Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 8.1 Homework Answers


 Annice Washington
 2 years ago
 Views:
Transcription
1 Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 8.1 Homework Answers 8.1 In each of the following circumstances state whether you would use the large sample confidence interval, the plus four method, or neither for a 95% confidence interval. What this question is asking is do we meet the criteria set forth on page 537 need at least 15 successes and 15 failures for Large Sample Confidence Interval, or on page 539, Plus four method, which requires a sample size of 10. (a) n = 20, X = 15. We could certainly use the plusfour method since n > 10. However, we could not use the largesample confidence interval since we have 15 successes but only 5 failures (20 15). (b) n = 100, X = 15 We could certainly use the plusfour method since n > 10. We could also use the large sample confidence interval since we have 15 successes and 85 failures. (c) n = 10, X = 2 We could use the plusfour method since n = 10, but not the large sample confidence interval since we only have 2 successes and 8 failures. (d) n = 5, X = 2. We could not use the plus four method since our sample size is only 5. And of course we can not use the large sample confidence interval method since we do not have the required number of successes and failures. (e) n = 50, X = 20. We could use the plus four method since we have at least a sample size of 10, and we could also use the largesample confidence interval method since we have 20 successes and 30 failures Explain what is wrong with each of the following: (a) An approximate 95% confidence interval for an unknown proportion p is p plus or minus its standard error. a. The error here is that it is ˆp plus or minus the margin of error, not plus or minus the standard error. (b) You can use a significance test to evaluate the hypothesis H o: ˆp = 0.3 versus the twosided alternative. b. The mistake is the statement H o : ˆp = 0.3, it should be H o : p = 0.3. We can not make the assumption to be the sample proportion equals. This is a ridiculous statement since the sample proportion is continually changing. The population proportion p is what can assume to be a fixed value. (c) The largesample significance test for a population proportion is based on a t statistic. c. False it is based on the zstatistic.
2 8.5 Gambling is an issue of great concern to those involved in intercollegiate athletics. Because of this concern, the National Collegiate Athletic Association (NCAA) surveyed studentathletes concerning their gamblingrelated behaviors. 8 There were 5594 Division I male athletes in the survey. Of these, 3547 reported participation in some gambling behavior. This includes playing cards, betting on games of skill, buying lottery tickets, betting on sports, and similar activities. (a) Find the sample proportion and the largesample margin of error for 95% confidence. Explain in simple terms the meaning of the 95% pˆ = This is the sample proportion of male student athletes participated in some gambling 5594 behavior. Margin of error = Z * This is referred to some times as the large sample blah, because if your pˆ(1 pˆ) n sample size is big enough it should handle the criteria mentioned in the text, at least15 successes np 15, and at least 15 failures n(1 p) ( ) Margin of error = = (b) Because of the way that the study was designed to protect the anonymity of the studentathletes who responded, it was not possible to calculate the number of students who were asked to respond but did not. Does this fact affect the way that you interpret the results? Write a short paragraph explaining your answer. 8.5 b. What this question is alluding to is if the sample is indeed representative. The problem is that we don t know how many students were polled. Suppose that 10,000 students were asked to respond. The question says that 5594 responded, a 44% non response rate; a rather large nonresponse. We could then ask who are these people that did not respond. Is this set of students special in some way? We assume that the first set of 10,000 students is selected randomly, so there is great chance it is representative. But if 4406 opt out, we wonder if the remaining group of students that participate is representative. 8.7 The National Survey of Student Engagement found that 87% of students report that their peers at least "sometimes" copy information from the Internet in their reports without reporting the source. 9 Assume that the sample size is 430,000. (a) Find the margin of error for 99% confidence. 0.87(10.87) Margin of error = =
