Methods of Experimental Investigation of Acoustical Interactions between Electroacoustical Transducers in Arrays

Size: px
Start display at page:

Download "Methods of Experimental Investigation of Acoustical Interactions between Electroacoustical Transducers in Arrays"

Transcription

1 Methods of Experimental Investigation of Acoustical Interactions between Electroacoustical s in Arrays Boris S. Aronov, Tetsuro Oishi and David A. Brown Department of Electrical and Computer Engineering University of Massachusetts Dartmouth, 85 Old Westport Rd., North Dartmouth, MA BTech Acoustics, 445 Wampanog Trail, Suite 5 East Providence, RI 095 Abstract. Determining acoustical loading conditions on radiators in an underwater array is of great importance to predict the performance of the array. Acoustical interactions between radiators generate a non-uniform distribution of acoustic loading over the radiating surface of the array and often cause performance degradation on the directivity patterns as well as the transmit frequency response of the array. In the electromechanical equivalent circuit model of such an array, the influence of the radiation of the neighboring radiator transducers can be considered as a mutual radiation impedance that is an intrinsic property of a given transducer and array configuration. Our goal in this project is to improve experimental techniques to determine both active and reactive parts of mutual radiation impedances. Two experimental methods are presented based on the measurements of the coupled impedance ( Z-method ) and the acousto-motive force ( V-method ). For both methods, analytical investigations based on the electromechanical equivalent circuit analysis are shown. PACS Numbers: Hz, Ar, Fx, Pf, 43.30Yj I INTRODUCTION Acoustical interactions are often observed between electroacoustical transducer elements in an underwater array. The radiations of the neighboring radiators change the acoustical loading condition of the primary radiator. As a result, a non-uniform distribution of acoustical loading is generated over the radiating surface of the array and variations in the radiating surface velocity as well as in the radiated pressure are produced across array elements []. In the electromechanical equivalent circuit model of such an array, the influence of the radiation of neighboring transducers can be considered either as a coupled

2 impedance Z ij, U j Z ij = z ij () U i or as an equivalent acousto-motive force F ij, F ij = z ij U j () where z ij is the mutual radiation impedance between the ith and jth interacting transducers, U i and U j are the surface velocities of the ith and jth transducers, respectively. z ij is generally dependent on the configuration of the transducer, on the mode of vibration, and on the geometry of the transducer in the array. For certain array configurations as shown in Figure (a) and (b), the analytical expressions describing z ij are available and found to be sufficiently accurate to predict the actual mutual radiation impedances in practical arrays [] [3] [4] [5] [6]. However, for some practical arrays that usually have complicated configurations as shown in Figure (c), the mathematical expressions do not exist and the experimental investigations are the only way to determine mutual radiation impedances. Our goal in this project is to improve experimental techniques to determine both active and reactive parts of mutual radiation impedances. Two experimental methods are presented based on the measurements of the coupled impedance ( Z-method ) and the acousto-motive force ( V-method ). For both methods, analytical investigations using the electromechanical equivalent circuit model are shown. d a d h (a) Array of piston transducers in an infinite rigid baffle. (b) Array of ring transducers in an infinite rigid cylindrical baffle. d a (c) Array of cylindrical transducers in an infinite rigid baffle. FIGURE. Various array configurations.

3 II METHODS OF MEASUREMENTS The acoustical interactions can be conveniently analyzed by representing transducers in an array in the equivalent circuit shown in Figure, in which the self and mutual radiation impedances are connected as the acoustical loads in series with the mechanical components. To determine the values of mutual radiation impedances, we must first obtain all the other circuit parameters such as the electrical and mechanical impedances, the electromechanical transformation coefficient, and the self radiation impedance. The method to obtain these parameters can be found in the literature [7] and is not described in this paper. In the following sections, two methods of measurements are described under the assumption that all the equivalent circuit parameters are known except for the mutual radiation impedances. For the sake of simplicity, an array of two transducers is considered and the two transducers are assumed to be identical, i.e., all the circuit parameters are the same. A Z-method The experimental technique commonly used to measure mutual radiation impedances is to apply voltages having equal amplitudes to two transducers in two different phase conditions (in-phase and 80-degree out-of-phase). These conditions can be easily implemented with an impedance analyzer by connecting the two transducers electrically in parallel. By switching the polarity of one of the transducers, the two phase conditions can be introduced to the input voltages, i.e., V = ±V. Then the self and mutual radiation impedances are found to be } R = R r V =V + R r V = V (3) X = X r V =V + X r V = V } R = r = R r V =V R r V = V (4) X = x = X r V =V X r V = V :n C M R m E m V S C e R e U Z z U F = z U U :n C M R m E m V S C e R e U Z U z U FIGURE. Equivalent circuit representations of an array of two transducers.

