Operations on type-2 fuzzy sets

Size: px
Start display at page:

Download "Operations on type-2 fuzzy sets"

Transcription

1 Fuzzy Sets and Systems (00) Operations on type- fuzzy sets Nilesh N. Karnik, Jerry M. Mendel Signal and Image Processing Institute, Department of Electrical Engineering-Systems, 3740 McClintock Ave., EEB400, University of Southern California, Los Angeles, CA , USA Received 4 August 999; received in revised form 0 April 000; accepted May 000 Abstract In this paper, we discuss set operations on type- fuzzy sets (including join and meet under minimum=product t-norm), algebraic operations, properties ofmembership grades oftype- sets, and type- relations and their compositions. All this is needed to implement a type- fuzzy logic system (FLS). c 00 Elsevier Science B.V. All rights reserved. Keywords: Fuzzy relations; Fuzzy numbers; Type- fuzzy sets. Introduction The concept ofa type- fuzzy set was introduced by Zadeh [30] as an extension ofthe concept ofan ordinary fuzzy set (henceforth called a type- fuzzy set). Such sets are fuzzy sets whose membership grades themselves are type- fuzzy sets; they are very useful in circumstances where it is dicult to determine an exact membership function for a fuzzy set; hence, they are useful for incorporating linguistic uncertainties, e.g., the words that are used in linguistic knowledge can mean dierent things to dierent people []. A fuzzy relation of higher type (e.g., type-) has been regarded as one way to increase the fuzziness of a relation, and, according to Hisdal, increased fuzziness in a description means increased ability to handle inexact information in a logically correct manner [5]. According to John, Type- fuzzy sets allow for linguistic grades ofmembership, thus assisting in knowledge representation, and they also oer improvement on inferencing with type- sets [6]. Type- sets can be used to convey the uncertainties in membership functions of type- sets, due to the dependence of the membership functions on available linguistic and numerical information. Linguistic information (e.g., rules from experts), in general, does not give any information about the shapes of the membership functions. When membership functions are determined or tuned based on numerical data, the uncertainty in the numerical data, e.g., noise, translates into uncertainty in the membership functions. In all such cases, information about the linguistic=numerical uncertainty can be incorporated in the type- framework. In [8], Liang and Mendel demonstrated (using real data) that a type- fuzzy set, a Gaussian with xed mean and Corresponding author. Tel.: + (3) ; fax: + (3) address: (J.M. Mendel) /0/$ - see front matter c 00 Elsevier Science B.V. All rights reserved. PII: S (00)

2 38 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) uncertain standard deviation (std), is more appropriate to model the frame sizes of I=P=B frames in MPEG VBR video trac than is a type- Gaussian membership function. In this paper, A is a type- fuzzy set, and the membership grade (a synonym for the degree of membership) of x X in A is A (x), which is a crisp number in [0; ]. A type- fuzzy set in X is A, and the membership grade of x X in A is A (x), which is a type- fuzzy set in [0; ]. The elements ofthe domain of A (x) are called primary memberships of x in A and the memberships ofthe primary memberships in A (x) are called secondary memberships of x in A. The latter dene the possibilities for the primary membership, e.g., A (x) can be represented, for each x X as A (x) =f x(u )=u + f x (u )=u + + f x (u m )=u m = i f x (u i )=u i ; u i J x [0; ]: When the secondary MFs are interval sets, we call them interval type- fuzzy sets. The operations of interval type- fuzzy sets are studied in [9,6]. Example. Fig. (a) shows a type- set in which the primary membership grade for each point in the set is a Gaussian type- set. The means ofall these Gaussian type- sets, follow a Gaussian and the standard deviations ofthese Gaussians decrease as the mean decreases. Uncertainty in the primary membership grades ofthe type- MF consists ofa shaded region (the union ofall primary membership grades), that we call the footprint of uncertainty ofthe type- MF (e.g., see Fig. (a)). The principal membership function, i.e., the set ofprimary memberships having secondary membership equal to, is indicated with a thick line. This principal membership function is a Gaussian because ofthe way the set is constructed. Intensity ofthe shading is approximately proportional to secondary membership grades. Darker areas indicate higher secondary memberships. The at portion from about.5 to 3.5 appears because primary memberships cannot be greater than (since primary memberships, themselves, are possible membership values, they have to be in [0; ]) and so the Gaussians have to be clipped. The domain ofthe membership grade corresponding to x =4 is also shown. Fig. (b) shows the secondary membership function for x = 4. Many other examples oftype- sets can be found in []. The concept of a principal membership function also illustrates the fact that a type- fuzzy set can be thought ofas a special case ofa type- fuzzy set. We can think ofa type- fuzzy set as a type- fuzzy set whose membership grades are type- fuzzy singletons, having secondary membership equal to unity for only one primary membership and zero for all others, i.e., we can think of the principal membership function of a type- set as an embedded type- set. A type- fuzzy set can also be thought of as a fuzzy valued function, which assigns to every x X a type- fuzzy membership grade. In this sense, we will call X the domain of the type- fuzzy set. Mizumoto and Tanaka [3] have studied the set-theoretic operations oftype- sets, properties ofmembership grades ofsuch sets, and, have examined the operations ofalgebraic product and algebraic sum for them [4]. Nieminen [5] has provided more details about algebraic structure oftype- sets. Dubois and Prade [4] and Kaufmann and Gupta [4] have discussed the join and meet operations between fuzzy numbers under minimum t-norm. Dubois and Prade [ 4] have also discussed fuzzy valued logic and have given a formula for the composition oftype- relations as an extension ofthe type- sup-star composition, but this formula is only for minimum t-norm. Karnik and Mendel [,3] have provided a general formula for the extended sup-star composition oftype- relations. Type- fuzzy sets have been used in decision making [,9], solving fuzzy relation equations [7], survey processing [], pre-processing ofdata [8], and modeling uncertain channel states [,3]. In engineering applications of fuzzy logic, minimum and product t-norm are usually used, so we focus on product and minimum t-norm in this paper, and leave the extensions ofour results to other t-norm to others. Recently, a type- FLS [,3] has been developed which uses either t-norm; however, in order to implement such a

3 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Fig.. (a) Pictorial representation ofa Gaussian type- set. The standard deviations ofthe secondary Gaussians decrease by design, as x moves away from 3. The secondary memberships in this type- fuzzy set are shown in (b), and are also Gaussian. type- FLS, one needs algorithms for set-theoretical operations on type- sets (which are given in Section ), algebraic operations for type- sets (which are given in Section 3), an understanding of set properties of membership grades (which is provided in Section 4) and algorithms for type- fuzzy relations and their compositions (which are given in Section 5). So, the main purpose ofthis paper is to provide the foundation for type- FLSs.. Set-theoretic operations on type- sets Consider two fuzzy sets of type-, A and B, in a universe X. Let A (x) and B (x) be the membership grades (fuzzy sets in J x [0; ]) ofthese two sets, represented, for each x, as A (x)= u f x(u)=u and B (x)= w g x(w)=w, respectively, where u; w J x indicate the primary memberships of x and f x (u); g x (w) [0; ] indicate the secondary memberships (grades) of x. Using Zadeh s Extension Principle [30,4,], the membership grades for union, intersection and complement of type- fuzzy sets A and B have been dened as follows [3]: Union: A B A B (x) = A (x) B (x) = (f x (u)?g x (w))=(u w); () u w Intersection: A B A B (x) = A (x) B (x) = (f x (u)?g x (w))=(u?w); () u w Complement: A A (x) A (x) = f x (u)=( u); (3) u

