# Announcements. CSE332: Data Abstractions. Lecture 9: B Trees. Today. Our goal. M-ary Search Tree. M-ary Search Tree. Ruth Anderson Winter 2011

Save this PDF as:

Size: px
Start display at page:

Download "Announcements. CSE332: Data Abstractions. Lecture 9: B Trees. Today. Our goal. M-ary Search Tree. M-ary Search Tree. Ruth Anderson Winter 2011"

## Transcription

1 Announcements CSE2: Data Abstractions Project 2 posted! Partner selection due by 11pm Tues 1/25 at the latest. Homework due Friday Jan 28 st at the BEGINNING of lecture Lecture 9: B Trees Ruth Anderson Winter /24/ Today Our goal Dictionaries B-Trees Problem: A dictionary with so much data most of it is on disk Desire: A balanced tree (logarithmic height) that is even shallower than AVL trees so that we can minimize disk accesses and exploit disk-block size A key idea: Increase the branching factor of our tree 1/24/2011 1/24/ M-ary Search Tree Build some sort of search tree with branching factor M: Have an array of sorted children (Node[]) Choose M to fit snugly into a disk block (1 access for array) M-ary Search Tree Perfect tree of height h has (M h+1-1)/(m-1) nodes (textbook, page 4) What is the height of this tree? What is the worst case running time of find? 1/24/ # hops for find: If balanced, using log M n instead of log 2 n If M=256, that s an 8x improvement Example: M = 256 and n = 2 that s 5 instead of To decide which branch to take, divide into portions Binary tree: Less than node value or greater? M-ary: In range 1? In range 2? In range?... In range M? Runtime of find if balanced: O(log 2 M log M n) Hmmm log M n is the height we traverse. Why the log 2 M multiplier? log 2 M: At each step, find the correct child branch to take using binary search 1/24/2011 6

2 Problems with M-ary search trees What should the order property be? How would you rebalance (ideally without more disk accesses)? Storing real data at inner-nodes (like in a BST) seems kind of wasteful To access the node, will have to load data from disk, even though most of the time we won t use it So let s use the branching-factor idea, but for a different kind of balanced tree Not a binary search tree But still logarithmic height for any M > 2 1/24/ B+ Trees (we and the book say B Trees ) Two types of nodes: internal nodes & leaves Each internal node has room for up to M-1 keys and M children No other data; all data at the leaves! Order property: Subtree between keys x and y x< contains only data that is x and < y (notice the ) Leaf nodes have up to L sorted data items As usual, we ll ignore the along for the ride data in our examples Remember no data at non-leaves 7 21 x<7 7 x< x<21 1/24/ x Remember: Leaves store data Internal nodes are signposts Find 7 21 Structure Properties x< x<7 7 x< x<21 Different from BST in that we don t store values at internal nodes But find is still an easy root-to-leaf recursive algorithm 21 x At each internal node do binary search on (up to) M-1 keys to find the branch to take At the leaf do binary search on the (up to) L data items But to get logarithmic running time, we need a balance condition 1/24/ Root (special case) If tree has L items, root is a leaf (occurs when starting up, otherwise unusual) Else has between 2 and M children Internal nodes Have between M/2 and M children, i.e., at least half full Leaf nodes All leaves at the same depth Have between L/2 and L data items, i.e., at least half full (Any M > 2 and L will work; picked based on disk-block size) 1/24/ Example Note on notation: Inner nodes drawn horizontally, leaves vertically to distinguish. Include empty cells Suppose M=4 (max # pointers in internal node) and L=5 (max # data items at leaf) All internal nodes have at least 2 children All leaves have at least data items (only showing keys) All leaves at same depth Balanced enough Not hard to show height h is logarithmic in number of data items n Let M > 2 (if M = 2, then a list tree is legal no good!) Because all nodes are at least half full (except root may have only 2 children) and all leaves are at the same level, the minimum number of data items n for a height h>0 tree is n 2 M/2 h-1 L/2 minimum number of leaves minimum data per leaf 1/24/ /24/2011