3 (b) Here are some items from the report that summarizes the survey. More than 430,000 students from 730 fouryear colleges and universities participated. The average response rate was 43% and ranged from 15% to 89%. Institutions pay a participation fee of between $3000 and $7500 based on the size of their undergraduate enrollment. Discuss these as sources of error in this study. How do you think these errors would compare with the error that you calculated in part (a)? 8.7b. The error in part a only takes into account natural variability to due sampling, nothing else. The average response rate is 43%, which means people are self selecting to participate. Who are these people who want to respond and what is their motivation? We know the range is as low as 15% (highly suspect result would not be normally be admissible) to 89% (a more convincing result). The final result would be more believable if we omitted all schools that had a nonresponse rate lower than 70%. Or make a comparison of schools with high response to those with low response to see if there is a significant difference. Another issue is the participation fee. The problem here is that the result claims that 87% of students implying this sample is representative of all schools. But this may not be the case. Is the participation fee causing exclusion of enough schools to make the sample not to be representative Refer to Exercise Would a 99% confidence interval be wider or narrower than the one that you found in that exercise? Verify your results by computing the interval. It will be wider since we are trading certainty for accuracy. How can we go from 95% certainty to 99% certainty with exactly the same data? Make the interval wider; this gives a greater chance that p is found in the interval Yesterday, your top salesperson called on 10 customers and obtained orders for your new product from all 10. Suppose that it is reasonable to view these 10 customers as a random sample of all of her customers (a) Give the plus four estimate of the proportion of her customers who would buy the new product. Notice that we don't estimate that all customers will p% = b. (b) Give the margin of error for 95% confidence. (You may see that the upper endpoint of the confidence interval is greater than 1. In that case, take the upper endpoint to be 1.) ( ) SE p % = = ± 1.96 ( ) (0.6738, 1)
4 8.19c (c) Do the results apply to all of your sales force? Explain why or why not. The above results apply to your top salesperson only. Unless you believe that the results are typical of your entire sales force, which in that case the person would not be your top sales person The English mathematician John Kerrich tossed a coin 10,000 times and obtained 5067 heads. 8.23a. (a) Is this significant evidence at the 5% level that the probability that Kerrich's coin comes up heads is not 0.5? Use a sketch of the standard normal distribution to illustrate the Pvalue. The question asks if the true long run proportion that a coin will lands head is indeed 50%, which everyone agrees it should be. The number of tosses is 10000, n. And the number of successes is Let us perform a significance test ˆp = = ˆp Ho: p = 0.5 and Ha: p 0.5. How do I know that this is a twosided test? Because, of the original question posed. that Kerrich s coin comes up heads is not 0.5? No direction indicated. Our sample proportion is ˆp = , so know we want to calculate P( ˆp >0.5067). P( ˆp >0.5067) = PZ > (1.05) = P(Z > 1.34) = Now, the pvalue is 2(0.0901) = Thus, at the 5% significance level, we have found no evidence that the true proportion is some other number other than 0.5. In other words seeing a proportion of a unit difference from 0.5 is not at all uncommon for 10,000 tosses, when the population proportion is 0.5.