4 330 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) where represents the max t-conorm and? represents a t-norm. The integrals indicate logical union. In the sequel, we adhere to these denitions, and, as in [3], we refer to the operations, as join, meet and negation, respectively. If A (x) and B (x) have discrete domains, the integrals in () (3) are replaced by summations. In (), ifmore than one calculation ofu and w gives the same point u w, then in the union we keep the one with the largest membership grade. We do the same in (). Suppose, for example, u w = and u w =. Then within the computation of() we would have f x (u )?g x (w )= + f x (u )?g x (w )= (4) where + denotes union. Combining these two terms for the common is a type- computation in which we can use a t-conorm. We choose to use the maximum as suggested by Zadeh [30] and Mizumoto and Tanaka [3]. Using the denitions in () (3), we examine the operations of join, meet and negation in more detail, both under minimum ( ) and product t-norms (which are the most widely used t-norms in engineering applications offuzzy sets and logic). We consider only convex, normal membership grades. Our goal is to obtain algorithms that let us compute the join, meet and negation. These algorithms will be needed later to compute type- relations. Since these operations are performed on membership grades of type- sets, which themselves are type- sets, the results discussed next are in terms oftype- sets. The type- sets, F i, in Sections..4, can be thought ofas membership grades ofsome type- sets, A i, for some arbitrary input x 0. For example, (4) in Fig. (b) is a type- set associated with x =4... Join and meet under minimum t-norm Our major result for join and meet under minimum t-norm is given in: Theorem. Suppose that we have n convex; normal; type- real fuzzy sets F ;:::;F n characterized by membership functions f ;:::;f n ; respectively. Let v ;v ;:::;v n be real numbers such that v 6v 6 6v n and f (v )=f (v )= =f n (v n )=. Then; using max t-conorm and min t-norm; n i= f i(); v ; n Fi() = n i= i=k+ f i(); v k 6 v k+ ; 6k6n ; (5) n i= f i(); v n ; and n i= f i(); v ; n Fi() = k i= i= f i(); v k 6 v k+ ; 6k6n ; n i= f i(); v n : (6) See Appendix A for the proofoftheorem. Fig. shows an example ofan application oftheorem for the case n = 4. Observe that Eqs. (5) and (6) are very easy to program. Dubois and Prade present the result in Theorem just for the case n =, in the context offuzzication ofmax and min operations. Though their method ofproofis very similar to ours, they prove the result for a special case, where f and f have at most three points ofintersection and one needs to keep track of the points ofintersection off and f to use their theorem. We reprove this theorem in a general setting in Appendix A. We believe that our statements of F F () and F F () are more amenable to computer

5 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Fig.. An illustration oftheorems and : Join and meet operations between Gaussians: (a) Participating Gaussians; (b) join under minimum t-norm (solid line) and product t-norm (thick dashed line); and (c) meet under minimum t-norm. implementations than those ofdubois and Prade. Generalization to the case n is also dicult using Dubois and Prade s result, but is provided by us in Theorem. As a consequence oftheorem, we have the following interesting result: Corollary. If we have n convex; normal; type- fuzzy sets F ;:::;F n characterized by membership functions f ;:::;f n ; respectively; such that f i ()=f ( k i ); and 0=k 6k 6 6k n ; then; using max t-conorm and min t-norm; n i= F i = F n and l n i= F i = F. The prooffollows by a direct application oftheorem to the n type- sets described in the statement of the corollary. Fig. 3 shows an example ofunion and intersection oftype- sets, using the results in this section... Join under product t-norm For type- fuzzy sets satisfying the requirements of Theorem, join operation under product t-norm gives exactly the same result as (5) with product replacing the minimum. Theorem. Suppose that we have n convex; normal; type- real fuzzy sets F ;:::;F n characterized by membership functions f ;:::;f n ; respectively. Let v ;v ;:::;v n be real numbers such that v 6v 6 6v n and f (v )=f (v )= = f n (v n )=. Then; the membership function of n i= F i using max t-conorm and

6 33 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Fig. 3. Union and Intersection of two type- fuzzy sets using the pictorial representation introduced in Fig., and, for maximum t-conorm and minimum t-norm: (a) Participating sets; (b) union; and (c) intersection. product t-norm; can be expressed as n i= f i(); v ; n i= Fi () = n i=k+ f i(); v k 6 v k+ ; 6k6n ; n i= f i(); v n : (7) The proofproceeds in the same way as the proofofpart (I) in Theorem (Appendix A), with the minimum operation replaced by product. See [] for details. Fig. shows an example ofan application oftheorem for the case n =4..3. Meet under product t-norm The meet operation under the product t-norm between two convex normal type- sets F and F can be represented as F F = [f (v)f (w)]=(vw): (8) v w Ref. [4] gives a similar result while discussing multiplication of fuzzy numbers (see Section 3 for algebraic operations on fuzzy sets). If is an element of F F, then the membership grade of can be found by nding all the pairs {v; w} such that v F ; w F and vw = ; multiplying the membership grades of v and w in each pair; and then nding the maximum ofthese products ofmembership grades. The possible admissible {v; w} pairs whose

7 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) product is are {v; =v} (v R; v 0) for 0 and {v; 0} or {0;w}, where v; w R for = 0, i.e., ( F F () = sup f (v)f v R;v 0 v [ ] F F (0) = sup f (v)f (0) v R = [ f (0) sup f (v) v R = f (0) f (0): ] ) ; R; 0; [ ] sup f (0)f (w) w R ] [ f (0) sup f (w) w R (9) Since the meet operation under product t-norm is commutative (see Section 4), we get the same result whether we substitute =w = v or =v = w. As is apparent from (9), the result is very much dependent on functions f and f and does not easily generalize like the join and meet operations considered earlier, and generally, it is very dicult to obtain a closed-form expression for the result of the meet operation. Even ifboth the fuzzy sets involved have Gaussian membership functions, it is dicult to obtain a nice closed-form expression for the result of the meet operation. To determine the membership ofa particular point in F G, we nd all the pairs {v; w} such that v R; w R and vw = ; and multiply the memberships ofeach pair. The membership grade of is given by the supremum ofthe set ofall these products. For example, if = 0, all the pairs {v; w} that give 0 as their product are v and 0=v (v R;v 0). So, the membership grade of0 is given by the supremum of the set ofall the products f(v)g(0=v) (v R;v 0). Fig. 4(c) shows how f(v)g(0=v) looks for F and G in Fig. 4(a). Clearly, it is no easy matter to represent (9) visually. Because ofthe complexity of(9) for general membership functions (MFs), we concentrate on Gaussian MFs. For a derivation of F F when both F and F are Gaussian type- sets, see []. It is very complicated, does not lead to a closed-form expression, and does not generalize to more than two MFs. Since the meet operation under product t-norm is heavily used in the development ofa type- FLS (because it is widely used in type- FLSs), here we develop a Gaussian approximation to this operation that will make it practical. Ifthere are n Gaussian fuzzy sets F ;F ;:::;F n with means m ;m ;:::;m n and standard deviations ; ;:::; n, respectively, then, under the product t-norm, F F F n () e (=)(( mm mn)= ) : (0) where (i =;:::;n) = m i + + j m i + + n m i : () i;i i;i j i; i n For the derivation ofthis approximation, see Appendix B. One important feature ofthis approximation is that it is Gaussian; hence, it is reproducible, i.e., Gaussians remain Gaussians. Fig. 5 shows some examples ofthe meet operation under product t-norm, and the approximation in (0). See [9] for a triangular approximation for triangular type- sets, i.e., type- sets in which all the secondary membership functions are triangular. A popular type- fuzzy set is the interval type- set, i.e., the type- set all of whose secondary MFs are interval sets. Note that an interval [l; r] can also be represented in terms ofits mean and spread as [m s; m+s],

8 334 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Fig. 4. An example showing how f(v)g(0=v) looks for the membership functions f and g oftype- sets F and G, respectively, in (a); (b) f(v), which is the same as that in (a) and g(0=v); and, (c) the product f(v)g(0=v). where m =(l + r)= and s =(r l)=. The meet ofinterval sets under product=minimum t-norm has been given by Schwartz [6] and Kaufmann and Gupta [4], and is discussed in detail in Liang and Mendel [7]..4. Negation From the denition ofthe negation operation, it follows that Theorem 3. If a type- real fuzzy set F has a membership function has a membership function f( ). The prooffollows by substituting = u in (3). 3. Algebraic operations Just as the t-conorm and t-norm operations have been extended to the membership grades oftype- sets using the Extension Principle, algebraic operations between type- sets have been dened using the Extension Principle [4,4,]. A binary operation dened for crisp numbers, can be extended to two type- sets, F = v f (v)=v and F = w f (w)=w, as follows: F F = v [f (v)?f (w)]=(v w) () w

