# People s Physics book

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 The Big Idea Quantum Mechanics, discovered early in the 20th century, completely shook the way physicists think. Quantum Mechanics is the description of how the universe works on the very small scale. It turns out that we can predict not what will happen, but only the probability of what will happen. The uncertainty of quantum events is extremely important at the atomic or smaller level but not important at the macroscopic level. In fact the correspondence principle states that all results from quantum mechanics must agree with classical physics as the mass increases. The foundation of quantum mechanics was developed on the observation of wave-particle duality. Electromagnetic Radiation is carried by particles, called photons, which interact with electrons. Depending on the experiment photons can behave as particles or waves. The reverse is also true; electrons can also behave as particles or waves. Because the electron has a wavelength its position and momentum can never be precisely established. This is called the uncertainty principle. (What has been said above about the electron is true for protons or any other particle, but, experimentally, the effects become undetectable with increasing mass.) The Key Concepts The energy of a photon is the product of the frequency and Planck s Constant. This is the exact amount of energy an electron will have if it absorbs a photon. A photon, which has neither mass nor volume, carries energy and momentum; the quantity of either energy or momentum in a photon depends on its frequency. The photon travels at the speed of light. If an electron loses energy the photon emitted, to obey the law of energy conservation, will have its frequency (and wavelength) determined by the electron s energy.. An electron, which has mass (but probably no volume) has energy and momentum determined by its speed, which is always less than that of light. The electron has a wavelength determined by its momentum. If a photon strikes some photoelectric material its energy must first go into releasing the electron from the material (This is called the work function of the material.) The remaining energy, if any, goes into kinetic energy of the electron and the voltage of an electric circuit can be calculated from this. The current comes from the number of electrons/second and that corresponds exactly to the number of photons/second. People s Physics book Ch 24-1

2 Increasing the number of photons will not change the amount of energy an electron will have, but will increase the number of electrons emitted The momentum of photons is equal to Planck s constant divided by the wavelength The wavelength of electrons is equal to Planck s constant divided by the electron s momentum. If an electron is traveling at about.1c this wavelength is then not much smaller than the size of an atom. The size of the electron s wavelength determines the possible energy levels in an atom. These are negative energies since the electron is said to have zero potential energy when it is ionized. The lowest energy level (ground state) for hydrogen is ev. The second level is -3.4 ev. Atoms with multiple electrons have multiple sets of energy levels. (And energy levels are different for partially ionized atoms.) When an electron absorbs a photon it moves to higher energy level, depending on the energy of the photon. If a 13.6 ev photon hits a hydrogen atom it ionizes that atom. If a 10.2 ev photon strikes hydrogen the electron is moved to the next level. Atomic spectra are unique to each element. They are seen when electrons drop from a higher energy level to a lower one. For example when an electron drops from -3.4 ev to ev in Hydrogen then a 10.2 ev photon is emitted. The spectra can be in infra-red, visible light, ultra-violet and even X-rays. (The 10.2 ev photon is ultra-violet.) The wave nature of electrons makes it impossible to determine exactly both its momentum and position. The product of the two uncertainties is of the order of Plank s Constant. (Uncertainty in the electron s energy and time are likewise so related.) The Key Equations E = hf p = h/λ λ = h/p (Δx) (Δp) h/4π (ΔE) (Δt) h/4π h = X J-sec ; Relates energy of a photon to its frequency. ; Relates the momentum of a photon to its wavelength. ; The Debroglie wavelength of an electron. ; This is the Heisenberg Uncertainty Principle, (HUP) and relates the minimum measurable quantities in momentum and position of a particle. ; Relates the uncertainty in measuring the energy of a particle and the time it takes to do the measurement. ; Planck s constant. 1 ev = X10-19 J ; The most convenient unit of energy at the atomic scale is the electonvolt, defined as the potential energy of the charge of an electron across a potential difference of 1 volt. 1240nm ~ 1ev ; A photon of energy of 1.00 ev has a wavelength of 1240 nm and vice versa. This is a convenient shortcut for determining the wavelengths of photons emitted when electrons change energy levels, or for calculations involving the photoelectric effect. People s Physics book Ch 24-2