3 Disk Friendliness Maintaining balance What makes B trees so disk friendly? Many keys stored in one internal node All brought into memory in one disk access IF we pick M wisely Makes the binary search over M-1 keys totally worth it (insignificant compared to disk access times) Internal nodes contain only keys Any find wants only one data item; wasteful to load unnecessary items with internal nodes So only bring one leaf of data items into memory Data-item size doesn t affect what M is 1/24/ So this seems like a great data structure (and it is) But we haven t implemented the other dictionary operations yet insert delete As with AVL trees, the hard part is maintaining structure properties Example: for insert, there might not be room at the correct leaf 1/24/2011 Building a B-Tree (insertions) M = L = The empty B- Tree (the root will be a leaf at the beginning) M = L = Insert() Insert() Insert() 1/24/2011 Just need to keep data in order Insert(0)??? 0 When we overflow a leaf, we split it into 2 leaves Parent gains another child If there is no parent (like here), we create one; how do we pick the key shown in it? Smallest element in right tree 1/24/ Split leaf again Insert(2) 0 2 Insert(6) Insert() Insert() M = L = 1/24/ Split the internal node (in this case, the root) 2 M = L = 1/24/ What now?

4 Insertion Algorithm Insert(,,,8) 1. Insert the data in its leaf in sorted order Note: Given the leaves and the structure of the tree, we M = L = can always fill in internal node keys; the smallest value in my right branch 1/24/ If the leaf now has L+1 items, overflow! Split the leaf into two nodes: Original leaf with (L+1)/2 smaller items New leaf with (L+1)/2 = L/2 larger items Attach the new child to the parent Adding new key to parent in sorted order. If step (2) caused the parent to have M+1 children, overflow! 1/24/ Insertion algorithm continued Efficiency of insert. If an internal node has M+1 children Split the node into two nodes Original node with (M+1)/2 smaller items New node with (M+1)/2 = M/2 larger items Attach the new child to the parent Adding new key to parent in sorted order Splitting at a node (step ) could make the parent overflow too So repeat step up the tree until a node doesn t overflow If the root overflows, make a new root with two children This is the only case that increases the tree height 1/24/ Find correct leaf: O(log 2 M log M n) Insert in leaf: O(L) Split leaf: O(L) Split parents all the way up to root: O(M log M n) Total: O(L + M log M n) But it s not that bad: Splits are not that common (only required when a node is FULL, M and L are likely to be large, and after a split, will be half empty) Splitting the root is extremely rare Remember disk accesses were the name of the game: O(log M n) 1/24/ B-Tree Reminder: Another dictionary And Now for Deletion Before we talk about deletion, just keep in mind overall idea: Large data sets won t fit entirely in memory Disk access is slow Set up tree so we do one disk access per node in tree Then our goal is to keep tree shallow as possible Balanced binary tree is a good start, but we can do better than log 2 n height In an M-ary tree, height drops to log M n Why not set M really really high? Height 1 tree Instead, set M so that each node fits in a disk block Delete(2) /24/ Easy case: Leaf still has enough data; just remove M = L = 1/24/

5 Delete() M = L = 1/24/ M = L = 1/24/ Delete() M = L = 1/24/ M = L = 1/24/ Delete() M = L = 1/24/ M = L = 1/24/2011 0

6 6 Delete() M = L = 1/24/ M = L = 1/24/ M = L = 1/24/2011 M = L = 1/24/ Deletion Algorithm Deletion algorithm continued 1. Remove the data from its leaf 2. If the leaf now has L/2-1, underflow! If a neighbor has > L/2 items, adopt and update parent Else merge node with neighbor Guaranteed to have a legal number of items Parent now has one less node. If step (2) caused the parent to have M/2-1 children, underflow!. If an internal node has M/2-1 children If a neighbor has > M/2 items, adopt and update parent Else merge node with neighbor Guaranteed to have a legal number of items Parent now has one less node, may need to continue up the tree If we merge all the way up through the root, that s fine unless the root went from 2 children to 1 In that case, delete the root and make child the root This is the only case that decreases tree height 1/24/ /24/2011 6