9 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Fig. 5. Some examples ofthe meet between Gaussians under product t-norm (solid line) and the approximation in (0) (thick dashed line). Means and standard deviations ofparticipating Gaussians in each case are also shown on the gure. In each case, the solid curve was obtained numerically, using (9). where? indicates the t-norm used. We will mainly be interested in multiplication and addition oftype- sets. Observe, from (8) and (), that multiplication of two type- sets under product t-norm is the same as the meet ofthe two type- sets under product t-norm; therefore, all our earlier discussion about the meet under product t-norm applies to the multiplication oftype- sets under product t-norm. Theorem 4. Given n interval type- numbers F ;:::;F n ; with means m ;m ;:::;m n and spreads s ;s ;:::;s n ; their ane combination n i= if i + ; where i (i =;:::;n) and are crisp constants; is also an interval type- number with mean n i= im i + ; and spread n i= i s i. See Appendix C for the proofoftheorem 4. Theorem 5. Given n type- Gaussian fuzzy numbers F ;:::;F n ; with means m ;m ;:::;m n and standard deviations ; ;:::; n ; their ane combination n i= if i + ; where i (i =;:::;n) and are crisp constants; is also a Gaussian fuzzy number with mean n i= im i + ; and standard deviation ; where n i= = i i if product t-norm is used; n i= i i if minimum t-norm is used: See Appendix D for the proofoftheorem 5. (3)

10 336 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Table Properties ofmembership grades. In the type- case, we assume convex and normal membership grades; and for type- laws,, and replace,? and 6, respectively. For product t-norm, the laws that are satised in the type- case, but not in the type- case, are highlighted. Results for the minimum t-norm are taken from [3] Set-theoretic laws Minimum t-norm Product t-norm Type- Type- Type- Type- Reexive A 6 A Yes Yes Yes Yes Anti-symmetric A 6 B ; B 6 A Yes Yes Yes Yes A = B Transitive A 6 B ; B 6 C Yes Yes Yes Yes A 6 C Idempotent A A = A Yes Yes Yes No A? A = A Yes Yes No No Commutative A B = B A Yes Yes Yes Yes A? B = B? A Yes Yes Yes Yes Associative ( A B ) C Yes Yes Yes Yes = A ( B C ) ( A? B )? C Yes Yes Yes Yes = A? ( B? C ) Absorption A? ( A B )= A Yes Yes No No A ( A? B )= A Yes Yes Yes No Distributive A? ( B C ) Yes Yes Yes No =( A? B ) ( A? C ) A ( B? C ) Yes Yes No No =( A B )? ( A C ) Involution A = A Yes Yes Yes Yes De Morgan s Laws A B = A? B Yes Yes No No A? B = A B Yes Yes No No Identity A 0= A Yes Yes Yes Yes A? = A Yes Yes Yes Yes A = Yes Yes Yes Yes A? 0 = 0 Yes Yes Yes Yes Complement A A Yes Yes Yes Yes (Failure) A?A 0 Yes Yes Yes Yes 4. Properties of membership grades Mizumoto and Tanaka [3] discuss properties ofmembership grades oftype- sets in detail, under the minimum t-norm and maximum t-conorm. We examined these properties under product t-norm and maximum t-conorm for convex, normal membership grades. Our ndings are summarized in Table. See Chapter 3 of [] for details, which we have omitted here because they are rather straight-forward. In proving the identity law, we use the concepts of0 and membership grades for type- sets [3]; they are represented as =0 and =, respectively, which is in accordance with our earlier discussion about type- sets being a special case oftype- sets. An element is said to have a zero membership in a type- set ifit has a secondary membership equal to corresponding to the primary membership of0, and ifit has all other secondary memberships equal to 0. Similarly, an element is said to have a membership grade equal to in a type- set, ifit has a secondary membership equal to corresponding to the primary membership of and ifall other secondary memberships are zero. All our operations on type- sets collapse to their type- counterparts, i.e., ifall the type- sets are replaced by their principal membership functions (assuming principal membership function can be dened for all of

11 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) them), all our results remain valid. We, therefore, conclude that if there are any set-theoretic laws that are not satised by type- fuzzy sets, we can safely say that type- sets will not satisfy those laws either; however, the converse ofthis statement may not be true. If any condition is satised by type- sets, it may or may not be satised by type- sets. Observe, from Table, that the {max, product} t-conorm=t-norm pair, for type- sets, does not satisfy idempotent, absorption, distributive, De Morgan s and complement laws; hence, ifthe design ofa type- fuzzy logic system (controller) involves the use of these laws, it will be in error. Observe also that some laws that are satised in the type- case under {max, product} t-conorm=t-norm pair are not satised in the type- case. 5. Type- fuzzy relations, their compositions, and cartesian product 5.. Composition of type- fuzzy relations Let X ;X ;:::;X n be n universes. A crisp relation in X X X n is a crisp subset ofthe product space. Similarly, a type- fuzzy relation in X X X n is a type- fuzzy subset of the product space and a type- fuzzy relation in X X X n is a type- fuzzy subset of the product space. We concentrate on binary type- fuzzy relations. Unions and intersections oftype- relations on the same product space can be obtained exactly in the same manner as unions and intersections ofordinary type- sets are obtained. If R(U; V ) and S(U; V ) are two type- relations on the same product space U V, their union and intersection are determined as R S (u; v)= R (u; v) S (u; v) and R S (u; v)= R (u; v) S (u; v). Consider two dierent product spaces, U V and V W, that share a common set and let R(U; V ) and S(V; W ) betwocrisp relations on these spaces. The composition ofthese relations is dened [5] as a subset T (U; W )ofu W such that (u; w) T ifand only if(u; v) R and (v; w) S. This can be expressed as a max min, max-product or, in general, as the sup-star composition R S (u; w) = sup v V [ R (u; v)? S (v; w)] where? indicates any suitable t-norm operation. The validity ofthe sup-star composition for crisp sets is shown in [8]. If R and S are two crisp relations on U V and V W, respectively, then the membership for any pair (u; w); u U and w W, is ifand only ifthere exists at least one v V such that R (u; v)= and S (v; w) =. In [8], it is shown that this condition is equivalent to having the sup-star composition equal to. When we enter the fuzzy domain, set memberships (which are crisp numbers for type- sets, and type- fuzzy sets for type- sets) belong to the interval [0; ] rather than just being 0 or. So, now we can think ofan element as belonging to a set ifit has a non-zero membership in that set. In this respect, the aforementioned condition on the composition of relations can be rephrased as follows (recall the concept of 0 and membership grades in the case oftype- sets discussed in Section 4): IfR ( R)andS( S) are two type- (type-) fuzzy relations on U V and V W, respectively, then the membership for any pair (u; w), u U and w W, is non-zero ifand only ifthere exists at least one v V such that R (u; v) 0 (R (u; v) 0) and S(v; w) =0 ( S (v; w) =0). It can be easily shown that in the type- case, this condition is again equivalent to the sup-star composition, R S (u; w) = sup [ R (u; v)? S (v; w)] (4) v V and, in the type- case, it is equivalent to the following extended version of the sup-star composition. R S (u; w) = v V [ R (u; v) S (v; w)]: (5)

