the volume of a cylinder, the volume of a cone, and the volume of a sphere is a special one. If the heights

More information

Chapter 8A - Angles and Circles

Chapter 8A - Angles and Circles - Chapter 8A Chapter 8A - Angles and Circles Man applications of calculus use trigonometr, which is the stud of angles and functions of angles and their application to circles, polgons, and science. We

More information

Notes and questions to aid A-level Mathematics revision

Notes and questions to aid A-level Mathematics revision Notes and questions to aid A-level Mathematics revision Robert Bowles University College London October 4, 5 Introduction Introduction There are some students who find the first year s study at UCL and

More information

You can solve a right triangle if you know either of the following: Two side lengths One side length and one acute angle measure

You can solve a right triangle if you know either of the following: Two side lengths One side length and one acute angle measure Solving a Right Triangle A trigonometric ratio is a ratio of the lengths of two sides of a right triangle. Every right triangle has one right angle, two acute angles, one hypotenuse, and two legs. To solve

More information

Friday, January 29, 2016 9:15 a.m. to 12:15 p.m., only

Friday, January 29, 2016 9:15 a.m. to 12:15 p.m., only ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Friday, January 9, 016 9:15 a.m. to 1:15 p.m., only Student Name: School Name: The possession

More information

ALGEBRA 2/TRIGONOMETRY

ALGEBRA 2/TRIGONOMETRY ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Friday, June 14, 013 1:15 to 4:15 p.m., only Student Name: School Name: The possession

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

Right Triangles and SOHCAHTOA: Finding the Measure of an Angle Given any Two Sides (ONLY for ACUTE TRIANGLES Why?)

Right Triangles and SOHCAHTOA: Finding the Measure of an Angle Given any Two Sides (ONLY for ACUTE TRIANGLES Why?) Name Period Date Right Triangles and SOHCAHTOA: Finding the Measure of an Angle Given any Two Sides (ONLY for ACUTE TRIANGLES Why?) Preliminary Information: SOH CAH TOA is an acronym to represent the following

More information

1 Review of complex numbers

1 Review of complex numbers 1 Review of complex numbers 1.1 Complex numbers: algebra The set C of complex numbers is formed by adding a square root i of 1 to the set of real numbers: i = 1. Every complex number can be written uniquely

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

Section 6-4 Product Sum and Sum Product Identities

Section 6-4 Product Sum and Sum Product Identities 480 6 TRIGONOMETRIC IDENTITIES AND CONDITIONAL EQUATIONS Section 6-4 Product Sum and Sum Product Identities Product Sum Identities Sum Product Identities Our work with identities is concluded by developing

More information

TRIGONOMETRY Compound & Double angle formulae

TRIGONOMETRY Compound & Double angle formulae TRIGONOMETRY Compound & Double angle formulae In order to master this section you must first learn the formulae, even though they will be given to you on the matric formula sheet. We call these formulae

More information

SAT Subject Math Level 2 Facts & Formulas

SAT Subject Math Level 2 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses

More information