7 Efficiency of delete Insert vs delete comparison Find correct leaf: O(log 2 M log M n) Remove from leaf: O(L) Adopt from or merge with neighbor: O(L) Adopt or merge all the way up to root: O(M log M n) Total: O(L + M log M n) Insert Find correct leaf: Insert in leaf: Split leaf: Split parents all the way up to root: O(log 2 M log M n) O(L) O(L) O(M log M n) But it s not that bad: Merges are not that common Remember disk accesses were the name of the game: O(log M n) Delete Find correct leaf: Remove from leaf: Adopt/merge from/with neighbor leaf: Adopt or merge all the way up to root: O(log 2 M log M n) O(L) O(L) O(M log M n) 1/24/ /24/ B Trees in Java? For most of our data structures, we have encouraged writing highlevel, reusable code, such as in Java with generics It is worth knowing enough about how Java works to understand why this is probably a bad idea for B trees Assuming our goal is efficient number of disk accesses Java has many advantages, but it wasn t designed for this If you just want a balanced tree with worst-case logarithmic operations, no problem If M=, this is called a 2- tree If M=4, this is called a 2--4 tree The key issue is extra levels of indirection 1/24/ Naïve approaches Even if we assume data items have int keys, you cannot get the data representation you want for really big data interface Keyed<E> { int key(e); } class BTreeNode<E implements Keyed<E>> { static final int M = 8; int[] keys = new int[m-1]; BTreeNode<E>[] children = new BTreeNode[M]; int numchildren = 0; } class BTreeLeaf<E> { static final int L = 2; E[] data = (E[])new Object[L]; int numitems = 0; } 1/24/2011 What that looks like All the red references indicate unnecessary indirection The moral BTreeNode ( objects with header words ) M-1 20 (larger array) The whole idea behind B trees was to keep related data in contiguous memory 70 M (larger array) But that s the best you can do in Java Again, the advantage is generic, reusable code But for your performance-critical web-index, not the way to implement your B-Tree for terabytes of data BTreeLeaf (data objects not in contiguous memory) L (larger array) 20 C# may have better support for flattening objects into arrays C and C++ definitely do Levels of indirection matter! 1/24/ /24/

8 Conclusion: Balanced Trees Balanced trees make good dictionaries because they guarantee logarithmic-time find, insert, and delete Essential and beautiful computer science But only if you can maintain balance within the time bound AVL trees maintain balance by tracking height and allowing all children to differ in height by at most 1 B trees maintain balance by keeping nodes at least half full and all leaves at same height Other great balanced trees (see text; worth knowing they exist) Red-black trees: all leaves have depth within a factor of 2 Splay trees: self-adjusting; amortized guarantee; no extra space for height information 1/24/2011 4

### CSE 326: Data Structures B-Trees and B+ Trees

Announcements (4//08) CSE 26: Data Structures B-Trees and B+ Trees Brian Curless Spring 2008 Midterm on Friday Special office hour: 4:-5: Thursday in Jaech Gallery (6 th floor of CSE building) This is

### From Last Time: Remove (Delete) Operation

CSE 32 Lecture : More on Search Trees Today s Topics: Lazy Operations Run Time Analysis of Binary Search Tree Operations Balanced Search Trees AVL Trees and Rotations Covered in Chapter of the text From

### Previous Lectures. B-Trees. External storage. Two types of memory. B-trees. Main principles

B-Trees Algorithms and data structures for external memory as opposed to the main memory B-Trees Previous Lectures Height balanced binary search trees: AVL trees, red-black trees. Multiway search trees:

### B-Trees. Algorithms and data structures for external memory as opposed to the main memory B-Trees. B -trees

B-Trees Algorithms and data structures for external memory as opposed to the main memory B-Trees Previous Lectures Height balanced binary search trees: AVL trees, red-black trees. Multiway search trees:

### Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees. Binary Search Trees. Lecturer: Georgy Gimel farb

Binary Search Trees Lecturer: Georgy Gimel farb COMPSCI 220 Algorithms and Data Structures 1 / 27 1 Properties of Binary Search Trees 2 Basic BST operations The worst-case time complexity of BST operations

### 1 2-3 Trees: The Basics

CS10: Data Structures and Object-Oriented Design (Fall 2013) November 1, 2013: 2-3 Trees: Inserting and Deleting Scribes: CS 10 Teaching Team Lecture Summary In this class, we investigated 2-3 Trees in

### Binary Heap Algorithms

CS Data Structures and Algorithms Lecture Slides Wednesday, April 5, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks CHAPPELLG@member.ams.org 2005 2009 Glenn G. Chappell

### Tree Properties (size vs height) Balanced Binary Trees

Tree Properties (size vs height) Balanced Binary Trees Due now: WA 7 (This is the end of the grace period). Note that a grace period takes the place of a late day. Now is the last time you can turn this

### Binary Search Trees. A Generic Tree. Binary Trees. Nodes in a binary search tree ( B-S-T) are of the form. P parent. Key. Satellite data L R

Binary Search Trees A Generic Tree Nodes in a binary search tree ( B-S-T) are of the form P parent Key A Satellite data L R B C D E F G H I J The B-S-T has a root node which is the only node whose parent

### Binary Search Trees CMPSC 122

Binary Search Trees CMPSC 122 Note: This notes packet has significant overlap with the first set of trees notes I do in CMPSC 360, but goes into much greater depth on turning BSTs into pseudocode than