4 where R r V =±V and X r V =±V are the measured radiation resistance and reactance under the excitation condition that V = ±V. The measurement of the mutual radiation impedances described in Eq. (4) is often not sufficiently accurate. To improve the accuracy, the case is considered in which the amplitudes and phases of two input voltages are varied. Because the vibrating velocities are proportional to the input voltages, the coupled impedance can be expressed as Z =(r cos φ x sin φ) U U + j(x cos φ + r sin φ) U (5) U where φ is the phase difference between input voltages (or between vibrating surface velocities). Equating the measured coupled resistance and reactance to the real and imaginary parts of Eq. (5), the mutual radiation impedance can be found to be r =(R r cos φ + X r sin φ) U U x =(X r cos φ R r sin φ) U U. (6) For example, when φ =90orU = ju in Eq. (6), the mutual radiation impedance becomes U r = X r U. (7) U x = R r U That is, the mutual radiation resistance may be measured proportional to the measured coupled reactance and the mutual radiation reactance proportional to the measured coupled resistance. In Eq. (7), the use of R r instead of X r as in Eq. (4) to determine x is useful to increase the accuracy of the measurement because X r is often too small to be accurately measured near the resonance. It is also possible in this method to increase the accuracy of the measurement by increasing the coupled impedance, i.e., by increasing the ratio of the velocities, U / U, or the ratio of the amplitudes of input voltages, V / V.Anexampleof the experimental apparatus of the Z-method is illustrated in Figure 3. B V-method In the V-method, one of the transducers has the equivalent acousto-motive force replaced with the coupled impedance in Figure. The output voltage of one transducer driven by the acousto-motive force generated by the other transducer in the course of acoustical interactions can be found as V out. = n V in jωc S e Z (Z m + Z ) (+ Z ) (8) (Z m + Z )

5 Impedance analyzer Function Generator Power V A Phase Shifter Power FIGURE 3. impedance. Experimental apparatus of the Z-method to determine the mutual radiation where Z m is the mechanical impedance of the transducers given as Z m = R m + j(ωm /ωcm). E In the frequency range far below resonance of the measurement transducer, the approximation of Z m + Z Z is valid and Eq. (8) can be simplified as V out n V in Z at f f jωce S (Z m + Z ) r. (9) In particular, the self radiation impedance can be considered as independent of the separation distance d if the transducers are members of an array and do not locate on the edges (i.e., the symmetry of the array is valid). Then, the relative change of the mutual radiation impedance as a function of d is obtained as Z (d) Z (d 0 ) = z (d) z (d 0 ) = V out(d) V out (d 0 ) (0) where d 0 is the reference separation distance of transducer elements. An example of the experimental apparatus of the V-method is illustrated in Figure 4. III SUMMARY The methods of measurements of mutual radiation impedances were developed in theory by the equivalent circuit analysis. The Z-method was improved by introducing a certain phase shift between two transducers as well as by changing the ratio of the input voltages. The V-method is especially practicable far below resonance of the measurement transducer to measure the relative change of the mutual radiation impedance as a function of the separation distance of two transducers. The results obtained in the V-method can be scaled according to the types of operational transducers. For example, the mutual radiation impedances that may be measured with a PZT cylindrical transducer are in the range of ka < because the resonance frequency of the PZT transducer is at ka = (where a is the radius of

6 Function Generator Power V in V out Oscilloscope Pre- FIGURE 4. impedance. Experimental apparatus of the V-method to determine the mutual radiation the cylinder). For the same radius of the cylindrical transducer but made of different materials such as single crystals, the operational frequency range can coincide with the frequency range of the measured mutual radiation impedances because the resonance frequency of such a transducer is around ka 0.7. An example of preliminary experimental results is shown in Figure 5 where mutual radiation impedances in an array of three cylindrical transducers as shown in Figure (c) were measured with both methods Z-method V-method r r x r a λ FIGURE 5. Example of preliminary experimental results of measurements of mutual radiation impedances using Z- and V-methods. (After B. S. Aronov)