3 Problems Set: Quantum Mechanics 1. Calculate the energy and momentum of photons with the following frequency; a. From an FM station at MHz b. Infrared radiation at 0.90 x Hz c. From an AM station at 740 khz 2. Find the energy and momentum of photons with a wavelength: a. red light at 640 nm b. ultraviolet light at 98.0 nm c. gamma rays at.248 pm 3. Given the energy of the following particles find the wavelength of: a. X-ray photons at 15.0 kev b. Gamma ray photons from sodium 24 at 2.70 Mev c. A 1.70 ev electron 4. The momentum of an electron is measured to an accuracy of 5.10 x10-15 kg-m/s. What is the corresponding uncertainty in the position of the electron? 5. The four lowest energy levels in electron-volts in a hypothetical atom are respectively: -34 ev, -17 ev, -3.5 ev, -.27 ev. a. Find the wavelength of the photon that can ionize this atom. b. Is this visible light? Why? c. If an electron is excited to the fourth level what are the wavelengths of all possible transitions? Which are visible? 6. Light with a wavelength of 620 nm strikes a photoelectric surface with a work function of 1.20 ev. What is the stopping potential for the electron? 7. For the same surface in problem 7 but different frequency light a stopping potential of 1.40 V is observed. What is the wavelength of the light? 8. An electron is accelerated through 5000 V. It collides with a positron of the same energy. All energy goes to produce a gamma ray. a. What is the wavelength of the gamma ray ignoring the rest mass of the electron and positron? b. Now calculate the contribution to the wavelength of the gamma ray of the masses of the particles? Recalculate the wavelength. c. Was it safe to ignore their masses? Why or why not? 9. An photon of 42.0 ev strikes an electron. What is the increase in speed of the electron assuming all the photon s momentum goes to the electron? People s Physics book Ch 24-3

4 10. A 22.0 kev X-ray in the x-direction strikes an electron initially at rest. This time a 0.1 nm X-ray is observed moving in the x-direction after collision. What is the magnitude and direction of the velocity of the electron after collision? 11. The highly radioactive isotope Polonium 214 has a half-life of µs and emits a 799 kev gamma ray upon decay. The isotopic mass is amu. a. How much time would it take for 7/8 of this substance to decay? b. Suppose you had 1.00 g of Po 214 how much energy would the emitted gamma rays give off while 7/8 decayed? c. What is the power generated in kilowatts? d. What is the wavelength of the gamma ray? 12. Ultra-violet light of 110 nm strikes a photoelectric surface and requires a stopping potential of 8.00 volts. What is the work function of the surface? 13. Students doing an experiment to determine the value of Planck s constant shined light from a variety of lasers on a photoelectric surface with an unknown work function and measured the stopping voltage. Their data is summarized below: laser Wavelength (nm) Voltage (V) Helium-Neon Krypton-Flouride Argon Europium Gallium arsenide a. Construct a graph of energy vs. frequency of emitted electrons. b. Use the graph to determine the experimental value of Planck s constant c. Use the graph to determine the work function of the surface d. Use the graph to determine what wavelength of light would require a 6.0 V stopping potential. e. Use the graph to determine the stopping potential required if 550 nm light were shined on the surface. 14. An element has the following six lowest energy (in ev) levels for its outermost electron: -24 ev, -7.5 ev, -2.1 ev, -1.5 ev ev, -.69 ev. a. Construct a diagram showing the energy levels for this situation. b. Show all possible transitions; how many are there? c. Calculate the wavelengths for transitions to the -7.5 ev level d. Arrange these to predict which would be seen by infrared, visible and ultraviolet spectroscopes 15. A different element has black absorption lines at 128 nm, 325 nm, 541 nm and 677 nm when white light is shined upon it. Use this information to construct an energy level diagram. People s Physics book Ch 24-4