### A binary search tree or BST is a binary tree that is either empty or in which the data element of each node has a key, and:

Binary Search Trees 1 The general binary tree shown in the previous chapter is not terribly useful in practice. The chief use of binary trees is for providing rapid access to data (indexing, if you will)

### Balanced Binary Search Tree

AVL Trees / Slide 1 Balanced Binary Search Tree Worst case height of binary search tree: N-1 Insertion, deletion can be O(N) in the worst case We want a tree with small height Height of a binary tree with

### Binary Heaps * * * * * * * / / \ / \ / \ / \ / \ * * * * * * * * * * * / / \ / \ / / \ / \ * * * * * * * * * *

Binary Heaps A binary heap is another data structure. It implements a priority queue. Priority Queue has the following operations: isempty add (with priority) remove (highest priority) peek (at highest

### Binary Search Trees. Data in each node. Larger than the data in its left child Smaller than the data in its right child

Binary Search Trees Data in each node Larger than the data in its left child Smaller than the data in its right child FIGURE 11-6 Arbitrary binary tree FIGURE 11-7 Binary search tree Data Structures Using

### Sorting revisited. Build the binary search tree: O(n^2) Traverse the binary tree: O(n) Total: O(n^2) + O(n) = O(n^2)

Sorting revisited How did we use a binary search tree to sort an array of elements? Tree Sort Algorithm Given: An array of elements to sort 1. Build a binary search tree out of the elements 2. Traverse

### Big Data and Scripting. Part 4: Memory Hierarchies

1, Big Data and Scripting Part 4: Memory Hierarchies 2, Model and Definitions memory size: M machine words total storage (on disk) of N elements (N is very large) disk size unlimited (for our considerations)

### B+ Tree Properties B+ Tree Searching B+ Tree Insertion B+ Tree Deletion Static Hashing Extendable Hashing Questions in pass papers

B+ Tree and Hashing B+ Tree Properties B+ Tree Searching B+ Tree Insertion B+ Tree Deletion Static Hashing Extendable Hashing Questions in pass papers B+ Tree Properties Balanced Tree Same height for paths

### - Easy to insert & delete in O(1) time - Don t need to estimate total memory needed. - Hard to search in less than O(n) time

Skip Lists CMSC 420 Linked Lists Benefits & Drawbacks Benefits: - Easy to insert & delete in O(1) time - Don t need to estimate total memory needed Drawbacks: - Hard to search in less than O(n) time (binary

### Converting a Number from Decimal to Binary

Converting a Number from Decimal to Binary Convert nonnegative integer in decimal format (base 10) into equivalent binary number (base 2) Rightmost bit of x Remainder of x after division by two Recursive

### In our lecture about Binary Search Trees (BST) we have seen that the operations of searching for and inserting an element in a BST can be of the

In our lecture about Binary Search Trees (BST) we have seen that the operations of searching for and inserting an element in a BST can be of the order O(log n) (in the best case) and of the order O(n)

### Heaps & Priority Queues in the C++ STL 2-3 Trees

Heaps & Priority Queues in the C++ STL 2-3 Trees CS 3 Data Structures and Algorithms Lecture Slides Friday, April 7, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks

### Binary Trees and Huffman Encoding Binary Search Trees

Binary Trees and Huffman Encoding Binary Search Trees Computer Science E119 Harvard Extension School Fall 2012 David G. Sullivan, Ph.D. Motivation: Maintaining a Sorted Collection of Data A data dictionary

### Questions 1 through 25 are worth 2 points each. Choose one best answer for each.

Questions 1 through 25 are worth 2 points each. Choose one best answer for each. 1. For the singly linked list implementation of the queue, where are the enqueues and dequeues performed? c a. Enqueue in

### A Comparison of Dictionary Implementations

A Comparison of Dictionary Implementations Mark P Neyer April 10, 2009 1 Introduction A common problem in computer science is the representation of a mapping between two sets. A mapping f : A B is a function

### Merge Sort. 2004 Goodrich, Tamassia. Merge Sort 1

Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Merge Sort 1 Divide-and-Conquer Divide-and conquer is a general algorithm design paradigm: Divide: divide the input data S in two disjoint subsets

### Today s Outline. Exercise. Binary Search Analysis. Linear Search Analysis. Asymptotic Analysis. Analyzing Code. Announcements. Asymptotic Analysis

Today s Outline Announcements Assignment #1 due Thurs, Oct 7 at 11:45pm Asymptotic Analysis Asymptotic Analysis CSE 7 Data Structures & Algorithms Ruth Anderson Autumn 2010 Exercise Analyzing Code bool