5 8.23b. Use a 95% confidence interval to find the range of probabilities of heads that would not be rejected at the 5% level ± 1.96(0.005) (.4969, ) Any value within the interval above would not be rejected at the 5% significance level, when performing a twosided significance test Refer to the previous exercise. Suppose that after reviewing the results of the previous survey, you proceeded with preliminary development of the product. Now you are at the stage where you need to decide whether or not to make a major investment to produce and market it. You will use another random sample of your customers but now you want the margin of error to be smaller. What sample size would you use if you wanted the 95% margin of error to be or less? Without knowing what p might possibly be, it would be safer to assume that p = 0.5 and thus calculate for the worst case scenario (the value of p that gives the largest required sample size) n = (0.5)(0.5) = 171
Chapter 8 Section 1. Homework A
Chapter 8 Section 1 Homework A 8.7 Can we use the largesample confidence interval? In each of the following circumstances state whether you would use the largesample confidence interval. The variable
More informationChapter 7 Part 2. Hypothesis testing Power
Chapter 7 Part 2 Hypothesis testing Power November 6, 2008 All of the normal curves in this handout are sampling distributions Goal: To understand the process of hypothesis testing and the relationship
More informationMind on Statistics. Chapter 12
Mind on Statistics Chapter 12 Sections 12.1 Questions 1 to 6: For each statement, determine if the statement is a typical null hypothesis (H 0 ) or alternative hypothesis (H a ). 1. There is no difference
More informationPoint and Interval Estimates
Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number
More informationHomework 5 Solutions
Math 130 Assignment Chapter 18: 6, 10, 38 Chapter 19: 4, 6, 8, 10, 14, 16, 40 Chapter 20: 2, 4, 9 Chapter 18 Homework 5 Solutions 18.6] M&M s. The candy company claims that 10% of the M&M s it produces
More informationTerminology. 2 There is no mathematical difference between the errors, however. The bottom line is that we choose one type
Hypothesis Testing 10.2.1 Terminology The null hypothesis H 0 is a nothing hypothesis, whose interpretation could be that nothing has changed, there is no difference, there is nothing special taking place,
More informationHypothesis Testing I
ypothesis Testing I The testing process:. Assumption about population(s) parameter(s) is made, called null hypothesis, denoted. 2. Then the alternative is chosen (often just a negation of the null hypothesis),
More informationChapter 14: 16, 9, 12; Chapter 15: 8 Solutions When is it appropriate to use the normal approximation to the binomial distribution?
Chapter 14: 16, 9, 1; Chapter 15: 8 Solutions 141 When is it appropriate to use the normal approximation to the binomial distribution? The usual recommendation is that the approximation is good if np
More informationHypoTesting. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Class: Date: HypoTesting Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A Type II error is committed if we make: a. a correct decision when the
More informationChapter 1112 1 Review
Chapter 1112 Review Name 1. In formulating hypotheses for a statistical test of significance, the null hypothesis is often a statement of no effect or no difference. the probability of observing the data
More informationHow to Conduct a Hypothesis Test
How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some
More informationC. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.
Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample
More informationChapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing 83 Testing a Claim About a Proportion 85 Testing a Claim About a Mean: s Not Known 86 Testing
More informationChapter 8. Hypothesis Testing
Chapter 8 Hypothesis Testing Hypothesis In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing
More informationCHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING
CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING MULTIPLE CHOICE 56. In testing the hypotheses H 0 : µ = 50 vs. H 1 : µ 50, the following information is known: n = 64, = 53.5, and σ = 10. The standardized
More informationConfidence Intervals for One Standard Deviation Using Standard Deviation
Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from
More informationAP Statistics Hypothesis Testing Chapter 9. Intro to Significance Tests
Intro to Significance Tests Name Hr For the following pairs, indicate whether they are legitimate hypotheses and why. 1. 2. 3. 4. For each situation, state the null and alternate hypothesis. (Define your
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Sample Practice problems  chapter 121 and 2 proportions for inference  Z Distributions Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide
More informationMargin of Error When Estimating a Population Proportion
Margin of Error When Estimating a Population Proportion Student Outcomes Students use data from a random sample to estimate a population proportion. Students calculate and interpret margin of error in
More information5.1 Identifying the Target Parameter
University of California, Davis Department of Statistics Summer Session II Statistics 13 August 20, 2012 Date of latest update: August 20 Lecture 5: Estimation with Confidence intervals 5.1 Identifying
More informationAP * Statistics Review
AP * Statistics Review Confidence Intervals Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production of this
More informationAP Statistics 2002 Scoring Guidelines
AP Statistics 2002 Scoring Guidelines The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought
More informationSection 12.2, Lesson 3. What Can Go Wrong in Hypothesis Testing: The Two Types of Errors and Their Probabilities
Today: Section 2.2, Lesson 3: What can go wrong with hypothesis testing Section 2.4: Hypothesis tests for difference in two proportions ANNOUNCEMENTS: No discussion today. Check your grades on eee and
More informationModule 7: Hypothesis Testing I Statistics (OA3102)
Module 7: Hypothesis Testing I Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chapter 10.110.5 Revision: 212 1 Goals for this Module
More informationExperimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test
Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely
More informationModule 5 Hypotheses Tests: Comparing Two Groups
Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this
More informationSampling Distribution of the Mean & Hypothesis Testing
Sampling Distribution of the Mean & Hypothesis Testing Let s first review what we know about sampling distributions of the mean (Central Limit Theorem): 1. The mean of the sampling distribution will be
More informationHypothesis Testing. Learning Objectives. After completing this module, the student will be able to
Hypothesis Testing Learning Objectives After completing this module, the student will be able to carry out a statistical test of significance calculate the acceptance and rejection region calculate and
More informationHomework 6 Solutions
Math 17, Section 2 Spring 2011 Assignment Chapter 20: 12, 14, 20, 24, 34 Chapter 21: 2, 8, 14, 16, 18 Chapter 20 20.12] Got Milk? The student made a number of mistakes here: Homework 6 Solutions 1. Null
More informationHypothesis Testing. Bluman Chapter 8
CHAPTER 8 Learning Objectives C H A P T E R E I G H T Hypothesis Testing 1 Outline 81 Steps in Traditional Method 82 z Test for a Mean 83 t Test for a Mean 84 z Test for a Proportion 85 2 Test for
More informationMATH 214 (NOTES) Math 214 Al Nosedal. Department of Mathematics Indiana University of Pennsylvania. MATH 214 (NOTES) p. 1/6
MATH 214 (NOTES) Math 214 Al Nosedal Department of Mathematics Indiana University of Pennsylvania MATH 214 (NOTES) p. 1/6 "Pepsi" problem A market research consultant hired by the PepsiCola Co. is interested
More informationLAB : THE CHISQUARE TEST. Probability, Random Chance, and Genetics
Period Date LAB : THE CHISQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
More informationLecture Notes Module 1
Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific
More informationPower and Sample Size Determination
Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 Power 1 / 31 Experimental Design To this point in the semester,
More informationStats for Strategy Exam 1 InClass Practice Questions DIRECTIONS
Stats for Strategy Exam 1 InClass Practice Questions DIRECTIONS Choose the single best answer for each question. Discuss questions with classmates, TAs and Professor Whitten. Raise your hand to check
More informationUnit 26 Estimation with Confidence Intervals
Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference
More informationChapter 8 Introduction to Hypothesis Testing
Chapter 8 Student Lecture Notes 81 Chapter 8 Introduction to Hypothesis Testing Fall 26 Fundamentals of Business Statistics 1 Chapter Goals After completing this chapter, you should be able to: Formulate
More informationHypothesis Testing. Steps for a hypothesis test:
Hypothesis Testing Steps for a hypothesis test: 1. State the claim H 0 and the alternative, H a 2. Choose a significance level or use the given one. 3. Draw the sampling distribution based on the assumption
More informationGood luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:
Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours
More informationMath 251, Review Questions for Test 3 Rough Answers
Math 251, Review Questions for Test 3 Rough Answers 1. (Review of some terminology from Section 7.1) In a state with 459,341 voters, a poll of 2300 voters finds that 45 percent support the Republican candidate,
More informationInstrumental Variables Regression. Instrumental Variables (IV) estimation is used when the model has endogenous s.