7 ACKNOWLEDGMENTS This work is supported in parts by ONR 3SS J. Lindberg, BTECH Acoustics, and SBIR N REFERENCES. R. S. Woollett., Trends and problems in sonar transducer design, IEEE Transactions on Ultrasonics Engineering. UE-0, R. L. Pritchard., Mutual acoustic impedance between radiators in an infinite rigid plane, J. Acoust. Soc. Am. 3(6), , B. S. Aronov., Piezoceramic Electromechanical s, written in Russian, 990, translated in English, D. H. Robey., On the radiation impedance of an array of finite cylinders, J. Acoust. Soc. Am. 7(4), , R. T. Richards., J. B. Blottman III, and B. McTaggart., Physics of array element interaction phenomena, in Power s for Sonics and Ultrasonics, Proceedings of the International Workshop, B. F. Hamonic, et al. (Eds.), Springer-Verlag, F. Pordes and C. H. Sherman., Measurement of variation of radiation resistance with separation of pairs of underwater transducers, Proceedings of the International Congress on Acoustics,, , F. V. Hunt., Electroacoustics: The Analysis of Transduction and Its Historical Background, American Institute of Physics, College Park, MD, 98.

Estimating ultrasound transducer parameters using KLM equivalent circuit model

Estimating ultrasound transducer parameters using KLM equivalent circuit model Estimating ultrasound transducer parameters using KLM equivalent circuit model Kristian Jambrosic, Bojan Ivancevic, Antonio Petosic Faculty of Electrical Engineering and Computing, Zagreb, Croatia, {kristian.jambrosic,boan.ivancevic,antonio.petosic)@fer.hr

More information

INTERFERENCE OF SOUND WAVES

INTERFERENCE OF SOUND WAVES 1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.

More information

PIEZOELECTRIC TRANSDUCERS MODELING AND CHARACTERIZATION

PIEZOELECTRIC TRANSDUCERS MODELING AND CHARACTERIZATION Piezoelectric Transducers Modeling and Characterization (complete technology and know-how inside). 266 pages, August 2004 www.mpi-ultrasonics.com mpi@bluewin.ch Here you can only see the content and several

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment Fluid Structure Interaction VI 3 Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment J. Hengstler & J. Dual Department of Mechanical and Process

More information

6 J - vector electric current density (A/m2 )

6 J - vector electric current density (A/m2 ) Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J - vector electric current density (A/m2 ) M - vector magnetic current density (V/m 2 ) Some problems

More information

APPLICATION NOTE AP050830

APPLICATION NOTE AP050830 APPLICATION NOTE AP050830 Selection and use of Ultrasonic Ceramic Transducers Pro-Wave Electronics Corp. E-mail: sales@pro-wave.com.tw URL: http://www.prowave.com.tw The purpose of this application note

More information

4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is:

4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is: 4 SENSORS The modern technical world demands the availability of sensors to measure and convert a variety of physical quantities into electrical signals. These signals can then be fed into data processing

More information

A wave lab inside a coaxial cable

A wave lab inside a coaxial cable INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S0143-0807(04)76273-X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera

More information

RLC Resonant Circuits

RLC Resonant Circuits C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document

More information

The Gamma Match. 1 Equal Size Elements

The Gamma Match. 1 Equal Size Elements The Gamma Match The gamma match was originally invented as a means of feeding vertical monopole antennas for medium wave broadcasts, which were earthed at the base for lightning protection (see Figure

More information

Current Probes, More Useful Than You Think

Current Probes, More Useful Than You Think Current Probes, More Useful Than You Think Training and design help in most areas of Electrical Engineering Copyright 1998 Institute of Electrical and Electronics Engineers. Reprinted from the IEEE 1998

More information

An equivalent circuit of a loop antenna.