5 16. An electron is accelerated through 7500 V and is beamed through a diffraction grating, which has 2.00 x 10 7 lines per cm. a. Calculate the speed of the electron b. Calculate the wavelength of the electron c. Calculate the angle in which the first order maximum makes with the diffraction grating d. If the screen is 2.00 m away from the diffraction grating what is the separation distance of the central maximum to the first order? 17. A light source of 429 nm is used to power a photovoltaic cell with a work function of ev. The cell is struck by 1.00 x photons per second. a. What voltage is produced by the cell? b. What current is produced by the cell? c. What is the cell s internal resistance? 18. A.150 nm X-ray moving in the positive x-direction strikes an electron, which is at rest. After the collision an X-ray of nm is observed to move 45 degrees from the positive x-axis. a. What is the initial momentum of the incident X-ray? b. What are the x and y components of the secondary X-ray? c. What must be the x and y components of the electron after collision? d. Give the magnitude and direction of the electrons final velocity. 19. Curium 242 has an isotopic mass of amu and decays by alpha emission; the alpha particle has a mass of amu and has a kinetic energy of Mev. a. What is the momentum of the alpha particle? b. What is its wavelength? People s Physics book Ch 24-5

6 c. Write a balanced nuclear equation for the reaction. d. Calculate the isotopic mass of the product. e. If the alpha particle is placed in a magnetic field of.002 T what is the radius of curvature? (The alpha particle has a double positive charge.) f. If the alpha particle is moving in the x-direction and the field is in the z-direction find the direction of the magnetic force. g. Calculate the magnitude and direction of the electric field necessary to make the alpha particle move in a straight line. 20. A student lab group has a laser of unknown wavelength, a laser of known wavelength, a photoelectric cell of unknown work function, a voltmeter and test leads, and access to a supply of resistors. a. Design an experiment to measure the work function of the cell, and the wavelength of the unknown laser. Give a complete procedure and draw an appropriate circuit diagram. Give sample equations and graphs if necessary. b. Under what circumstances would it be impossible to measure the wavelength of the unknown laser? c. How could one using this apparatus also measure the intensity of the laser (number of photons emitted/second)? 21. The momentum of an electron is measured to an accuracy of ± kg m/s. What is the corresponding uncertainty in the position of the same electron at the same moment? Express your answer in Angstroms (1 Å = m, about the size of a typical atom). 22. Thor, a baseball player, passes on a pitch clocked at a speed of 45 ± 2 m/s. The umpire calls a strike, but Thor claims that the uncertainty in the position of the baseball was so high that Heisenberg s uncertainty principle dictates the ball could have been out of the strike zone. What is the uncertainty in position for this baseball? A typical baseball has a mass of 0.15 kg. Should the umpire rethink his decision? 23. Consider a box of empty space (vacuum) that contains nothing, and has total energy E = 0. Suddenly, in seeming violation of the law of conservation of energy, an electron and a positron (the anti-particle of the electron) burst into existence. Both the electron and positron have the same mass, kg. a. Use Einstein s formula (E = mc 2 ) to determine how much energy must be used to create these two particles out of nothing. b. You don t get to violate the law of conservation of energy forever you can only do so as long as the violation is hidden within the HUP. Use the HUP to calculate how long (in seconds) the two particles can exist before they wink out of existence. c. Now let s assume they are both traveling at a speed of 0.1 c. (Do a nonrelativistic calculation.) How far can they travel in that time? How does this distance compare to the size of an atom? d. What if, instead of an electron and a positron pair, you got a proton/anti-proton pair? The mass of a proton is about 2000 higher than the mass of an electron. Will your proton/anti-proton pair last a longer or shorter amount of time than the electron/positron pair? Why? People s Physics book Ch 24-6

### PRACTICE EXAM IV P202 SPRING 2004

PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

Activity 17 Electromagnetic Radiation Why? Electromagnetic radiation, which also is called light, is an amazing phenomenon. It carries energy and has characteristics of both particles and waves. We can

### Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

### Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

### Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

### The Nature of Electromagnetic Radiation

II The Nature of Electromagnetic Radiation The Sun s energy has traveled across space as electromagnetic radiation, and that is the form in which it arrives on Earth. It is this radiation that determines

### PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

### Chapter 7: The Quantum-Mechanical Model of the Atom

C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Suggested Chapter 7 Problems: 37, 39,

Practice Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes

### The Phenomenon of Photoelectric Emission:

The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of

### Physics 30 Worksheet # 14: Michelson Experiment

Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the

### emission of light from atoms discrete line spectra - energy levels, Franck-Hertz experiment

Introduction Until the early 20 th century physicists used to explain the phenomena in the physical world around them using theories such a mechanics, electromagnetism, thermodynamics and statistical physics

### TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

### Light is a type of electromagnetic (EM) radiation, and light has energy. Many kinds of light exist. Ultraviolet (UV) light causes skin to tan or burn.