Instrumental Variables Regression Instrumental Variables (IV) estimation is used when the model has endogenous s. IV can thus be used to address the following important threats to internal validity: Omitted
More informationIntroduction to the Practice of Statistics Fifth Edition Moore, McCabe
Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 5.1 Homework Answers 5.7 In the proofreading setting if Exercise 5.3, what is the smallest number of misses m with P(X m)
More informationWeek 4: Standard Error and Confidence Intervals
Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
STT315 Practice Ch 57 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) The length of time a traffic signal stays green (nicknamed
More informationStat 411/511 THE RANDOMIZATION TEST. Charlotte Wickham. stat511.cwick.co.nz. Oct 16 2015
Stat 411/511 THE RANDOMIZATION TEST Oct 16 2015 Charlotte Wickham stat511.cwick.co.nz Today Review randomization model Conduct randomization test What about CIs? Using a tdistribution as an approximation
More informationWISE Power Tutorial All Exercises
ame Date Class WISE Power Tutorial All Exercises Power: The B.E.A.. Mnemonic Four interrelated features of power can be summarized using BEA B Beta Error (Power = 1 Beta Error): Beta error (or Type II
More informationBefore you sign on the dotted line... Questions to ask before you accept an NCAA athletic scholarship
Before you sign on the dotted line... Questions to ask before you accept an NCAA athletic scholarship Making a decision about postsecondary education is often challenging. For athletes who have been contacted
More informationChapter 16: law of averages
Chapter 16: law of averages Context................................................................... 2 Law of averages 3 Coin tossing experiment......................................................
More informationTesting Hypotheses About Proportions
Chapter 11 Testing Hypotheses About Proportions Hypothesis testing method: uses data from a sample to judge whether or not a statement about a population may be true. Steps in Any Hypothesis Test 1. Determine
More informationMONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010
MONT 07N Understanding Randomness Solutions For Final Examination May, 00 Short Answer (a) (0) How are the EV and SE for the sum of n draws with replacement from a box computed? Solution: The EV is n times
More informationAn Introduction to Sampling
An Introduction to Sampling Sampling is the process of selecting a subset of units from the population. We use sampling formulas to determine how many to select because it is based on the characteristics
More informationCONTENTS OF DAY 2. II. Why Random Sampling is Important 9 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE
1 2 CONTENTS OF DAY 2 I. More Precise Definition of Simple Random Sample 3 Connection with independent random variables 3 Problems with small populations 8 II. Why Random Sampling is Important 9 A myth,
More informationStatistical Inference
Statistical Inference Idea: Estimate parameters of the population distribution using data. How: Use the sampling distribution of sample statistics and methods based on what would happen if we used this
More informationLesson 1: Comparison of Population Means Part c: Comparison of Two Means
Lesson : Comparison of Population Means Part c: Comparison of Two Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
More informationLAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
More informationBasic Probability Theory I
A Probability puzzler!! Basic Probability Theory I Dr. Tom Ilvento FREC 408 Our Strategy with Probability Generally, we want to get to an inference from a sample to a population. In this case the population
More informationHypothesis Testing COMP 245 STATISTICS. Dr N A Heard. 1 Hypothesis Testing 2 1.1 Introduction... 2 1.2 Error Rates and Power of a Test...
Hypothesis Testing COMP 45 STATISTICS Dr N A Heard Contents 1 Hypothesis Testing 1.1 Introduction........................................ 1. Error Rates and Power of a Test.............................
More informationLesson 17: Margin of Error When Estimating a Population Proportion
Margin of Error When Estimating a Population Proportion Classwork In this lesson, you will find and interpret the standard deviation of a simulated distribution for a sample proportion and use this information
More informationDecision Making under Uncertainty
6.825 Techniques in Artificial Intelligence Decision Making under Uncertainty How to make one decision in the face of uncertainty Lecture 19 1 In the next two lectures, we ll look at the question of how
More informationMind on Statistics. Chapter 10
Mind on Statistics Chapter 10 Section 10.1 Questions 1 to 4: Some statistical procedures move from population to sample; some move from sample to population. For each of the following procedures, determine
More informationIntroduction to Hypothesis Testing
I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters  they must be estimated. However, we do have hypotheses about what the true
More informationAP: LAB 8: THE CHISQUARE TEST. Probability, Random Chance, and Genetics
Ms. Foglia Date AP: LAB 8: THE CHISQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
More informationHypothesis Tests for 1 sample Proportions
Hypothesis Tests for 1 sample Proportions 1. Hypotheses. Write the null and alternative hypotheses you would use to test each of the following situations. a) A governor is concerned about his "negatives"
More informationThe Ultimate Guide to Creating Successful Sports Betting Systems from SportsBettingChamp.com
The Ultimate Guide to Creating Successful Sports Betting Systems from SportsBettingChamp.com Here s my definitive guide on how YOU can create your own successful sports betting systems! What sport? Before
More informationChapter Additional: Standard Deviation and Chi Square
Chapter Additional: Standard Deviation and Chi Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret
More information4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
More informationNormal distribution. ) 2 /2σ. 2π σ
Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a
More informationSamples and Populations Confidence Intervals Hypotheses Onesided vs. twosided Statistical Significance Error Types. Statistiek I.