An equivalent circuit of a loop antenna. 3.2.1. Circuit Modeling: Loop Impedance A loop antenna can be represented by a lumped circuit when its dimension is small with respect to a wavelength. In this representation, the circuit parameters (generally

More information

Force measurement. Forces VECTORIAL ISSUES ACTION ET RÉACTION ISOSTATISM

Force measurement. Forces VECTORIAL ISSUES ACTION ET RÉACTION ISOSTATISM Force measurement Forces VECTORIAL ISSUES In classical mechanics, a force is defined as "an action capable of modifying the quantity of movement of a material point". Therefore, a force has the attributes

More information

Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R

Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R Quality factor, Q Reactive components such as capacitors and inductors are often described with a figure of merit called Q. While it can be defined in many ways, it s most fundamental description is: Q

More information

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic

More information

Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves

Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves Bennie Buys Department of Mechanical and Aeronautical Engineering University of Pretoria Introduction Rock Bolts and their associated problems

More information

Equipment: Power Supply, DAI, Variable resistance (8311), Variable inductance (8321)

Equipment: Power Supply, DAI, Variable resistance (8311), Variable inductance (8321) Lab 4: 3-phase circuits. Objective: to study voltage-current relationships in 3-phase circuits; to learn to make delta and Y connections; to calculate and measure real, apparent, and reactive powers. Equipment:

More information

Lab Exercise 1: Acoustic Waves

Lab Exercise 1: Acoustic Waves Lab Exercise 1: Acoustic Waves Contents 1-1 PRE-LAB ASSIGNMENT................. 2 1-3.1 Spreading Factor: Spherical Waves........ 2 1-3.2 Interference In 3-D................. 3 1-4 EQUIPMENT........................

More information

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite 4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The

More information

Inductors in AC Circuits

Inductors in AC Circuits Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

More information

A Practical Guide to Free Energy Devices

A Practical Guide to Free Energy Devices A Practical Guide to Free Energy Devices Part PatD9: Last updated: 28th January 2006 Author: Patrick J. Kelly Please note that this is a re-worded excerpt from this patent. If the content interests you,

More information

Induction Motor Theory

Induction Motor Theory PDHonline Course E176 (3 PDH) Induction Motor Theory Instructor: Jerry R. Bednarczyk, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

More information

Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor

Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor Swapan Kumar Nandi Tata Consultancy Services GEDC, 185 LR, Chennai 600086, India Abstract When structures in contact with a fluid

More information

Transmission Lines. Smith Chart

Transmission Lines. Smith Chart Smith Chart The Smith chart is one of the most useful graphical tools for high frequency circuit applications. The chart provides a clever way to visualize complex functions and it continues to endure

More information

Electrical Resonance

Electrical Resonance Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

More information

INVESTIGATION OF ELECTRIC FIELD INTENSITY AND DEGREE OF UNIFORMITY BETWEEN ELECTRODES UNDER HIGH VOLTAGE BY CHARGE SIMULATIO METHOD

INVESTIGATION OF ELECTRIC FIELD INTENSITY AND DEGREE OF UNIFORMITY BETWEEN ELECTRODES UNDER HIGH VOLTAGE BY CHARGE SIMULATIO METHOD INVESTIGATION OF ELECTRIC FIELD INTENSITY AND DEGREE OF UNIFORMITY BETWEEN ELECTRODES UNDER HIGH VOLTAGE BY CHARGE SIMULATIO METHOD Md. Ahsan Habib, Muhammad Abdul Goffar Khan, Md. Khaled Hossain, Shafaet

More information

Alternating Current and Direct Current

Alternating Current and Direct Current K Hinds 2012 1 Alternating Current and Direct Current Direct Current This is a Current or Voltage which has a constant polarity. That is, either a positive or negative value. K Hinds 2012 2 Alternating

More information

DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4

DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4 DOE-HDBK-1011/3-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved for public release;

More information

13 ELECTRIC MOTORS. 13.1 Basic Relations

13 ELECTRIC MOTORS. 13.1 Basic Relations 13 ELECTRIC MOTORS Modern underwater vehicles and surface vessels are making increased use of electrical actuators, for all range of tasks including weaponry, control surfaces, and main propulsion. This

More information

Magnetic Field of a Circular Coil Lab 12

Magnetic Field of a Circular Coil Lab 12 HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,

More information

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.