Light and radiation Light is a type of electromagnetic (EM) radiation, and light has energy. Many kinds of light exist. Ultraviolet (UV) light causes skin to tan or burn. Infrared (IR) light is used in

### Homework #10 (749508)

Homework #10 (749508) Current Score: 0 out of 100 Description Homework on quantum physics and radioactivity Instructions Answer all the questions as best you can. 1. Hewitt10 32.E.001. [481697] 0/5 points

### Chapter 6 Electromagnetic Radiation and the Electronic Structure of the Atom

Chapter 6 In This Chapter Physical and chemical properties of compounds are influenced by the structure of the molecules that they consist of. Chemical structure depends, in turn, on how electrons are

### Level 3 Achievement Scale

Unit 1: Atoms Level 3 Achievement Scale Can state the key results of the experiments associated with Dalton, Rutherford, Thomson, Chadwick, and Bohr and what this lead each to conclude. Can explain that

### Atomic Structure Ron Robertson

Atomic Structure Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A photo cathode whose work function is 2.4 ev, is illuminated with white light that has

### Chapter 7. Quantum Theory and Atomic Structure

Chapter 7. Quantum Theory and Atomic Structure A problem arose in Rutherford s nuclear model. A nucleus and electron attract each other; to remain apart the electron must move. The energy of the electron

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, 2014 1:15 to 4:15 p.m.

P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Friday, June 20, 2014 1:15 to 4:15 p.m., only The possession or use of any communications device

### Chapter 6 Electronic Structure of Atoms

Chapter 6 Electronic Structure of Atoms 1. Electromagnetic radiation travels through vacuum at a speed of m/s. (a). 6.626 x 26 (b). 4186 (c). 3.00 x 8 (d). It depends on wavelength Explanation: The speed

### Calculating particle properties of a wave

Calculating particle properties of a wave A light wave consists of particles (photons): The energy E of the particle is calculated from the frequency f of the wave via Planck: E = h f (1) A particle can

### Objectives 404 CHAPTER 9 RADIATION

Objectives Explain the difference between isotopes of the same element. Describe the force that holds nucleons together. Explain the relationship between mass and energy according to Einstein s theory

### MASS DEFECT AND BINDING ENERGY

MASS DEFECT AND BINDING ENERGY The separate laws of Conservation of Mass and Conservation of Energy are not applied strictly on the nuclear level. It is possible to convert between mass and energy. Instead

### Main properties of atoms and nucleus

Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom

### From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

### Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum

Wave Function, ψ Chapter 28 Atomic Physics The Hydrogen Atom The Bohr Model Electron Waves in the Atom The value of Ψ 2 for a particular object at a certain place and time is proportional to the probability

### Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

### Chapter 9. Gamma Decay

Chapter 9 Gamma Decay As we have seen γ-decay is often observed in conjunction with α- or β-decay when the daughter nucleus is formed in an excited state and then makes one or more transitions to its ground

### The Bohr model for the electrons

The Bohr model for the electrons Electronic structure how the electrons are arranged inside the atom Applying the quantum principle of energy Two parameters: Energy Position Learning objectives Describe

### 3.1 Photoelectricity AS13. 3.1 Photo-electricity 2

Photo-electricity Einstein s quantum explanation of the photoelectric effect - Einstein used Planck s quantum theory of radiation, (see Revision Card AS1), to explain photoelectric emission. He assumed