### Persistent Binary Search Trees

Persistent Binary Search Trees Datastructures, UvA. May 30, 2008 0440949, Andreas van Cranenburgh Abstract A persistent binary tree allows access to all previous versions of the tree. This paper presents

### Data storage Tree indexes

Data storage Tree indexes Rasmus Pagh February 7 lecture 1 Access paths For many database queries and updates, only a small fraction of the data needs to be accessed. Extreme examples are looking or updating

### Analysis of Algorithms I: Binary Search Trees

Analysis of Algorithms I: Binary Search Trees Xi Chen Columbia University Hash table: A data structure that maintains a subset of keys from a universe set U = {0, 1,..., p 1} and supports all three dictionary

### TREE BASIC TERMINOLOGIES

TREE Trees are very flexible, versatile and powerful non-liner data structure that can be used to represent data items possessing hierarchical relationship between the grand father and his children and

### Learning Outcomes. COMP202 Complexity of Algorithms. Binary Search Trees and Other Search Trees

Learning Outcomes COMP202 Complexity of Algorithms Binary Search Trees and Other Search Trees [See relevant sections in chapters 2 and 3 in Goodrich and Tamassia.] At the conclusion of this set of lecture

### Ordered Lists and Binary Trees

Data Structures and Algorithms Ordered Lists and Binary Trees Chris Brooks Department of Computer Science University of San Francisco Department of Computer Science University of San Francisco p.1/62 6-0:

### CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.

Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure

### Binary Heaps. CSE 373 Data Structures

Binary Heaps CSE Data Structures Readings Chapter Section. Binary Heaps BST implementation of a Priority Queue Worst case (degenerate tree) FindMin, DeleteMin and Insert (k) are all O(n) Best case (completely

### A binary search tree is a binary tree with a special property called the BST-property, which is given as follows:

Chapter 12: Binary Search Trees A binary search tree is a binary tree with a special property called the BST-property, which is given as follows: For all nodes x and y, if y belongs to the left subtree

### Binary Search Trees > = Binary Search Trees 1. 2004 Goodrich, Tamassia

Binary Search Trees < 6 2 > = 1 4 8 9 Binary Search Trees 1 Binary Search Trees A binary search tree is a binary tree storing keyvalue entries at its internal nodes and satisfying the following property:

### root node level: internal node edge leaf node CS@VT Data Structures & Algorithms 2000-2009 McQuain

inary Trees 1 A binary tree is either empty, or it consists of a node called the root together with two binary trees called the left subtree and the right subtree of the root, which are disjoint from each

### recursion, O(n), linked lists 6/14

recursion, O(n), linked lists 6/14 recursion reducing the amount of data to process and processing a smaller amount of data example: process one item in a list, recursively process the rest of the list

### S. Muthusundari. Research Scholar, Dept of CSE, Sathyabama University Chennai, India e-mail: nellailath@yahoo.co.in. Dr. R. M.

A Sorting based Algorithm for the Construction of Balanced Search Tree Automatically for smaller elements and with minimum of one Rotation for Greater Elements from BST S. Muthusundari Research Scholar,

### Persistent Data Structures

6.854 Advanced Algorithms Lecture 2: September 9, 2005 Scribes: Sommer Gentry, Eddie Kohler Lecturer: David Karger Persistent Data Structures 2.1 Introduction and motivation So far, we ve seen only ephemeral

### Heap. Binary Search Tree. Heaps VS BSTs. < el el. Difference between a heap and a BST:

Heaps VS BSTs Difference between a heap and a BST: Heap el Binary Search Tree el el el < el el Perfectly balanced at all times Immediate access to maximal element Easy to code Does not provide efficient

### 1. The memory address of the first element of an array is called A. floor address B. foundation addressc. first address D.

1. The memory address of the first element of an array is called A. floor address B. foundation addressc. first address D. base address 2. The memory address of fifth element of an array can be calculated

### Binary Search Trees 3/20/14

Binary Search Trees 3/0/4 Presentation for use ith the textbook Data Structures and Algorithms in Java, th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldasser, Wiley, 04 Binary Search Trees 4

### 1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++

Answer the following 1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++ 2) Which data structure is needed to convert infix notations to postfix notations? Stack 3) The

### Krishna Institute of Engineering & Technology, Ghaziabad Department of Computer Application MCA-213 : DATA STRUCTURES USING C