12 338 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Proofs of(4) and (5) are very similar. We just give the proofof(5) next. In the proof, we use the following method. Let A be the statement R S (u; w) =0, and B be the statement there exists at least one v V such that R (u; v) =0 and S (v; w) =0. We prove that A i B by rst proving that B A (which is equivalent to proving A B, i.e., necessity of B) and then proving that A B (which is equivalent to proving B A, i.e., suciency of B). Proof. (Necessity) Ifthere exists no v V such that R (u; v) =0 and S (v; w) =0, then this means that either R (u; v)==0 or S (v; w)==0 (or both are zero) for every v V. So, assuming that R (u; v) and S (v; w) are normal, then from the identity law ( A =0==0), R (u; v) =0==0 or=0 S (v; w)==0, so that we have that R (u; v) S (v; w)==0 for every v V, and therefore, in (5), v V =0==0. (Suciency) Ifthe extended sup-star composition is zero, then, from (5), v V [ R (u; v) S (v; w)]==0: For each value of v, the term in the bracket is a type- fuzzy set. Suppose, for example, that there are two such terms, say P and Q, so that P Q ==0. Observe, from (), that for two normal membership grades, P = u f(u)=u and Q = v g(v)=v, P Q ==0 u (6) [f(u)?g(v)]=(u v) ==0: (7) v For u v =0; u= v = 0, in which case, P = Q ==0. This means that each ofthe two terms in the bracket of(5) equals /0. The extension ofthis analysis to more than two terms is easy. We conclude, therefore, that R (u; v) S (v; w)==0 for every v V, which means that for every v V, either R (u; v) or S (v; w) (or both) is /0. Consequently, there is no v V such that R (u; v) =0 and S (v; w) =0. Dubois and Prade [3,4] give a formula for the composition of type- relations under minimum t-norm as an extension ofthe type- sup-min composition. Their formula is the same as (5); however, we have demonstrated the validity of(5) for product as well as minimum t-norms. Example. Consider the type- relation u is close to v onu V, where U = {u ;u } and V = {v ;v ;v 3 } are given as: U = {; }, V = {; 7; 3} and close (u; v) = u u ( v v v 3 0:9 0:4 0: 0: 0:4 0:9 ) : (8) Now consider another type- fuzzy relation v is bigger than w onv W where W = {w ;w } = {4; 8}, with the following membership function: bigger (v; w) = w w v 0 0 v 0:6 0 : v 3 0:7 (9)

13 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) As is well known, the statement u is close to v and v is bigger than w indicates the composition ofthese two type- relations, which can be found by using (4) and the min t-norm, as follows: close bigger (u i ;w j )=[ close (u i ;v ) bigger (v ;w j )] [ close (u i ;v ) bigger (v ;w j )] [ close (u i ;v 3 ) bigger (v 3 ;w j )] (0) where i =; and j =; ; 3. Using (0), we get close bigger (u; w) = u u ( w w 0:4 0: 0:9 0:7 ) : () Now, let us consider the type- relations u is close to v and v is bigger than w which are obtained by adding some uncertainty to the type- relations in (8) and (9). Let the membership grades be as follows: close ] (u; v) = u u v 0:3=0:8+=0:9 +0:7= 0:5=0+=0: v 0:7=0:3+=0:4 +0:=0:5 0:7=0:3+=0:4 +0:=0:5 v 3 0:5=0+=0: 0:3=0:8+=0:9 +0:7= () and bigger ] (v; w) = v v v 3 w =0+0:6=0: 0:4=0:5+=0:6 +0:9=0:7 0:7=0:9+= w =0+0:=0: =0+0:8=0: +0:=0: : 0:5=0:6+=0:7 +0:7=0:8 (3) The composition ofthe type- relations u is close to v and v is bigger than w can be found by using (5), as follows: close ] bigger ] (u i;w j )=[ close ] (u i;v ) bigger ] (v ;w j )] [ close ] (u i;v ) bigger ] (v ;w j )] [ close ] (u i;v 3 ) bigger ] (v 3;w j )] (4) where i =; and j =;. Using (4), (), (3), () and (), we have (using min t-norm and max t-conorm) u close ] bigger ] (u; w) = u w w 0:7=0:3+=0:4 0:3=0:8+=0:9 +0:7= 0:5=0+=0: +0:=0: 0:5=0:6+=0:7 +0:7=0:8 : (5) Comparing (5) and (), we observe that the results in (5) are indeed quite similar to the results of the type- sup-star composition in (), i.e., in the type- results, primary memberships corresponding to the memberships in the type- results, have unity secondary memberships. Eq. (5) provides additional uncertainty information to account for the secondary MFs.

14 340 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Next, consider the case where one ofthe relations involved in the composition is just a fuzzy set. The composition ofthe type- set R U and type- fuzzy relation S(U; V ) is given as [6] R S (v) = sup [ R (u)? S (u; v)]; (6) u U which is a type- fuzzy set on V. Similarly, in the type- case, the composition ofa type- fuzzy set in R U and a type- relation S(U; V ) is given by R S (v) = u U [ R (u) S (u; v)]: Eq. (7) plays an important role as the inference mechanism of a rule where antecedents or consequents are type- fuzzy sets, and is the fundamental inference mechanism for rules in type- FLSs (e.g., [0,,7]). 5.. Cartesian product If U and V are domains oftype- fuzzy sets F and G, respectively, characterized by certain membership functions, then the Cartesian product of these membership functions will be supported over U V, and each point {(u; v); u U; v V } in this plane will have a membership grade (a crisp number in [0; ]) which is the result ofa t-norm operation between the membership grade ofu in F and the membership grade of v in G. Now consider the case oftype- sets F and G. The membership grades ofevery element in F and G are now type- fuzzy sets. So, now the t-norm operation in the type- case has to be replaced by the meet operation; therefore, when we nd the Cartesian product, it is still supported over U V as in the type- case; but now each point (u; v) U V will have a membership grade which is again a type- fuzzy set (result ofa meet operation between membership grades of u and v). (7) 6. Conclusions We have discussed set-theoretic operations for type- sets, properties ofmembership grades oftype- sets, and type- relations and their compositions, and cartesian product under minimum and product t-norms. We have also developed easily implementable algorithms to perform set-theoretic and algebraic operations oftype- sets. When actual results are dicult to generalize or implement, we have developed practical approximations. All our results reduce to the correct type- results when all the type- uncertainties collapse to type- uncertainties. All ofthe results in this paper are needed to implement type- FLSs [,7], and should be ofuse to other researchers who explore applications of type- fuzzy sets. Software to implement some of the algorithms developed herein are on-line at the URL: mendel=software. Appendix A. Proof of Theorem In the proofoftheorem, given next, we represent fuzzy sets F i as F i = v f i(v)=v (i =;:::;n), where v, in general, varies over the real line. Ifa real number w 0 is not in F i, f i (w 0 ) is zero. Proof. First we prove (5), and then we prove (6). (I) We rst prove (5) for the case n =. The join operation between F and F can be expressed, as F F = [f (v) f (w)]=(v w): (A.) v w

15 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Let us see what operations are involved here. For every pair ofpoints {v; w}, such that v F and w F, we nd the maximum of v and w and the minimum oftheir memberships, so that v w is an element of F F and f (v) f (w) is the corresponding membership grade. Ifmore than one {v; w} pair gives the same maximum (i.e., the same element in F F ), we use the maximum ofall the corresponding membership grades as the membership ofthis element. So, every element ofthe resulting set is obtained as a result of the max operation on one or more {v; w} pairs, and its membership is the maximum ofall the results ofthe min operation on memberships of v and w. If F F, the possible {v; w} pairs that can give as the result ofthe maximum operation are {v; } where v ( ;] and {; w} where w ( ;]. The process ofnding the membership of in F F can be broken into three steps: () nd the minima between the memberships ofall the pairs {v; } such that v ( ;] and then nd their supremum; () do the same with all the pairs {; w} such that w ( ;]; and, (3) nd the maximum ofthe two suprema, i.e., (F F )() = () () (A.) where and () = sup {f (v) f ()} = f () sup f (v) v ( ;] v ( ;] (A.3) () = sup {f () f (w)} = f () sup f (w): (A.4) w ( ;] w ( ;] We break into the following three ranges: v, v 6 v and v (see Fig. 6). Recall that f (v )= and f (v ) =. Also, observe that convexity of F i (i =; ) is equivalent to the condition that f i is monotonic non-decreasing in ( ;v i ] and monotonic non-increasing in [v i ; ). = v : See Fig. 6(a). Since f and f both are monotonic non-decreasing in ( ;v ], sup v ( ;] f (v)=f () and sup w ( ;] f (w)=f (); therefore, from (A.) (A.4), we have (F F )() =f () f (); v : (A.5) v 6 = v : See Fig. 6(a). Recall that f (v )= and that f is monotonic non-decreasing in ( ;v ]. Therefore, sup v ( ;] f (v) = and sup w ( ;] f (w)=f (). Using these facts in (A.) (A.4), we have (F F )() =f () [f () f ()] = f (); v 6 v (A.6) where we have made use ofthe fact that a [a b]=a, for real a and b. = 3 v : For in this range [see Fig. 6(a)], both f and f have already attained their maximum values; therefore, sup v ( ;] f (v) = sup w ( ;] f (w) =. Consequently, from (A.) (A.4), we have (F F )() =f () f (); v : (A.7) From (A.5) (A.7), we get f () f (); v ; (F F )() = f (); v 6 v ; f () f (); v : (A.8) Observe that, since F and F both are convex and normal with f (v )=f (v )=: () f f is monotonic non-decreasing in ( ;v ]; () f (v ) f (v )=f (v ); (3) f is monotonic non-decreasing in [v ;v ]; and, (4) f f is monotonic non-increasing in [v ; ). From these three observations, we see that (F F ) is