### Boardworks AS Physics

Boardworks AS Physics Vectors 24 slides 11 Flash activities Prefixes, scalars and vectors Guide to the SI unit prefixes of orders of magnitude Matching powers of ten to their SI unit prefixes Guide to

Investigating electromagnetic radiation Announcements: First midterm is 7:30pm on 2/17/09 Problem solving sessions M3-5 and T3-4,5-6. Homework due at 12:50pm on Wednesday. We are covering Chapter 4 this

### Energy. Mechanical Energy

Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance

### UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

### Chemistry 102 Summary June 24 th. Properties of Light

Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible

### CHEM 1411 Chapter 5 Homework Answers

1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of

### AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity

AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity 7.1 Electromagnetic Radiation A. Types of EM Radiation (wavelengths in meters) 10-1 10-10 10-8 4 to 7x10-7 10-4 10-1 10 10 4 gamma

### Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible

### Sample Exercise 6.1 Concepts of Wavelength and Frequency

Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the

### Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

### nm cm meters VISIBLE UVB UVA Near IR 200 300 400 500 600 700 800 900 nm

Unit 5 Chapter 13 Electrons in the Atom Electrons in the Atom (Chapter 13) & The Periodic Table/Trends (Chapter 14) Niels Bohr s Model Recall the Evolution of the Atom He had a question: Why don t the

### Arrangement of Electrons in Atoms

CHAPTER 4 PRE-TEST Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the following orbital

### Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

### DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.

### AP* Atomic Structure & Periodicity Free Response Questions KEY page 1

AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three

### Nuclear Reactions- chap.31. Fission vs. fusion mass defect..e=mc 2 Binding energy..e=mc 2 Alpha, beta, gamma oh my!

Nuclear Reactions- chap.31 Fission vs. fusion mass defect..e=mc 2 Binding energy..e=mc 2 Alpha, beta, gamma oh my! Definitions A nucleon is a general term to denote a nuclear particle - that is, either

### PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

### Atomic and Nuclear Physics Laboratory (Physics 4780)

Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

### Basics of Nuclear Physics and Fission

Basics of Nuclear Physics and Fission A basic background in nuclear physics for those who want to start at the beginning. Some of the terms used in this factsheet can be found in IEER s on-line glossary.

### Light. Light. Overview. In-class activity. What are waves? In this section: PSC 203. What is it? Your thoughts?

Light PSC 203 Overview In this section: What is light? What is the EM Spectrum? How is light created? What can we learn from light? In-class activity Discuss your answers in groups of 2 Think of as many

### A-level PHYSICS (7408/1)

SPECIMEN MATERIAL A-level PHYSICS (7408/1) Paper 1 Specimen 2014 Morning Time allowed: 2 hours Materials For this paper you must have: a pencil a ruler a calculator a data and formulae booklet. Instructions

### Does Quantum Mechanics Make Sense? Size

Does Quantum Mechanics Make Sense? Some relatively simple concepts show why the answer is yes. Size Classical Mechanics Quantum Mechanics Relative Absolute What does relative vs. absolute size mean? Why

### AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE You should be familiar with the wavelike properties of light: frequency ( ), wavelength ( ), and energy (E) as well as

### Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency

### 13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2

Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19

### Curriculum for Excellence. Higher Physics. Success Guide

Curriculum for Excellence Higher Physics Success Guide Electricity Our Dynamic Universe Particles and Waves Electricity Key Area Monitoring and Measuring A.C. Monitoring alternating current signals with

### Electromagnetic Radiation Wave and Particle Models of Light

Electromagnetic Radiation 2007 26 minutes Teacher Notes: Victoria Millar BSc (Hons), Dip. Ed, MSc Program Synopsis For hundreds of years, scientists have hypothesised about the structure of light. Two

### Chapter 7: Electrons in Atoms. Electromagnetic Radiation

Chapter 7: Electrons in Atoms Dr. Chris Kozak Memorial University of Newfoundland, Canada 1 Electromagnetic Radiation Electric and magnetic fields propagate as waves through empty space or through a medium.