Tutorial#1 Q 1:- Explain the terms data, elementary item, entity, primary key, domain, attribute and information? Also give examples in support of your answer? Q 2:- What is a Data Type? Differentiate

### Review of Hashing: Integer Keys

CSE 326 Lecture 13: Much ado about Hashing Today s munchies to munch on: Review of Hashing Collision Resolution by: Separate Chaining Open Addressing \$ Linear/Quadratic Probing \$ Double Hashing Rehashing

### Data Structures and Algorithms

Data Structures and Algorithms CS245-2016S-06 Binary Search Trees David Galles Department of Computer Science University of San Francisco 06-0: Ordered List ADT Operations: Insert an element in the list

### Lecture Notes on Binary Search Trees

Lecture Notes on Binary Search Trees 15-122: Principles of Imperative Computation Frank Pfenning André Platzer Lecture 17 October 23, 2014 1 Introduction In this lecture, we will continue considering associative

### Lecture 1: Data Storage & Index

Lecture 1: Data Storage & Index R&G Chapter 8-11 Concurrency control Query Execution and Optimization Relational Operators File & Access Methods Buffer Management Disk Space Management Recovery Manager

### Chapter 14 The Binary Search Tree

Chapter 14 The Binary Search Tree In Chapter 5 we discussed the binary search algorithm, which depends on a sorted vector. Although the binary search, being in O(lg(n)), is very efficient, inserting a

### CSE373: Data Structures and Algorithms Lecture 1: Introduction; ADTs; Stacks/Queues. Nicki Dell Spring 2014

CSE373: Data Structures and Algorithms Lecture 1: Introduction; ADTs; Stacks/Queues Nicki Dell Spring 2014 Registration We have 140 students registered and 140+ on the wait list! If you re thinking of

### M-way Trees and B-Trees

Carlos Moreno cmoreno @ uwaterloo.ca EIT-4103 https://ece.uwaterloo.ca/~cmoreno/ece250 Standard reminder to set phones to silent/vibrate mode, please! Once upon a time... in a course that we all like to

### Physical Data Organization

Physical Data Organization Database design using logical model of the database - appropriate level for users to focus on - user independence from implementation details Performance - other major factor

### AS-2261 M.Sc.(First Semester) Examination-2013 Paper -fourth Subject-Data structure with algorithm

AS-2261 M.Sc.(First Semester) Examination-2013 Paper -fourth Subject-Data structure with algorithm Time: Three Hours] [Maximum Marks: 60 Note Attempts all the questions. All carry equal marks Section A

### Lecture 6: Binary Search Trees CSCI 700 - Algorithms I. Andrew Rosenberg

Lecture 6: Binary Search Trees CSCI 700 - Algorithms I Andrew Rosenberg Last Time Linear Time Sorting Counting Sort Radix Sort Bucket Sort Today Binary Search Trees Data Structures Data structure is a

### Binary Search Trees (BST)

Binary Search Trees (BST) 1. Hierarchical data structure with a single reference to node 2. Each node has at most two child nodes (a left and a right child) 3. Nodes are organized by the Binary Search

### PES Institute of Technology-BSC QUESTION BANK

PES Institute of Technology-BSC Faculty: Mrs. R.Bharathi CS35: Data Structures Using C QUESTION BANK UNIT I -BASIC CONCEPTS 1. What is an ADT? Briefly explain the categories that classify the functions

### Algorithms. Margaret M. Fleck. 18 October 2010

Algorithms Margaret M. Fleck 18 October 2010 These notes cover how to analyze the running time of algorithms (sections 3.1, 3.3, 4.4, and 7.1 of Rosen). 1 Introduction The main reason for studying big-o

### Why Use Binary Trees?

Binary Search Trees Why Use Binary Trees? Searches are an important application. What other searches have we considered? brute force search (with array or linked list) O(N) binarysearch with a pre-sorted

### CSE373: Data Structures and Algorithms Lecture 1: Introduction; ADTs; Stacks/Queues. Linda Shapiro Spring 2016

CSE373: Data Structures and Algorithms Lecture 1: Introduction; ADTs; Stacks/Queues Linda Shapiro Registration We have 180 students registered and others who want to get in. If you re thinking of dropping

### DATABASE DESIGN - 1DL400

DATABASE DESIGN - 1DL400 Spring 2015 A course on modern database systems!! http://www.it.uu.se/research/group/udbl/kurser/dbii_vt15/ Kjell Orsborn! Uppsala Database Laboratory! Department of Information

### CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team

CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team Lecture Summary In this lecture, we learned about the ADT Priority Queue. A

### Introduction to Algorithms March 10, 2004 Massachusetts Institute of Technology Professors Erik Demaine and Shafi Goldwasser Quiz 1.