More information

1 Numerical Electromagnetics Code (NEC)

1 Numerical Electromagnetics Code (NEC) Wire Antenna Modelling with NEC-2 1 Numerical Electromagnetics Code (NEC) The software Numerical Electromagnetics Code (NEC-2) has been developed in the 1970s in the Lawrence Livermore Laboratory in Livermore,

More information

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009 Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines

More information

Finite Element Modeling of 2-D Transducer Arrays

Finite Element Modeling of 2-D Transducer Arrays Finite Element Modeling of 2-D Transducer Arrays H. Mestouri, A. Loussert and G. Keryer ISEN Brest (Institut Supérieur de l Electronique et du Numérique), 20, rue Cuirassé Bretagne, C.S. 42807, 29228 Brest,

More information

Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems

Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small

More information

Plate waves in phononic crystals slabs

Plate waves in phononic crystals slabs Acoustics 8 Paris Plate waves in phononic crystals slabs J.-J. Chen and B. Bonello CNRS and Paris VI University, INSP - 14 rue de Lourmel, 7515 Paris, France chen99nju@gmail.com 41 Acoustics 8 Paris We

More information

Vibrations of a Free-Free Beam

Vibrations of a Free-Free Beam Vibrations of a Free-Free Beam he bending vibrations of a beam are described by the following equation: y EI x y t 4 2 + ρ A 4 2 (1) y x L E, I, ρ, A are respectively the Young Modulus, second moment of

More information

6 ELECTRICAL PARAMETERS

6 ELECTRICAL PARAMETERS 6 ELECTRICAL PARAMETERS For power, low voltage and medium voltage cables, cross section nominal areas are calculated in taking into account several parameters as: permissible current carrying capacities

More information

DESIGN AND EVALUATION OF PROBE WITH THREE DEGREE- OF-FREEDOM FOR NON-DESTRUCTIVE TEST USING THREE- DIMENSIONAL FINITE ELEMENT METHOD

DESIGN AND EVALUATION OF PROBE WITH THREE DEGREE- OF-FREEDOM FOR NON-DESTRUCTIVE TEST USING THREE- DIMENSIONAL FINITE ELEMENT METHOD DESIGN AND EVALUATION OF PROBE WITH THREE DEGREE- OF-FREEDOM FOR NON-DESTRUCTIVE TEST USING THREE- DIMENSIONAL FINITE ELEMENT METHOD Masafumi Aoyanagi Graduate School of Systems and Information Engineering,

More information

HIGH VOLTAGE ELECTROSTATIC PENDULUM

HIGH VOLTAGE ELECTROSTATIC PENDULUM HIGH VOLTAGE ELECTROSTATIC PENDULUM Raju Baddi National Center for Radio Astrophysics, TIFR, Ganeshkhind P.O Bag 3, Pune University Campus, PUNE 411007, Maharashtra, INDIA; baddi@ncra.tifr.res.in ABSTRACT

More information

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE References for Nuclear Magnetic Resonance 1. Slichter, Principles of Magnetic Resonance, Harper and Row, 1963. chapter

More information

USER MANUAL THE RESOLVER

USER MANUAL THE RESOLVER USR MANUAL TH RSOLVR ICP Department 4 has developed and produced a wide range of transmitter type resolvers for military and industrial applications. From a mechanical viewpoint, these products have been

More information

S-Parameters and Related Quantities Sam Wetterlin 10/20/09

S-Parameters and Related Quantities Sam Wetterlin 10/20/09 S-Parameters and Related Quantities Sam Wetterlin 10/20/09 Basic Concept of S-Parameters S-Parameters are a type of network parameter, based on the concept of scattering. The more familiar network parameters

More information

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

More information

Frequency response: Resonance, Bandwidth, Q factor

Frequency response: Resonance, Bandwidth, Q factor Frequency response: esonance, Bandwidth, Q factor esonance. Let s continue the exploration of the frequency response of circuits by investigating the series circuit shown on Figure. C + V - Figure The

More information

The Acoustical design of Mobile phones

The Acoustical design of Mobile phones Proceedings of 20 th International Congress on Acoustics, ICA 2010 23-27 August 2010, Sydney, Australia The Acoustical design of Mobile phones Yasuharu Onishi (1), Jun Kuroda (1), Yukio Murata (1), Motoyoshi

More information

Application Note. So You Need to Measure Some Inductors?