16 34 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Fig. 6. An example oftwo general membership functions, f and f, that satisfy the requirements of Theorem. Observe that for set F, any ofthe points at which f attains its maximum value ofunity may be chosen as v. We arbitrarily chose v =:8: (a) The three possibilities: v, v 6 v, 3 v. (b) Result ofthe join operation. (c) Result ofthe meet operation. The t-norm used is min. monotonic non-decreasing in ( ;v ] and monotonic non-increasing in [v ; ), which implies that F F is convex [see Fig. 6(b)]. Also, F F is normal with (F F )(v )=. Next, we prove (5) for n. Using the associative law [3], we have F F F 3 =(F F ) F 3. Since, as explained in the previous paragraph, F F is also convex and normal, from (A.8) we have [recall that f 3 (v 3 ) = and that v 3 v ] (F F )() f 3 (); v ; (F F F 3)() = f 3 (); v 6 v 3 ; (A.9) (F F )() f 3 (); v 3 : Since v 6v 3, (A.8) and (A.9) can be rewritten as f () f (); v ; f (F F )() = (); v 6 v ; f () f (); v 6 v 3 ; f () f (); v 3 ; (F F )() f 3 (); v ; (F F )() f 3 (); v 6 v ; (F F F 3)() = f 3 (); v 6 v 3 ; (F F )() f 3 (); v 3 : (A.0) (A.)

17 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Substituting for (F F )() from (A.0) into (A.), we have f () f () f 3 (); v ; f (F F F 3)() = () f 3 (); v 6 v ; f 3 (); v 6 v 3 ; f () f () f 3 (); v 3 ; (A.) 3 i= f i(); v ; 3 = i=k+ f i(); v k 6 v k+ ; 6k6; 3 f i (); v 3 : i= (A.3) It is straightforward to show that F F F 3 is also a convex and normal set. Therefore, (A.8) can be applied again to obtain (F F F 3 F 4). Continuing in this fashion, we get (5). (II) For the case, n =, the meet operation between F and F can be represented as F F = v [f (v) f (w)]=(v w): (A.4) w The only dierence between this operation and the join operation in (A.) is that every F F is the result ofthe minimum operation on some pair {v; w}, such that v F and w F ; the possible such pairs being {v; } where v [; ) and {; w} where w [; ). The process ofnding the membership of in F F can be broken into three steps: () nd the minima between the memberships ofall the pairs {v; } such that v [; ) and then nd their supremum; () do the same with all the pairs {; w} such that w [; ); and, (3) nd the maximum ofthe two suprema. By proceeding in a manner very similar to that in part (I) ofthe proof, we get the result in (6). For details, see []. Appendix B. Solving for the Gaussian meet approximation Consider two Gaussian type- sets F and F characterized by membership functions f and f, having means m and m and standard deviations and. Since we will perform the join and meet operations on the membership grades oftype- sets when computing unions and intersections oftype- sets, the type- sets involved in the operations will have [0; ] as their domains. The membership functions of these type- sets may, therefore, be clipped (i.e., any portion of the membership function lying outside [0; ] is cut o); and, this clipping may aect the result ofthe meet operation. This constraint needs to be considered in the derivation ofthe actual result ofthe meet between two Gaussian type- sets under the product t-norm; however, we will ignore it for simplicity, while deriving the Gaussian approximation. For a detailed discussion about the eects ofthis constraint on the actual result, as well as on the Gaussian approximation and its upper and lower bounds, see []. Applying (9) for Gaussian membership functions, we have F F () = sup v R ;v 0 { [ (v exp ) ( ) ]} m =v m + ; R ; 0; (B.)

18 344 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) { F F (0) = exp ( m ) } { exp ( ) } m : (B.) Finding F F () for 0, requires minimization of ( ) ( ) ( ) ( ) v m =v m v m m v J (v) = + = + : (B.3) v Observe that J is non-convex and dicult to minimize. Therefore, we simplify the problem by replacing the v in the denominator ofthe second term ofj (v) by a constant k. This gives us the following objective function to minimize: ( ) ( ) v m m v H(v) = + : (B.4) k Observe that H is convex (H == +m = 0). Therefore, equating H to zero and assuming that the inmum is obtained at v = v,weget ( v )( m ) + ( m v )( ) m k Substituting (B.5) into (B.4), we get inf v H(v) = ( k =0 v = m + m k m + k : (B.5) m m m + k ) : (B.6) Recall that the type- sets involved in the meet operation have [0; ] as their domains. Since the constant k in (B.4) replaces v that varies between 0 and, it seems apparent that some value of k between 0 and will give a good approximation to the actual result ofthe meet operation. Observe, from (B.5), that replacing k by m, makes the Gaussian approximation commutative [i.e., ifwe interchange {m ; } and {m ; },we still get the same result] just as the actual meet operation is (see Section 4). Therefore, by replacing k with m, we obtain the Gaussian approximation. ( F F () exp m m m + m ) : (B.7) Generalization ofthis result to the meet of n Gaussian type- sets is straightforward and gives the result in (0). For a detailed derivation ofbounds on the approximation error between (0) and the actual value of F F F n (), see []. Appendix C. Proof of Theorem 4 Consider F i =[m i s i ;m i + s i ]. Multiplying F i by a crisp constant i (== i ) yields (see ()) i F i = =( i v); v [m i s i ;m i + s i ]: (C.) v

19 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Adding a crisp constant (==) to i F i yields i F i + = =( i v + ); v [m i s i ;m i + s i ]: (C.) v Substituting w = i v +, (C.) gives us i F i + = =w; w [ i m i + i s i ; i m i + + i s i ]: (C.3) w Since F i can be represented as [l i ;r i ], where l i = m i s i and r i = m i + s i, then [ n n ] n n n F i = m i s i ; m i + s i : (C.4) i= i= i= i= i= Using (C.3) and (C.4), we get the result in Theorem 4. Appendix D. Proof of Theorem 5 We follow a method similar to the one used in the proofoftheorem 4 in Appendix C. We prove the theorem in two parts: (a) we prove that i F i + is a Gaussian fuzzy number with mean i m i + and standard deviation i i ; and (b) we prove that n i= F i is a Gaussian fuzzy number with mean n i= m i and standard deviation, where n i= = i ifproduct t-norm is used; (D.) n i= i ifminimum t-norm is used: (a) Consider { F i = exp ( ) }/ v mi v: (D.) v i Multiplying F i by a constant i (== i ) and adding a constant (==) to i F i, yields [see ()] [ { i F i + = exp ( ) } ]/ v mi? ( i v + ) v i { = exp ( ) }/ v mi ( i v + ): (D.3) v i Let i v + = v ; this gives v =(v )= i, which when substituted into (D.3), leads to { i F i + = exp [ (v ] }/ )= i m i v v i { = exp [ v ] }/ ( i m i + ) v i i v (D.4)