Introduction to Algorithms March 10, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Quiz 1 Quiz 1 Do not open this quiz booklet until you are directed

### Lecture Notes on Binary Search Trees

Lecture Notes on Binary Search Trees 15-122: Principles of Imperative Computation Frank Pfenning Lecture 17 March 17, 2010 1 Introduction In the previous two lectures we have seen how to exploit the structure

### Data Structures and Data Manipulation

Data Structures and Data Manipulation What the Specification Says: Explain how static data structures may be used to implement dynamic data structures; Describe algorithms for the insertion, retrieval

### Intro. to the Divide-and-Conquer Strategy via Merge Sort CMPSC 465 CLRS Sections 2.3, Intro. to and various parts of Chapter 4

Intro. to the Divide-and-Conquer Strategy via Merge Sort CMPSC 465 CLRS Sections 2.3, Intro. to and various parts of Chapter 4 I. Algorithm Design and Divide-and-Conquer There are various strategies we

### Cpt S 223. School of EECS, WSU

Priority Queues (Heaps) 1 Motivation Queues are a standard mechanism for ordering tasks on a first-come, first-served basis However, some tasks may be more important or timely than others (higher priority)

### Analysis of Algorithms I: Optimal Binary Search Trees

Analysis of Algorithms I: Optimal Binary Search Trees Xi Chen Columbia University Given a set of n keys K = {k 1,..., k n } in sorted order: k 1 < k 2 < < k n we wish to build an optimal binary search

### Operations: search;; min;; max;; predecessor;; successor. Time O(h) with h height of the tree (more on later).

Binary search tree Operations: search;; min;; max;; predecessor;; successor. Time O(h) with h height of the tree (more on later). Data strutcure fields usually include for a given node x, the following

### 6 March 2007 1. Array Implementation of Binary Trees

Heaps CSE 0 Winter 00 March 00 1 Array Implementation of Binary Trees Each node v is stored at index i defined as follows: If v is the root, i = 1 The left child of v is in position i The right child of

### CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Linda Shapiro Winter 2015

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis Linda Shapiro Today Registration should be done. Homework 1 due 11:59 pm next Wednesday, January 14 Review math essential

### Motivation Suppose we have a database of people We want to gure out who is related to whom Initially, we only have a list of people, and information a

CSE 220: Handout 29 Disjoint Sets 1 Motivation Suppose we have a database of people We want to gure out who is related to whom Initially, we only have a list of people, and information about relations

### External Memory Geometric Data Structures

External Memory Geometric Data Structures Lars Arge Department of Computer Science University of Aarhus and Duke University Augues 24, 2005 1 Introduction Many modern applications store and process datasets

### Data Structures. Jaehyun Park. CS 97SI Stanford University. June 29, 2015

Data Structures Jaehyun Park CS 97SI Stanford University June 29, 2015 Typical Quarter at Stanford void quarter() { while(true) { // no break :( task x = GetNextTask(tasks); process(x); // new tasks may

### R-trees. R-Trees: A Dynamic Index Structure For Spatial Searching. R-Tree. Invariants

R-Trees: A Dynamic Index Structure For Spatial Searching A. Guttman R-trees Generalization of B+-trees to higher dimensions Disk-based index structure Occupancy guarantee Multiple search paths Insertions

### Symbol Tables. Introduction

Symbol Tables Introduction A compiler needs to collect and use information about the names appearing in the source program. This information is entered into a data structure called a symbol table. The

### Class Overview. CSE 326: Data Structures. Goals. Goals. Data Structures. Goals. Introduction

Class Overview CSE 326: Data Structures Introduction Introduction to many of the basic data structures used in computer software Understand the data structures Analyze the algorithms that use them Know

### 10CS35: Data Structures Using C

CS35: Data Structures Using C QUESTION BANK REVIEW OF STRUCTURES AND POINTERS, INTRODUCTION TO SPECIAL FEATURES OF C OBJECTIVE: Learn : Usage of structures, unions - a conventional tool for handling a

### File Management. Chapter 12

Chapter 12 File Management File is the basic element of most of the applications, since the input to an application, as well as its output, is usually a file. They also typically outlive the execution

### CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis Lecture 7 Binary heap, binomial heap, and Fibonacci heap 1 Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 The slides were