Application Note. So You Need to Measure Some Inductors? So You Need to Measure Some nductors? Take a look at the 1910 nductance Analyzer. Although specifically designed for production testing of inductors and coils, in addition to measuring inductance (L),

More information

PIEZO FILTERS INTRODUCTION

PIEZO FILTERS INTRODUCTION For more than two decades, ceramic filter technology has been instrumental in the proliferation of solid state electronics. A view of the future reveals that even greater expectations will be placed on

More information

ENS 07 Paris, France, 3-4 December 2007

ENS 07 Paris, France, 3-4 December 2007 ENS 7 Paris, France, 3-4 December 7 FRICTION DRIVE SIMULATION OF A SURFACE ACOUSTIC WAVE MOTOR BY NANO VIBRATION Minoru Kuribayashi Kurosawa, Takashi Shigematsu Tokyou Institute of Technology, Yokohama

More information

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved.

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved. Section 5. : Horn Physics Section 5. : Horn Physics By Martin J. King, 6/29/8 Copyright 28 by Martin J. King. All Rights Reserved. Before discussing the design of a horn loaded loudspeaker system, it is

More information

TA Kahraman Yumak ELK412 - Distribution of Electrical Energy Lab. Notes v1.0 2013 Spring web.itu.edu.tr/yumakk. Distance Protection

TA Kahraman Yumak ELK412 - Distribution of Electrical Energy Lab. Notes v1.0 2013 Spring web.itu.edu.tr/yumakk. Distance Protection Distance Protection Announcement: You are not supposed to prepare a pre-report. But there will be an oral examination, so you are strongly advised to study this note regarding to the pre-study questions

More information

Development and optimization of a hybrid passive/active liner for flow duct applications

Development and optimization of a hybrid passive/active liner for flow duct applications Development and optimization of a hybrid passive/active liner for flow duct applications 1 INTRODUCTION Design of an acoustic liner effective throughout the entire frequency range inherent in aeronautic

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity. 1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the

More information

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

More information

Modeling of Transmission Lines

Modeling of Transmission Lines Modeling of Transmission Lines Electric Power Transmission The electric energy produced at generating stations is transported over high-voltage transmission lines to utilization points. The trend toward

More information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007 PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow

More information

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer.

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer. RESEARCH ARTICLE ISSN: 2321-7758 DESIGN AND DEVELOPMENT OF A DYNAMOMETER FOR MEASURING THRUST AND TORQUE IN DRILLING APPLICATION SREEJITH C 1,MANU RAJ K R 2 1 PG Scholar, M.Tech Machine Design, Nehru College

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC

More information

Mutual Inductance and Transformers F3 3. r L = ω o

Mutual Inductance and Transformers F3 3. r L = ω o utual Inductance and Transformers F3 1 utual Inductance & Transformers If a current, i 1, flows in a coil or circuit then it produces a magnetic field. Some of the magnetic flux may link a second coil

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

Technical data. General specifications. Indicators/operating means. 30 Hz Multiplex operation 30 Hz / n, n = number of sensors, n 5

Technical data. General specifications. Indicators/operating means. 30 Hz Multiplex operation 30 Hz / n, n = number of sensors, n 5 Model Number Single head system Features Parameterization interface for the application-specific adjustment of the sensor setting via the service program ULTRA 000 programmable switch outputs Hysteresis

More information

PIEZOELECTRIC FILMS TECHNICAL INFORMATION

PIEZOELECTRIC FILMS TECHNICAL INFORMATION PIEZOELECTRIC FILMS TECHNICAL INFORMATION 1 Table of Contents 1. PIEZOELECTRIC AND PYROELECTRIC EFFECTS 3 2. PIEZOELECTRIC FILMS 3 3. CHARACTERISTICS PROPERTIES OF PIEZOELECTRIC FILMS 3 4. PROPERTIES OF

More information

Coupling Effect in Substation Ground Measurements

Coupling Effect in Substation Ground Measurements SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 9, No. 3, October 2012, 315-324 UDK: 621.316.13.011.2 DOI: 10.2298/SJEE1203315F Coupling Effect in Substation Ground Measurements Alex Farber 1, Boris Katz

More information

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and

More information

Lab 9: The Acousto-Optic Effect

Lab 9: The Acousto-Optic Effect Lab 9: The Acousto-Optic Effect Incoming Laser Beam Travelling Acoustic Wave (longitudinal wave) O A 1st order diffracted laser beam A 1 Introduction qb d O 2qb rarefractions compressions Refer to Appendix