20 346 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) which shows that i F i + is a Gaussian fuzzy number with mean i m i + and standard deviation i i. Note that this result does not depend on the kind oft-norm used, since i and are crisp numbers. (b) Consider F and F, with means m and m and standard deviations and, respectively. The sum ofthese two fuzzy numbers can be expressed as [see ()] { F + F = ( ) } { v m? exp ( ) }/ w m [v + w] (D.5) v F w F exp where? indicates the chosen t-norm. (i) Product t-norm: In this case, (D.5) reduces to { F + F = ( ) } { v m exp ( ) }/ w m [v + w]: (D.6) v F w F exp If is an element of F + F, the membership grade of in F + F can be obtained by considering all the {v; w} pairs such that v F and w F and v + w =, multiplying the memberships of v and w in every pair, and, choosing the maximum ofall these membership products. In other words, { [ (v (F+F )() = sup exp ) ( ) ]} m ( v) m + : (D.7) v Let v maximize the expression on the RHS of(d.7). v is obtained by minimizing ( ) [ ] v m ( v) m J (v) = + : (D.8) Since J is convex (J == += 0), equating the rst derivative of J to zero, we get ( v )( ) [ m ( v ) ) m + ]( =0; ( v + ) = m + m ; v = m +( m ) + : Substituting (D.9) into (D.7), we get [ ] (F+F )() = exp (m + m ) + : (D.9) (D.0) This result generalizes easily to the sum of n Gaussian type- sets, F ;:::;F n ; hence, n i= F i, under product t-norm, is a Gaussian fuzzy number with mean n i= m n i and standard deviation i= i. (ii) Minimum t-norm: In this case, (D.5) reduces to { F + F = ( ) } { v m exp ( ) }/ w m [v + w]: (D.) v F w F exp

On closed-form solutions of a resource allocation problem in parallel funding of R&D projects

On closed-form solutions of a resource allocation problem in parallel funding of R&D projects Operations Research Letters 27 (2000) 229 234 www.elsevier.com/locate/dsw On closed-form solutions of a resource allocation problem in parallel funding of R&D proects Ulku Gurler, Mustafa. C. Pnar, Mohamed

More information

A New Operation on Triangular Fuzzy Number for. Solving Fuzzy Linear Programming Problem

A New Operation on Triangular Fuzzy Number for. Solving Fuzzy Linear Programming Problem Applied Mathematical Sciences, Vol. 6, 2012, no. 11, 525 532 A New Operation on Triangular Fuzzy Number for Solving Fuzzy Linear Programming Problem A. Nagoor Gani PG and Research Department of Mathematics

More information

Fuzzy regression model with fuzzy input and output data for manpower forecasting

Fuzzy regression model with fuzzy input and output data for manpower forecasting Fuzzy Sets and Systems 9 (200) 205 23 www.elsevier.com/locate/fss Fuzzy regression model with fuzzy input and output data for manpower forecasting Hong Tau Lee, Sheu Hua Chen Department of Industrial Engineering

More information

Optimization of Fuzzy Inventory Models under Fuzzy Demand and Fuzzy Lead Time

Optimization of Fuzzy Inventory Models under Fuzzy Demand and Fuzzy Lead Time Tamsui Oxford Journal of Management Sciences, Vol. 0, No. (-6) Optimization of Fuzzy Inventory Models under Fuzzy Demand and Fuzzy Lead Time Chih-Hsun Hsieh (Received September 9, 00; Revised October,

More information

Project Management Efficiency A Fuzzy Logic Approach

Project Management Efficiency A Fuzzy Logic Approach Project Management Efficiency A Fuzzy Logic Approach Vinay Kumar Nassa, Sri Krishan Yadav Abstract Fuzzy logic is a relatively new technique for solving engineering control problems. This technique can

More information

Portfolio selection based on upper and lower exponential possibility distributions

Portfolio selection based on upper and lower exponential possibility distributions European Journal of Operational Research 114 (1999) 115±126 Theory and Methodology Portfolio selection based on upper and lower exponential possibility distributions Hideo Tanaka *, Peijun Guo Department

More information

Subspaces of R n LECTURE 7. 1. Subspaces

Subspaces of R n LECTURE 7. 1. Subspaces LECTURE 7 Subspaces of R n Subspaces Definition 7 A subset W of R n is said to be closed under vector addition if for all u, v W, u + v is also in W If rv is in W for all vectors v W and all scalars r

More information

A FUZZY LOGIC APPROACH FOR SALES FORECASTING

A FUZZY LOGIC APPROACH FOR SALES FORECASTING A FUZZY LOGIC APPROACH FOR SALES FORECASTING ABSTRACT Sales forecasting proved to be very important in marketing where managers need to learn from historical data. Many methods have become available for

More information

The Characteristic Polynomial

The Characteristic Polynomial Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

More information

Applications of Methods of Proof

Applications of Methods of Proof CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The set-theoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are

More information

Optimization under fuzzy if-then rules

Optimization under fuzzy if-then rules Optimization under fuzzy if-then rules Christer Carlsson christer.carlsson@abo.fi Robert Fullér rfuller@abo.fi Abstract The aim of this paper is to introduce a novel statement of fuzzy mathematical programming

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

Convex analysis and profit/cost/support functions

Convex analysis and profit/cost/support functions CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m

More information

Why Product of Probabilities (Masses) for Independent Events? A Remark

Why Product of Probabilities (Masses) for Independent Events? A Remark Why Product of Probabilities (Masses) for Independent Events? A Remark Vladik Kreinovich 1 and Scott Ferson 2 1 Department of Computer Science University of Texas at El Paso El Paso, TX 79968, USA, vladik@cs.utep.edu

More information

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM International Journal of Innovative Computing, Information and Control ICIC International c 0 ISSN 34-48 Volume 8, Number 8, August 0 pp. 4 FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT

More information

Notes from February 11

Notes from February 11 Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Incorporating Evidence in Bayesian networks with the Select Operator

Incorporating Evidence in Bayesian networks with the Select Operator Incorporating Evidence in Bayesian networks with the Select Operator C.J. Butz and F. Fang Department of Computer Science, University of Regina Regina, Saskatchewan, Canada SAS 0A2 {butz, fang11fa}@cs.uregina.ca

More information

OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

Maximum likelihood estimation of mean reverting processes

Maximum likelihood estimation of mean reverting processes Maximum likelihood estimation of mean reverting processes José Carlos García Franco Onward, Inc. jcpollo@onwardinc.com Abstract Mean reverting processes are frequently used models in real options. For

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

More information

Summary. Operations on Fuzzy Sets. Zadeh s Definitions. Zadeh s Operations T-Norms S-Norms. Properties of Fuzzy Sets Fuzzy Measures

Summary. Operations on Fuzzy Sets. Zadeh s Definitions. Zadeh s Operations T-Norms S-Norms. Properties of Fuzzy Sets Fuzzy Measures Summary Operations on Fuzzy Sets Zadeh s Operations T-Norms S-Norms Adriano Cruz 00 NCE e IM/UFRJ adriano@nce.ufrj.br Properties of Fuzzy Sets Fuzzy Measures One should not increase, beyond what is necessary,

More information

On Development of Fuzzy Relational Database Applications

On Development of Fuzzy Relational Database Applications On Development of Fuzzy Relational Database Applications Srdjan Skrbic Faculty of Science Trg Dositeja Obradovica 3 21000 Novi Sad Serbia shkrba@uns.ns.ac.yu Aleksandar Takači Faculty of Technology Bulevar

More information

Elements of probability theory

Elements of probability theory 2 Elements of probability theory Probability theory provides mathematical models for random phenomena, that is, phenomena which under repeated observations yield di erent outcomes that cannot be predicted

More information

Induction Problems. Tom Davis November 7, 2005

Induction Problems. Tom Davis  November 7, 2005 Induction Problems Tom Davis tomrdavis@earthlin.net http://www.geometer.org/mathcircles November 7, 2005 All of the following problems should be proved by mathematical induction. The problems are not necessarily