### Data Warehousing und Data Mining

Data Warehousing und Data Mining Multidimensionale Indexstrukturen Ulf Leser Wissensmanagement in der Bioinformatik Content of this Lecture Multidimensional Indexing Grid-Files Kd-trees Ulf Leser: Data

### Data Structures. Algorithm Performance and Big O Analysis

Data Structures Algorithm Performance and Big O Analysis What s an Algorithm? a clearly specified set of instructions to be followed to solve a problem. In essence: A computer program. In detail: Defined

### Hash Tables. Computer Science E-119 Harvard Extension School Fall 2012 David G. Sullivan, Ph.D. Data Dictionary Revisited

Hash Tables Computer Science E-119 Harvard Extension School Fall 2012 David G. Sullivan, Ph.D. Data Dictionary Revisited We ve considered several data structures that allow us to store and search for data

### DATA STRUCTURES USING C

DATA STRUCTURES USING C QUESTION BANK UNIT I 1. Define data. 2. Define Entity. 3. Define information. 4. Define Array. 5. Define data structure. 6. Give any two applications of data structures. 7. Give

### Databases and Information Systems 1 Part 3: Storage Structures and Indices

bases and Information Systems 1 Part 3: Storage Structures and Indices Prof. Dr. Stefan Böttcher Fakultät EIM, Institut für Informatik Universität Paderborn WS 2009 / 2010 Contents: - database buffer -

### Fundamental Algorithms

Fundamental Algorithms Chapter 6: AVL Trees Michael Bader Winter 2011/12 Chapter 6: AVL Trees, Winter 2011/12 1 Part I AVL Trees Chapter 6: AVL Trees, Winter 2011/12 2 Binary Search Trees Summary Complexity

### The ADT Binary Search Tree

The ADT Binary Search Tree The Binary Search Tree is a particular type of binary tree that enables easy searching for specific items. Definition The ADT Binary Search Tree is a binary tree which has an

### The Tower of Hanoi. Recursion Solution. Recursive Function. Time Complexity. Recursive Thinking. Why Recursion? n! = n* (n-1)!

The Tower of Hanoi Recursion Solution recursion recursion recursion Recursive Thinking: ignore everything but the bottom disk. 1 2 Recursive Function Time Complexity Hanoi (n, src, dest, temp): If (n >

### Binary Search Trees. basic implementations randomized BSTs deletion in BSTs

Binary Search Trees basic implementations randomized BSTs deletion in BSTs eferences: Algorithms in Java, Chapter 12 Intro to Programming, Section 4.4 http://www.cs.princeton.edu/introalgsds/43bst 1 Elementary

### Data Structures Fibonacci Heaps, Amortized Analysis

Chapter 4 Data Structures Fibonacci Heaps, Amortized Analysis Algorithm Theory WS 2012/13 Fabian Kuhn Fibonacci Heaps Lacy merge variant of binomial heaps: Do not merge trees as long as possible Structure:

### Quiz 1 Solutions. (a) T F The height of any binary search tree with n nodes is O(log n). Explain:

Introduction to Algorithms March 9, 2011 Massachusetts Institute of Technology 6.006 Spring 2011 Professors Erik Demaine, Piotr Indyk, and Manolis Kellis Quiz 1 Solutions Problem 1. Quiz 1 Solutions True

### Rotation Operation for Binary Search Trees Idea:

Rotation Operation for Binary Search Trees Idea: Change a few pointers at a particular place in the tree so that one subtree becomes less deep in exchange for another one becoming deeper. A sequence of

### Analysis of Binary Search algorithm and Selection Sort algorithm

Analysis of Binary Search algorithm and Selection Sort algorithm In this section we shall take up two representative problems in computer science, work out the algorithms based on the best strategy to

### International Journal of Software and Web Sciences (IJSWS) www.iasir.net

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Print): 2279-0063 ISSN (Online): 2279-0071 International

### Sidebar: Data Structures

Sidebar: Data Structures A data structure is a collection of algorithms for storing and retrieving information. The operations that store information are called updates, and the operations that retrieve

### Full and Complete Binary Trees

Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

### A binary search tree or BST is a binary tree that is either empty or in which the data element of each node has a key, and:

1 The general binary tree shown in the previous chapter is not terribly useful in practice. The chief use of binary trees is for providing rapid access to data (indexing, if you will) and the general binary

### Persistent Data Structures and Planar Point Location

Persistent Data Structures and Planar Point Location Inge Li Gørtz Persistent Data Structures Ephemeral Partial persistence Full persistence Confluent persistence V1 V1 V1 V1 V2 q ue V2 V2 V5 V2 V4 V4