Statistiek I Sampling John Nerbonne CLCG, Rijksuniversiteit Groningen http://www.let.rug.nl/nerbonne/teach/statistieki/ John Nerbonne 1/42 Overview 1 Samples and Populations 2 Confidence Intervals 3 Hypotheses
More informationChapter 19 Confidence Intervals for Proportions
Chapter 19 Confidence Intervals for Proportions Use your TI calculator to find the confidence interval. You must know the number of successes, the sample size and confidence level. Under STAT go to TESTS.
More information3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
More informationStatistiek I. Proportions aka Sign Tests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. http://www.let.rug.nl/nerbonne/teach/statistieki/
Statistiek I Proportions aka Sign Tests John Nerbonne CLCG, Rijksuniversiteit Groningen http://www.let.rug.nl/nerbonne/teach/statistieki/ John Nerbonne 1/34 Proportions aka Sign Test The relative frequency
More informationUnderstanding Options: Calls and Puts
2 Understanding Options: Calls and Puts Important: in their simplest forms, options trades sound like, and are, very high risk investments. If reading about options makes you think they are too risky for
More information93.4 Likelihood ratio test. NeymanPearson lemma
93.4 Likelihood ratio test NeymanPearson lemma 91 Hypothesis Testing 91.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental
More informationSTATISTICS 8, FINAL EXAM. Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4
STATISTICS 8, FINAL EXAM NAME: KEY Seat Number: Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4 Make sure you have 8 pages. You will be provided with a table as well, as a separate
More information9_1&9_2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
9_1&9_2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Express the null hypothesis. 1) Which could be the null hypothesis for the true proportion
More informationIntroduction to the Practice of Statistics Sixth Edition Moore, McCabe Section 5.1 Homework Answers
Introduction to the Practice of Statistics Sixth Edition Moore, McCabe Section 5.1 Homework Answers 5.18 Attitudes toward drinking and behavior studies. Some of the methods in this section are approximations
More informationChapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary.
Overview Box Part V Variability The Averages Box We will look at various chance : Tossing coins, rolling, playing Sampling voters We will use something called s to analyze these. Box s help to translate
More informationGeneral Method: Difference of Means. 3. Calculate df: either WelchSatterthwaite formula or simpler df = min(n 1, n 2 ) 1.
General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either WelchSatterthwaite formula or simpler df = min(n
More informationUnderstanding Confidence Intervals and Hypothesis Testing Using Excel Data Table Simulation
Understanding Confidence Intervals and Hypothesis Testing Using Excel Data Table Simulation Leslie Chandrakantha lchandra@jjay.cuny.edu Department of Mathematics & Computer Science John Jay College of
More information7 Hypothesis testing  one sample tests
7 Hypothesis testing  one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X
More informationStandard 12: The student will explain and evaluate the financial impact and consequences of gambling.