More information

9.2 Summation Notation

9.2 Summation Notation 9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

More information

Linguistic Preference Modeling: Foundation Models and New Trends. Extended Abstract

Linguistic Preference Modeling: Foundation Models and New Trends. Extended Abstract Linguistic Preference Modeling: Foundation Models and New Trends F. Herrera, E. Herrera-Viedma Dept. of Computer Science and Artificial Intelligence University of Granada, 18071 - Granada, Spain e-mail:

More information

Fuzzy Implication Rules. Adnan Yazıcı Dept. of Computer Engineering, Middle East Technical University Ankara/Turkey

Fuzzy Implication Rules. Adnan Yazıcı Dept. of Computer Engineering, Middle East Technical University Ankara/Turkey Fuzzy Implication Rules Adnan Yazıcı Dept. of Computer Engineering, Middle East Technical University Ankara/Turkey Fuzzy If-Then Rules Remember: The difference between the semantics of fuzzy mapping rules

More information

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE/ACM TRANSACTIONS ON NETWORKING 1 A Greedy Link Scheduler for Wireless Networks With Gaussian Multiple-Access and Broadcast Channels Arun Sridharan, Student Member, IEEE, C Emre Koksal, Member, IEEE,

More information

Fuzzy sets I. Prof. Dr. Jaroslav Ramík

Fuzzy sets I. Prof. Dr. Jaroslav Ramík Fuzzy sets I Prof. Dr. Jaroslav Ramík Fuzzy sets I Content Basic definitions Examples Operations with fuzzy sets (FS) t-norms and t-conorms Aggregation operators Extended operations with FS Fuzzy numbers:

More information

Fuzzy Decision Making in Business Intelligence

Fuzzy Decision Making in Business Intelligence Master Thesis Mathematical Modeling and Simulation Thesis no:2009-6 October 2009 Fuzzy Decision Making in Business Intelligence Application of fuzzy models in retrieval of optimal decision Asif Ali, Muhammad

More information

Fuzzy Numbers in the Credit Rating of Enterprise Financial Condition

Fuzzy Numbers in the Credit Rating of Enterprise Financial Condition C Review of Quantitative Finance and Accounting, 17: 351 360, 2001 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. Fuzzy Numbers in the Credit Rating of Enterprise Financial Condition

More information

Types of Degrees in Bipolar Fuzzy Graphs

Types of Degrees in Bipolar Fuzzy Graphs pplied Mathematical Sciences, Vol. 7, 2013, no. 98, 4857-4866 HIKRI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.37389 Types of Degrees in Bipolar Fuzzy Graphs Basheer hamed Mohideen Department

More information

Extracting Fuzzy Rules from Data for Function Approximation and Pattern Classification

Extracting Fuzzy Rules from Data for Function Approximation and Pattern Classification Extracting Fuzzy Rules from Data for Function Approximation and Pattern Classification Chapter 9 in Fuzzy Information Engineering: A Guided Tour of Applications, ed. D. Dubois, H. Prade, and R. Yager,

More information

The Dirichlet Unit Theorem

The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

More information

Infinitely Repeated Games with Discounting Ù

Infinitely Repeated Games with Discounting Ù Infinitely Repeated Games with Discounting Page 1 Infinitely Repeated Games with Discounting Ù Introduction 1 Discounting the future 2 Interpreting the discount factor 3 The average discounted payoff 4

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

So let us begin our quest to find the holy grail of real analysis.

So let us begin our quest to find the holy grail of real analysis. 1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

More information

A Direct Numerical Method for Observability Analysis

A Direct Numerical Method for Observability Analysis IEEE TRANSACTIONS ON POWER SYSTEMS, VOL 15, NO 2, MAY 2000 625 A Direct Numerical Method for Observability Analysis Bei Gou and Ali Abur, Senior Member, IEEE Abstract This paper presents an algebraic method

More information

Fuzzy Logic -based Pre-processing for Fuzzy Association Rule Mining

Fuzzy Logic -based Pre-processing for Fuzzy Association Rule Mining Fuzzy Logic -based Pre-processing for Fuzzy Association Rule Mining by Ashish Mangalampalli, Vikram Pudi Report No: IIIT/TR/2008/127 Centre for Data Engineering International Institute of Information Technology

More information

A DECISION SUPPORT SYSTEM FOR MATERIAL AND MANUFACTURING PROCESS

A DECISION SUPPORT SYSTEM FOR MATERIAL AND MANUFACTURING PROCESS A DECISION SUPPORT SYSTEM FOR MATERIAL AND MANUFACTURING PROCESS SELECTION 1 Ronald E. Giachetti Manufacturing Systems Integration Division National Institute of Standards and Technology Bldg. 304 Rm.

More information

Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network

Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network Dušan Marček 1 Abstract Most models for the time series of stock prices have centered on autoregressive (AR)

More information

Topology-based network security

Topology-based network security Topology-based network security Tiit Pikma Supervised by Vitaly Skachek Research Seminar in Cryptography University of Tartu, Spring 2013 1 Introduction In both wired and wireless networks, there is the

More information

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it. This material is posted here with permission of the IEEE Such permission of the IEEE does not in any way imply IEEE endorsement of any of Helsinki University of Technology's products or services Internal

More information

x if x 0, x if x < 0.

x if x 0, x if x < 0. Chapter 3 Sequences In this chapter, we discuss sequences. We say what it means for a sequence to converge, and define the limit of a convergent sequence. We begin with some preliminary results about the

More information

The Relation between Two Present Value Formulae

The Relation between Two Present Value Formulae James Ciecka, Gary Skoog, and Gerald Martin. 009. The Relation between Two Present Value Formulae. Journal of Legal Economics 15(): pp. 61-74. The Relation between Two Present Value Formulae James E. Ciecka,

More information

The Conference Call Search Problem in Wireless Networks

The Conference Call Search Problem in Wireless Networks The Conference Call Search Problem in Wireless Networks Leah Epstein 1, and Asaf Levin 2 1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il 2 Department of Statistics,

More information

Fuzzy Continuous Resource Allocation Mechanisms in Workflow Management Systems

Fuzzy Continuous Resource Allocation Mechanisms in Workflow Management Systems Fuzzy Continuous Resource Allocation Mechanisms in Workflow Management Systems Joslaine Cristina Jeske, Stéphane Julia, Robert Valette Faculdade de Computação, Universidade Federal de Uberlândia, Campus

More information

Mathematics for Econometrics, Fourth Edition

Mathematics for Econometrics, Fourth Edition Mathematics for Econometrics, Fourth Edition Phoebus J. Dhrymes 1 July 2012 1 c Phoebus J. Dhrymes, 2012. Preliminary material; not to be cited or disseminated without the author s permission. 2 Contents

More information

Using Generalized Forecasts for Online Currency Conversion

Using Generalized Forecasts for Online Currency Conversion Using Generalized Forecasts for Online Currency Conversion Kazuo Iwama and Kouki Yonezawa School of Informatics Kyoto University Kyoto 606-8501, Japan {iwama,yonezawa}@kuis.kyoto-u.ac.jp Abstract. El-Yaniv

More information

Notes on Factoring. MA 206 Kurt Bryan

Notes on Factoring. MA 206 Kurt Bryan The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

constraint. Let us penalize ourselves for making the constraint too big. We end up with a

constraint. Let us penalize ourselves for making the constraint too big. We end up with a Chapter 4 Constrained Optimization 4.1 Equality Constraints (Lagrangians) Suppose we have a problem: Maximize 5, (x 1, 2) 2, 2(x 2, 1) 2 subject to x 1 +4x 2 =3 If we ignore the constraint, we get the

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

On the Algebraic Structures of Soft Sets in Logic

On the Algebraic Structures of Soft Sets in Logic Applied Mathematical Sciences, Vol. 8, 2014, no. 38, 1873-1881 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.43127 On the Algebraic Structures of Soft Sets in Logic Burak Kurt Department

More information

AN APPLICATION OF INTERVAL-VALUED INTUITIONISTIC FUZZY SETS FOR MEDICAL DIAGNOSIS OF HEADACHE. Received January 2010; revised May 2010

