# Operations on type-2 fuzzy sets

Save this PDF as:

Size: px
Start display at page:

## Transcription

3 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Fig.. (a) Pictorial representation ofa Gaussian type- set. The standard deviations ofthe secondary Gaussians decrease by design, as x moves away from 3. The secondary memberships in this type- fuzzy set are shown in (b), and are also Gaussian. type- FLS, one needs algorithms for set-theoretical operations on type- sets (which are given in Section ), algebraic operations for type- sets (which are given in Section 3), an understanding of set properties of membership grades (which is provided in Section 4) and algorithms for type- fuzzy relations and their compositions (which are given in Section 5). So, the main purpose ofthis paper is to provide the foundation for type- FLSs.. Set-theoretic operations on type- sets Consider two fuzzy sets of type-, A and B, in a universe X. Let A (x) and B (x) be the membership grades (fuzzy sets in J x [0; ]) ofthese two sets, represented, for each x, as A (x)= u f x(u)=u and B (x)= w g x(w)=w, respectively, where u; w J x indicate the primary memberships of x and f x (u); g x (w) [0; ] indicate the secondary memberships (grades) of x. Using Zadeh s Extension Principle [30,4,], the membership grades for union, intersection and complement of type- fuzzy sets A and B have been dened as follows [3]: Union: A B A B (x) = A (x) B (x) = (f x (u)?g x (w))=(u w); () u w Intersection: A B A B (x) = A (x) B (x) = (f x (u)?g x (w))=(u?w); () u w Complement: A A (x) A (x) = f x (u)=( u); (3) u

4 330 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) where represents the max t-conorm and? represents a t-norm. The integrals indicate logical union. In the sequel, we adhere to these denitions, and, as in [3], we refer to the operations, as join, meet and negation, respectively. If A (x) and B (x) have discrete domains, the integrals in () (3) are replaced by summations. In (), ifmore than one calculation ofu and w gives the same point u w, then in the union we keep the one with the largest membership grade. We do the same in (). Suppose, for example, u w = and u w =. Then within the computation of() we would have f x (u )?g x (w )= + f x (u )?g x (w )= (4) where + denotes union. Combining these two terms for the common is a type- computation in which we can use a t-conorm. We choose to use the maximum as suggested by Zadeh [30] and Mizumoto and Tanaka [3]. Using the denitions in () (3), we examine the operations of join, meet and negation in more detail, both under minimum ( ) and product t-norms (which are the most widely used t-norms in engineering applications offuzzy sets and logic). We consider only convex, normal membership grades. Our goal is to obtain algorithms that let us compute the join, meet and negation. These algorithms will be needed later to compute type- relations. Since these operations are performed on membership grades of type- sets, which themselves are type- sets, the results discussed next are in terms oftype- sets. The type- sets, F i, in Sections..4, can be thought ofas membership grades ofsome type- sets, A i, for some arbitrary input x 0. For example, (4) in Fig. (b) is a type- set associated with x =4... Join and meet under minimum t-norm Our major result for join and meet under minimum t-norm is given in: Theorem. Suppose that we have n convex; normal; type- real fuzzy sets F ;:::;F n characterized by membership functions f ;:::;f n ; respectively. Let v ;v ;:::;v n be real numbers such that v 6v 6 6v n and f (v )=f (v )= =f n (v n )=. Then; using max t-conorm and min t-norm; n i= f i(); v ; n Fi() = n i= i=k+ f i(); v k 6 v k+ ; 6k6n ; (5) n i= f i(); v n ; and n i= f i(); v ; n Fi() = k i= i= f i(); v k 6 v k+ ; 6k6n ; n i= f i(); v n : (6) See Appendix A for the proofoftheorem. Fig. shows an example ofan application oftheorem for the case n = 4. Observe that Eqs. (5) and (6) are very easy to program. Dubois and Prade present the result in Theorem just for the case n =, in the context offuzzication ofmax and min operations. Though their method ofproofis very similar to ours, they prove the result for a special case, where f and f have at most three points ofintersection and one needs to keep track of the points ofintersection off and f to use their theorem. We reprove this theorem in a general setting in Appendix A. We believe that our statements of F F () and F F () are more amenable to computer

5 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Fig.. An illustration oftheorems and : Join and meet operations between Gaussians: (a) Participating Gaussians; (b) join under minimum t-norm (solid line) and product t-norm (thick dashed line); and (c) meet under minimum t-norm. implementations than those ofdubois and Prade. Generalization to the case n is also dicult using Dubois and Prade s result, but is provided by us in Theorem. As a consequence oftheorem, we have the following interesting result: Corollary. If we have n convex; normal; type- fuzzy sets F ;:::;F n characterized by membership functions f ;:::;f n ; respectively; such that f i ()=f ( k i ); and 0=k 6k 6 6k n ; then; using max t-conorm and min t-norm; n i= F i = F n and l n i= F i = F. The prooffollows by a direct application oftheorem to the n type- sets described in the statement of the corollary. Fig. 3 shows an example ofunion and intersection oftype- sets, using the results in this section... Join under product t-norm For type- fuzzy sets satisfying the requirements of Theorem, join operation under product t-norm gives exactly the same result as (5) with product replacing the minimum. Theorem. Suppose that we have n convex; normal; type- real fuzzy sets F ;:::;F n characterized by membership functions f ;:::;f n ; respectively. Let v ;v ;:::;v n be real numbers such that v 6v 6 6v n and f (v )=f (v )= = f n (v n )=. Then; the membership function of n i= F i using max t-conorm and