TEACHER GUIDE 12.1 GAMBLING PAGE 1 Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. Risky Business Priority Academic Student Skills Personal Financial
More informationUnit 29 ChiSquare GoodnessofFit Test
Unit 29 ChiSquare GoodnessofFit Test Objectives: To perform the chisquare hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni
More informationName: Date: Use the following to answer questions 34:
Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin
More informationUCLA STAT 13 Statistical Methods  Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates
UCLA STAT 13 Statistical Methods  Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates 1. (a) (i) µ µ (ii) σ σ n is exactly Normally distributed. (c) (i) is approximately Normally
More informationSampling and Hypothesis Testing
Population and sample Sampling and Hypothesis Testing Allin Cottrell Population : an entire set of objects or units of observation of one sort or another. Sample : subset of a population. Parameter versus
More informationModels for Discrete Variables
Probability Models for Discrete Variables Our study of probability begins much as any data analysis does: What is the distribution of the data? Histograms, boxplots, percentiles, means, standard deviations
More informationExtending Hypothesis Testing. pvalues & confidence intervals
Extending Hypothesis Testing pvalues & confidence intervals So far: how to state a question in the form of two hypotheses (null and alternative), how to assess the data, how to answer the question by
More informationLesson 8: The Difference Between Theoretical Probabilities and Estimated Probabilities
The Difference Between Theoretical Probabilities and Estimated Probabilities Student Outcomes Given theoretical probabilities based on a chance experiment, students describe what they expect to see when
More informationHypothesis testing. c 2014, Jeffrey S. Simonoff 1
Hypothesis testing So far, we ve talked about inference from the point of estimation. We ve tried to answer questions like What is a good estimate for a typical value? or How much variability is there
More information9.1 Basic Principles of Hypothesis Testing
9. Basic Principles of Hypothesis Testing Basic Idea Through an Example: On the very first day of class I gave the example of tossing a coin times, and what you might conclude about the fairness of the
More informationChapter 23 Inferences About Means
Chapter 23 Inferences About Means Chapter 23  Inferences About Means 391 Chapter 23 Solutions to Class Examples 1. See Class Example 1. 2. We want to know if the mean battery lifespan exceeds the 300minute
More informationMinimax Strategies. Minimax Strategies. Zero Sum Games. Why Zero Sum Games? An Example. An Example
Everyone who has studied a game like poker knows the importance of mixing strategies With a bad hand, you often fold But you must bluff sometimes Lectures in MicroeconomicsCharles W Upton Zero Sum Games
More information, for x = 0, 1, 2, 3,... (4.1) (1 + 1/n) n = 2.71828... b x /x! = e b, x=0
Chapter 4 The Poisson Distribution 4.1 The Fish Distribution? The Poisson distribution is named after SimeonDenis Poisson (1781 1840). In addition, poisson is French for fish. In this chapter we will
More informationUnit 18: Introduction to Probability
Unit 18: Introduction to Probability Summary of Video There are lots of times in everyday life when we want to predict something in the future. Rather than just guessing, probability is the mathematical
More informationAP Statistics 2010 Scoring Guidelines
AP Statistics 2010 Scoring Guidelines The College Board The College Board is a notforprofit membership association whose mission is to connect students to college success and opportunity. Founded in
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationReasoning with Uncertainty More about Hypothesis Testing. Pvalues, types of errors, power of a test
Reasoning with Uncertainty More about Hypothesis Testing Pvalues, types of errors, power of a test PValues and Decisions Your conclusion about any null hypothesis should be accompanied by the Pvalue
More informationChapter 8: Introduction to Hypothesis Testing
Chapter 8: Introduction to Hypothesis Testing We re now at the point where we can discuss the logic of hypothesis testing. This procedure will underlie the statistical analyses that we ll use for the remainder
More informationExample Hypotheses. Chapter 82: Basics of Hypothesis Testing. A newspaper headline makes the claim: Most workers get their jobs through networking
Chapter 82: Basics of Hypothesis Testing Two main activities in statistical inference are using sample data to: 1. estimate a population parameter forming confidence intervals 2. test a hypothesis or
More information5544 = 2 2772 = 2 2 1386 = 2 2 2 693. Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1
MATH 13150: Freshman Seminar Unit 8 1. Prime numbers 1.1. Primes. A number bigger than 1 is called prime if its only divisors are 1 and itself. For example, 3 is prime because the only numbers dividing
More information