AN APPLICATION OF INTERVAL-VALUED INTUITIONISTIC FUZZY SETS FOR MEDICAL DIAGNOSIS OF HEADACHE. Received January 2010; revised May 2010 International Journal of Innovative Computing, Information and Control ICIC International c 2011 ISSN 1349-4198 Volume 7, Number 5(B), May 2011 pp. 2755 2762 AN APPLICATION OF INTERVAL-VALUED INTUITIONISTIC

More information

OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov

OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Supplement Volume 2005 pp. 345 354 OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN E.V. Grigorieva Department of Mathematics

More information

Load balancing of temporary tasks in the l p norm

Load balancing of temporary tasks in the l p norm Load balancing of temporary tasks in the l p norm Yossi Azar a,1, Amir Epstein a,2, Leah Epstein b,3 a School of Computer Science, Tel Aviv University, Tel Aviv, Israel. b School of Computer Science, The

More information

On the Relationship between Classes P and NP

On the Relationship between Classes P and NP Journal of Computer Science 8 (7): 1036-1040, 2012 ISSN 1549-3636 2012 Science Publications On the Relationship between Classes P and NP Anatoly D. Plotnikov Department of Computer Systems and Networks,

More information

The Collapsing Method of Defuzzification for Discretised Interval Type-2 Fuzzy Sets

The Collapsing Method of Defuzzification for Discretised Interval Type-2 Fuzzy Sets The Collapsing Method of Defuzzification for Discretised Interval Tpe- Fuzz Sets Sarah Greenfield, Francisco Chiclana, Robert John, Simon Coupland Centre for Computational Intelligence De Montfort niversit

More information

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH 31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

More information

Degrees of Truth: the formal logic of classical and quantum probabilities as well as fuzzy sets.

Degrees of Truth: the formal logic of classical and quantum probabilities as well as fuzzy sets. Degrees of Truth: the formal logic of classical and quantum probabilities as well as fuzzy sets. Logic is the study of reasoning. A language of propositions is fundamental to this study as well as true

More information

Alternative proof for claim in [1]

Alternative proof for claim in [1] Alternative proof for claim in [1] Ritesh Kolte and Ayfer Özgür Aydin The problem addressed in [1] is described in Section 1 and the solution is given in Section. In the proof in [1], it seems that obtaining

More information

Ideal Class Group and Units

Ideal Class Group and Units Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

More information

On product-sum of triangular fuzzy numbers

On product-sum of triangular fuzzy numbers On product-sum of triangular fuzzy numbers Robert Fullér rfuller@abo.fi Abstract We study the problem: if ã i, i N are fuzzy numbers of triangular form, then what is the membership function of the infinite

More information

Interval Neutrosophic Sets and Logic: Theory and Applications in Computing

Interval Neutrosophic Sets and Logic: Theory and Applications in Computing Haibin Wang Florentin Smarandache Yan-Qing Zhang Rajshekhar Sunderraman Interval Neutrosophic Sets and Logic: Theory and Applications in Computing Neutrosophication truth-membership function Input indeterminacy-

More information

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein) Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

More information

APPLICATION SCHEMES OF POSSIBILITY THEORY-BASED DEFAULTS

APPLICATION SCHEMES OF POSSIBILITY THEORY-BASED DEFAULTS APPLICATION SCHEMES OF POSSIBILITY THEORY-BASED DEFAULTS Churn-Jung Liau Institute of Information Science, Academia Sinica, Taipei 115, Taiwan e-mail : liaucj@iis.sinica.edu.tw Abstract In this paper,

More information

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725 Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T

More information

Possibilistic programming in production planning of assemble-to-order environments

Possibilistic programming in production planning of assemble-to-order environments Fuzzy Sets and Systems 119 (2001) 59 70 www.elsevier.com/locate/fss Possibilistic programming in production planning of assemble-to-order environments Hsi-Mei Hsu, Wen-Pai Wang Department of Industrial

More information

International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013

International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013 FACTORING CRYPTOSYSTEM MODULI WHEN THE CO-FACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II Mohammedia-Casablanca,

More information

Two classes of ternary codes and their weight distributions

Two classes of ternary codes and their weight distributions Two classes of ternary codes and their weight distributions Cunsheng Ding, Torleiv Kløve, and Francesco Sica Abstract In this paper we describe two classes of ternary codes, determine their minimum weight

More information

SEARCHING AND KNOWLEDGE REPRESENTATION. Angel Garrido

SEARCHING AND KNOWLEDGE REPRESENTATION. Angel Garrido Acta Universitatis Apulensis ISSN: 1582-5329 No. 30/2012 pp. 147-152 SEARCHING AND KNOWLEDGE REPRESENTATION Angel Garrido ABSTRACT. The procedures of searching of solutions of problems, in Artificial Intelligence

More information

Barinder Paul Singh. Keywords Fuzzy Sets, Artificial Intelligence, Fuzzy Logic, Computational Intelligence, Soft Computing.

Barinder Paul Singh. Keywords Fuzzy Sets, Artificial Intelligence, Fuzzy Logic, Computational Intelligence, Soft Computing. Volume 4, Issue 10, October 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Fuzzy Sets

More information

Factoring Patterns in the Gaussian Plane

Factoring Patterns in the Gaussian Plane Factoring Patterns in the Gaussian Plane Steve Phelps Introduction This paper describes discoveries made at the Park City Mathematics Institute, 00, as well as some proofs. Before the summer I understood

More information

A study of cash flows in projects with fuzzy activity durations

A study of cash flows in projects with fuzzy activity durations icccbe 2010 Nottingham University Press Proceedings of the International Conference on Computing in Civil and Building Engineering W Tizani (Editor) A study of cash flows in projects with fuzzy activity

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Determining optimal window size for texture feature extraction methods

Determining optimal window size for texture feature extraction methods IX Spanish Symposium on Pattern Recognition and Image Analysis, Castellon, Spain, May 2001, vol.2, 237-242, ISBN: 84-8021-351-5. Determining optimal window size for texture feature extraction methods Domènec

More information

Limit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x)

Limit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x) SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 187 Taylor Series 4.1 Taylor Series and Calculation of Functions Limit processes are the basis of calculus. For example, the derivative f f (x + h) f

More information

Problems often have a certain amount of uncertainty, possibly due to: Incompleteness of information about the environment,

Problems often have a certain amount of uncertainty, possibly due to: Incompleteness of information about the environment, Uncertainty Problems often have a certain amount of uncertainty, possibly due to: Incompleteness of information about the environment, E.g., loss of sensory information such as vision Incorrectness in

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

Linear programming with fuzzy parameters: An interactive method resolution q

Linear programming with fuzzy parameters: An interactive method resolution q European Journal of Operational Research xxx (005) xxx xxx www.elsevier.com/locate/ejor Linear programming with fuzzy parameters: An interactive method resolution q Mariano Jiménez a, *, Mar Arenas b,

More information

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

Solution to Homework 2

Solution to Homework 2 Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if

More information

Two-step competition process leads to quasi power-law income distributions Application to scientic publication and citation distributions

Two-step competition process leads to quasi power-law income distributions Application to scientic publication and citation distributions Physica A 298 (21) 53 536 www.elsevier.com/locate/physa Two-step competition process leads to quasi power-law income distributions Application to scientic publication and citation distributions Anthony

More information

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom. Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

Lecture Notes on Polynomials

Lecture Notes on Polynomials Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

More information

Optimal shift scheduling with a global service level constraint

Optimal shift scheduling with a global service level constraint Optimal shift scheduling with a global service level constraint Ger Koole & Erik van der Sluis Vrije Universiteit Division of Mathematics and Computer Science De Boelelaan 1081a, 1081 HV Amsterdam The

More information

Introduction to Fuzzy Control

Introduction to Fuzzy Control Introduction to Fuzzy Control Marcelo Godoy Simoes Colorado School of Mines Engineering Division 1610 Illinois Street Golden, Colorado 80401-1887 USA Abstract In the last few years the applications of

More information