More information

WAVEGUIDE-COAXIAL LINE TRANSITIONS

WAVEGUIDE-COAXIAL LINE TRANSITIONS WAVEGUIDE-COAXIAL LINE TRANSITIONS 1. Overview Equipment at microwave frequencies is usually based on a combination of PCB and waveguide components. Filters and antennas often use waveguide techniques,

More information

Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil

Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2006 Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil OBJECTIVES 1. To learn how to visualize magnetic field lines

More information

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9 Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

More information

Absorption Coefficients and Impedance Daniel A. Russell Science and Mathematics Department, Kettering University, Flint, MI, 48504

Absorption Coefficients and Impedance Daniel A. Russell Science and Mathematics Department, Kettering University, Flint, MI, 48504 Absorption Coefficients and Impedance Daniel A. Russell Science and Mathematics Department, Kettering University, Flint, MI, 48504 1 I. Introduction and ackground In this laboratory exercise you will measure

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 2.1 WHISTLING PHENOMENA

More information

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated? Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

More information

Measurement of mutual inductance from frequency dependence of impedance of AC coupled circuits using a digital dual-phase lock-in amplifier

Measurement of mutual inductance from frequency dependence of impedance of AC coupled circuits using a digital dual-phase lock-in amplifier Measurement of mutual inductance from frequency dependence of impedance of AC coupled circuits using a digital dual-phase lock-in amplifier Michael J. Schauber, Seth A. Newman, Lindsey R. Goodman, Itsuko

More information

Fringe Field of Parallel Plate Capacitor

Fringe Field of Parallel Plate Capacitor Fringe Field of Parallel Plate Capacitor Shiree Burt Nathan Finney Jack Young ********************************** Santa Rosa Junior College Department of Engineering and Physics 1501 Mendocino Ave. Santa

More information

Phasors. Phasors. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department. ^ V cos (wt + θ) ^ V sin (wt + θ)

Phasors. Phasors. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department. ^ V cos (wt + θ) ^ V sin (wt + θ) V cos (wt θ) V sin (wt θ) by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 1 Vector

More information

THE PER-UNIT SYSTEM. (2) The per-unit values for various components lie within a narrow range regardless of the equipment rating.

THE PER-UNIT SYSTEM. (2) The per-unit values for various components lie within a narrow range regardless of the equipment rating. THE PER-UNIT SYSTEM An interconnected power system typically consists of many different voltage levels given a system containing several transformers and/or rotating machines. The per-unit system simplifies

More information

I. Methodology for Onda's Hydrophone Calibrations

I. Methodology for Onda's Hydrophone Calibrations 190 ammerwood venue Sunnyvale, 94089 Phone (408) 745-0383 Fax (408) 745-0956 www.ondacorp.com I. Methodology for Onda's ydrophone alibrations alibration is obtained by comparison techniques to reference

More information

Germanium Diode AM Radio

Germanium Diode AM Radio Germanium Diode AM Radio LAB 3 3.1 Introduction In this laboratory exercise you will build a germanium diode based AM (Medium Wave) radio. Earliest radios used simple diode detector circuits. The diodes

More information

AN-837 APPLICATION NOTE

AN-837 APPLICATION NOTE APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance

More information

Fraunhofer Diffraction

Fraunhofer Diffraction Physics 334 Spring 1 Purpose Fraunhofer Diffraction The experiment will test the theory of Fraunhofer diffraction at a single slit by comparing a careful measurement of the angular dependence of intensity

More information

Transmission Line and Back Loaded Horn Physics

Transmission Line and Back Loaded Horn Physics Introduction By Martin J. King, 3/29/3 Copyright 23 by Martin J. King. All Rights Reserved. In order to differentiate between a transmission line and a back loaded horn, it is really important to understand

More information

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution.