### Phys 2310 Wed. Sept. 21, 2016 Today s Topics

Phys 2310 Wed. Sept. 21, 2016 Today s Topics - Brief History of Light & Optics Electromagnetic Spectrum Electromagnetic Spectrum Visible, infrared & ultraviolet Wave/Particle Duality (waves vs. photons)

### Section 1 Electromagnetic Waves

Section 1 Electromagnetic Waves What are electromagnetic waves? What do microwaves, cell phones, police radar, television, and X-rays have in common? All of them use electromagnetic waves Electromagnetic

### Atomic structure The product of frequency and wavelength for all forms of electromagnetic radiation (light) is a constant, the speed of light c.

Chapter 5: Electrons in Atoms Light (Electromagnetic Radiation) Light has the properties of both waves and particles. Light waves carry energy through space. wavelength (λ) meters frequency (ν) Hz (s -1

Chapter 2: Electromagnetic Radiation Radiant Energy I Goals of Period 2 Section 2.1: To introduce electromagnetic radiation Section 2.2: To discuss the wave model of radiant energy Section 2.3: To describe

Write your name here Surname Other names Centre Number Candidate Number Edexcel GCSE Physics/Additional Science Unit 2: Physics for Your Future Thursday 7 March 2013 Morning Time: 1 hour You must have:

### hypothesis of Louis de Broglie (1924): particles may have wave-like properties

Wave properties of particles hypothesis of Louis de Broglie (1924): particles may have wave-like properties note: it took almost 20 years after noting that waves have particle like properties that particles

### 5.111 Principles of Chemical Science

MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary

### After a wave passes through a medium, how does the position of that medium compare to its original position?

Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

### Masses in Atomic Units

Nuclear Composition - the forces binding protons and neutrons in the nucleus are much stronger (binding energy of MeV) than the forces binding electrons to the atom (binding energy of ev) - the constituents

### Q1. (a) The diagram shows an aircraft and the horizontal forces acting on it as it moves along a runway. The resultant force on the aircraft is zero.

Q. (a) The diagram shows an aircraft and the horizontal forces acting on it as it moves along a runway. The resultant force on the aircraft is zero. (i) What is meant by the term resultant force?......

### 5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

### Basic Nuclear Concepts

Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section

### The Early History of Quantum Mechanics

Chapter 2 The Early History of Quantum Mechanics In the early years of the twentieth century, Max Planck, Albert Einstein, Louis de Broglie, Neils Bohr, Werner Heisenberg, Erwin Schrödinger, Max Born,

### Chapter 5. Mendeleev s Periodic Table

Chapter 5 Perodicity and Atomic Structure Mendeleev s Periodic Table In the 1869, Dmitri Mendeleev proposed that the properties of the chemical elements repeat at regular intervals when arranged in order

LIGHT AND ELECTROMAGNETIC RADIATION Light is a Wave Light is a wave motion of radiation energy in space. We can characterize a wave by three numbers: - wavelength - frequency - speed Shown here is precisely

### 2. 빈공간 (empty space) 에서질량이 0 인 real photon이 pair production을할수없음을보이시오. photoelectron current 와 retarding potential 의관계를그래프를이용해설명하시오.

현대물리학 ( 김충선교수님 ) 2 차시험 2009. 05. 04 월요일 1. A photon whose energy equals the rest mass of the electron undergoes a Compton collision with an electron at rest. If the electron moves off at an angle of 60

### Name: Period: Date: Unit 3 Practice Review (the questions on the test are NOT the same as the review questions)

Name: Period: Date: Unit 3 Review: things you will need to know 1. Atomic Theories: Know all the scientists in order. What did they discover? What experiment did they use? 2. Development of the periodic

### Summary of Important Ideas in Quantum Physics

Summary of Important Ideas in Quantum Physics 1) The Universe is quantized. Familiar quantities such as energy, momentum, electric charge, mass possibly even time and space are not continuous. They occur

### Light and Spectra. COLOR λ, nm COLOR λ, nm violet 405 yellow 579 blue 436 orange 623 green 492 red 689

Light and Spectra INTRODUCTION Light and color have intrigued humans since antiquity. In this experiment, you will consider several aspects of light including: a. The visible spectrum of colors (red to

### Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

Chapter 2 Electromagnetic Radiation Bohr demonstrated that information about the structure of hydrogen could be gained by observing the interaction between thermal energy (heat) and the atom. Many analytical

### MAKING SENSE OF ENERGY Electromagnetic Waves

Adapted from State of Delaware TOE Unit MAKING SENSE OF ENERGY Electromagnetic Waves GOALS: In this Part of the unit you will Learn about electromagnetic waves, how they are grouped, and how each group

### G482 Electrons, Waves and Photons; Revision Notes Module 1: Electric Current

G482 Electrons, Waves and Photons; Revision Notes Module 1: Electric Current Electric Current A net flow of charged particles. Electrons in a metal Ions in an electrolyte Conventional Current A model used

### Q1. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum.

Q. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum. X-rays, which have frequencies in the range 0 8 0 2 Hz are already marked

### The Beginnings of Atomic Theory

Atoms Section 1 The Beginnings of Atomic Theory Who came up with the first theory of atoms? In the fourth century BCE, the Greek philosopher Democritus suggested that the universe was made of indivisible

### a) Conservation of Mass states that mass cannot be created or destroyed. b) Conservation of Energy states that energy cannot be created or destroyed.

7 Fission In 1939 Hahn and Strassman, while bombarding U-235 nuclei with neutrons, discovered that sometimes U-235 splits into two nuclei of medium mass. There are two important results: 1. Energy is produced.

Nuclear Fusion and Radiation Lecture 2 (Meetings 3 & 4) Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Nuclear Fusion and Radiation p. 1/40 Modern Physics Concepts

### Homework #8 203-1-1721 Physics 2 for Students of Mechanical Engineering. Part A

Homework #8 203-1-1721 Physics 2 for Students of Mechanical Engineering Part A 1. Four particles follow the paths shown in Fig. 32-33 below as they pass through the magnetic field there. What can one conclude

### Rules for this test. Physics 222, Winter 2012 Final Exam April 16, 2012 Instructor: Scott Bergeson

Physics 222, Winter 2012 Final Exam April 16, 2012 Instructor: Scott Bergeson Rules for this test 1. This test is open book and open notes, including our class notes page online, and your homework solutions.

### Physics 111 Homework Solutions Week #9 - Tuesday

Physics 111 Homework Solutions Week #9 - Tuesday Friday, February 25, 2011 Chapter 22 Questions - None Multiple-Choice 223 A 224 C 225 B 226 B 227 B 229 D Problems 227 In this double slit experiment we

### Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number

2.1 Composition of the Atom Atomic Calculations number of protons + number of neutrons = mass number number of neutrons = mass number - number of protons number of protons = number of electrons IF positive

### E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

### Lecture 7: Light Waves. Newton s Laws of Motion (1666) Newton s First Law of Motion

Lecture 7: Light Waves Isaac Newton (1643-1727) was born in the year Galileo died He discovered the Law of Gravitation in 1665 He developed the Laws of Mechanics that govern all motions In order to solve

WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):

### Bohr s Model and Emission Spectra of Hydrogen and Helium

PHYS-01 LAB-03 Bohr s Model and Emission Spectra of Hydrogen and Helium 1. Objective The objective of this experiment is to study the emission spectrum of hydrogen and to understand its origin in terms

Applications & Review This isn t an x ray; it s a bone scan. Radioactive nuclei were used to show the presence of arthritis in a woman s hands. How was this image created? Warming Up A 60 kg laboratory

### Nanoelectronics. Chapter 2 Classical Particles, Classical Waves, and Quantum Particles. Q.Li@Physics.WHU@2015.3

Nanoelectronics Chapter 2 Classical Particles, Classical Waves, and Quantum Particles Q.Li@Physics.WHU@2015.3 1 Electron Double-Slit Experiment Q.Li@Physics.WHU@2015.3 2 2.1 Comparison of Classical and

### Atomic Theory and the Periodic Table

Atomic Theory and the Periodic Table Petrucci, Harwood and Herring: Chapters 9 and 10 Aims: To examine the Quantum Theory, to understand the electronic structure of elements, To explain the periodic table