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution. Stress-Strain Behavior in Concrete Overview of Topics EARLY AGE CONCRETE Plastic shrinkage shrinkage strain associated with early moisture loss Thermal shrinkage shrinkage strain associated with cooling

More information

SECTION 2 Transmission Line Theory

SECTION 2 Transmission Line Theory SEMICONDUCTOR DESIGN GUIDE Transmission Line Theory SECTION 2 Transmission Line Theory Introduction The ECLinPS family has pushed the world of ECL into the realm of picoseconds. When output transitions

More information

Loudspeaker Parameters. D. G. Meyer School of Electrical & Computer Engineering

Loudspeaker Parameters. D. G. Meyer School of Electrical & Computer Engineering Loudspeaker Parameters D. G. Meyer School of Electrical & Computer Engineering Outline Review of How Loudspeakers Work Small Signal Loudspeaker Parameters Effect of Loudspeaker Cable Sample Loudspeaker

More information

Calculation of Source-detector Solid Angle, Using Monte Carlo Method, for Radioactive Sources with Various Geometries and Cylindrical Detector

Calculation of Source-detector Solid Angle, Using Monte Carlo Method, for Radioactive Sources with Various Geometries and Cylindrical Detector International Journal of Pure and Applied Physics ISSN 0973-1776 Volume 3, Number 2 (2007), pp. 201 208 Research India Publications http://www.ripublication.com/ijpap.htm Calculation of Source-detector

More information

CONCEPT-II. Overview of demo examples

CONCEPT-II. Overview of demo examples CONCEPT-II CONCEPT-II is a frequency domain method of moment (MoM) code, under development at the Institute of Electromagnetic Theory at the Technische Universität Hamburg-Harburg (www.tet.tuhh.de). Overview

More information

E190Q Lecture 5 Autonomous Robot Navigation

E190Q Lecture 5 Autonomous Robot Navigation E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

More information

3D ACOUTIC SIMULATIONS FOR NONLINEAR ACOUTIC CONCEALED WEAPONS DETECTION

3D ACOUTIC SIMULATIONS FOR NONLINEAR ACOUTIC CONCEALED WEAPONS DETECTION D ACOUTIC SIMULATIONS FOR NONLINEAR ACOUTIC CONCEALED WEAPONS DETECTION Kevin Rudd Nondestructive Evaluation Laboratory The Applied Science Department The College of William and Mary Abstract Detecting

More information

Safakcan Tuncdemir 1, William M. Bradley *2. 1. Introduction

Safakcan Tuncdemir 1, William M. Bradley *2. 1. Introduction Modeling and Experimental Verification of the Power Transfer and Thermal Characteristics of Piezoelectric Transformers Subjected to Combined Mechanical and Electrical Loading Safakcan Tuncdemir 1, William

More information

Understanding Poles and Zeros

Understanding Poles and Zeros MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function

More information

Chapter 2 Lead Screws

Chapter 2 Lead Screws Chapter 2 Lead Screws 2.1 Screw Threads The screw is the last machine to joint the ranks of the six fundamental simple machines. It has a history that stretches back to the ancient times. A very interesting

More information

Selecting Current Transformers Part 1 By Darrell G. Broussard, P.E.

Selecting Current Transformers Part 1 By Darrell G. Broussard, P.E. By Darrell G. Broussard, P.E. Introduction: As engineers, we are aware that electrical power systems have grown. How much have they grown? When was the last time you specified a 2400-volt system, a 4160-volt

More information

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1 Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment

More information

Capacitive Proximity Sensors Theory of Operation

Capacitive Proximity Sensors Theory of Operation Capacitive Proximity Sensors Theory of Operation Capacitive proximity sensors are similar to inductive proximity sensors. The main difference between the two types is that capacitive proximity sensors

More information

EMC STANDARDS STANDARDS AND STANDARD MAKING BODIES. International. International Electrotechnical Commission (IEC) http://www.iec.

EMC STANDARDS STANDARDS AND STANDARD MAKING BODIES. International. International Electrotechnical Commission (IEC) http://www.iec. EMC STANDARDS The EMC standards that a particular electronic product must meet depend on the product application (commercial or military) and the country in which the product is to be used. These EMC regulatory

More information

Experiment 8: Undriven & Driven RLC Circuits

Experiment 8: Undriven & Driven RLC Circuits Experiment 8: Undriven & Driven RLC Circuits Answer these questions on a separate sheet of paper and turn them in before the lab 1. RLC Circuits Consider the circuit at left, consisting of an AC function

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

Episode 126: Capacitance and the equation C =Q/V

Episode 126: Capacitance and the equation C =Q/V Episode 126: Capacitance and the equation C =Q/V Having established that there is charge on each capacitor plate, the next stage is to establish the relationship between charge and potential difference

More information