6 33 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Fig. 3. Union and Intersection of two type- fuzzy sets using the pictorial representation introduced in Fig., and, for maximum t-conorm and minimum t-norm: (a) Participating sets; (b) union; and (c) intersection. product t-norm; can be expressed as n i= f i(); v ; n i= Fi () = n i=k+ f i(); v k 6 v k+ ; 6k6n ; n i= f i(); v n : (7) The proofproceeds in the same way as the proofofpart (I) in Theorem (Appendix A), with the minimum operation replaced by product. See [] for details. Fig. shows an example ofan application oftheorem for the case n =4..3. Meet under product t-norm The meet operation under the product t-norm between two convex normal type- sets F and F can be represented as F F = [f (v)f (w)]=(vw): (8) v w Ref. [4] gives a similar result while discussing multiplication of fuzzy numbers (see Section 3 for algebraic operations on fuzzy sets). If is an element of F F, then the membership grade of can be found by nding all the pairs {v; w} such that v F ; w F and vw = ; multiplying the membership grades of v and w in each pair; and then nding the maximum ofthese products ofmembership grades. The possible admissible {v; w} pairs whose

7 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) product is are {v; =v} (v R; v 0) for 0 and {v; 0} or {0;w}, where v; w R for = 0, i.e., ( F F () = sup f (v)f v R;v 0 v [ ] F F (0) = sup f (v)f (0) v R = [ f (0) sup f (v) v R = f (0) f (0): ] ) ; R; 0; [ ] sup f (0)f (w) w R ] [ f (0) sup f (w) w R (9) Since the meet operation under product t-norm is commutative (see Section 4), we get the same result whether we substitute =w = v or =v = w. As is apparent from (9), the result is very much dependent on functions f and f and does not easily generalize like the join and meet operations considered earlier, and generally, it is very dicult to obtain a closed-form expression for the result of the meet operation. Even ifboth the fuzzy sets involved have Gaussian membership functions, it is dicult to obtain a nice closed-form expression for the result of the meet operation. To determine the membership ofa particular point in F G, we nd all the pairs {v; w} such that v R; w R and vw = ; and multiply the memberships ofeach pair. The membership grade of is given by the supremum ofthe set ofall these products. For example, if = 0, all the pairs {v; w} that give 0 as their product are v and 0=v (v R;v 0). So, the membership grade of0 is given by the supremum of the set ofall the products f(v)g(0=v) (v R;v 0). Fig. 4(c) shows how f(v)g(0=v) looks for F and G in Fig. 4(a). Clearly, it is no easy matter to represent (9) visually. Because ofthe complexity of(9) for general membership functions (MFs), we concentrate on Gaussian MFs. For a derivation of F F when both F and F are Gaussian type- sets, see []. It is very complicated, does not lead to a closed-form expression, and does not generalize to more than two MFs. Since the meet operation under product t-norm is heavily used in the development ofa type- FLS (because it is widely used in type- FLSs), here we develop a Gaussian approximation to this operation that will make it practical. Ifthere are n Gaussian fuzzy sets F ;F ;:::;F n with means m ;m ;:::;m n and standard deviations ; ;:::; n, respectively, then, under the product t-norm, F F F n () e (=)(( mm mn)= ) : (0) where (i =;:::;n) = m i + + j m i + + n m i : () i;i i;i j i; i n For the derivation ofthis approximation, see Appendix B. One important feature ofthis approximation is that it is Gaussian; hence, it is reproducible, i.e., Gaussians remain Gaussians. Fig. 5 shows some examples ofthe meet operation under product t-norm, and the approximation in (0). See [9] for a triangular approximation for triangular type- sets, i.e., type- sets in which all the secondary membership functions are triangular. A popular type- fuzzy set is the interval type- set, i.e., the type- set all of whose secondary MFs are interval sets. Note that an interval [l; r] can also be represented in terms ofits mean and spread as [m s; m+s],

8 334 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Fig. 4. An example showing how f(v)g(0=v) looks for the membership functions f and g oftype- sets F and G, respectively, in (a); (b) f(v), which is the same as that in (a) and g(0=v); and, (c) the product f(v)g(0=v). where m =(l + r)= and s =(r l)=. The meet ofinterval sets under product=minimum t-norm has been given by Schwartz [6] and Kaufmann and Gupta [4], and is discussed in detail in Liang and Mendel [7]..4. Negation From the denition ofthe negation operation, it follows that Theorem 3. If a type- real fuzzy set F has a membership function has a membership function f( ). The prooffollows by substituting = u in (3). 3. Algebraic operations Just as the t-conorm and t-norm operations have been extended to the membership grades oftype- sets using the Extension Principle, algebraic operations between type- sets have been dened using the Extension Principle [4,4,]. A binary operation dened for crisp numbers, can be extended to two type- sets, F = v f (v)=v and F = w f (w)=w, as follows: F F = v [f (v)?f (w)]=(v w) () w

9 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Fig. 5. Some examples ofthe meet between Gaussians under product t-norm (solid line) and the approximation in (0) (thick dashed line). Means and standard deviations ofparticipating Gaussians in each case are also shown on the gure. In each case, the solid curve was obtained numerically, using (9). where? indicates the t-norm used. We will mainly be interested in multiplication and addition oftype- sets. Observe, from (8) and (), that multiplication of two type- sets under product t-norm is the same as the meet ofthe two type- sets under product t-norm; therefore, all our earlier discussion about the meet under product t-norm applies to the multiplication oftype- sets under product t-norm. Theorem 4. Given n interval type- numbers F ;:::;F n ; with means m ;m ;:::;m n and spreads s ;s ;:::;s n ; their ane combination n i= if i + ; where i (i =;:::;n) and are crisp constants; is also an interval type- number with mean n i= im i + ; and spread n i= i s i. See Appendix C for the proofoftheorem 4. Theorem 5. Given n type- Gaussian fuzzy numbers F ;:::;F n ; with means m ;m ;:::;m n and standard deviations ; ;:::; n ; their ane combination n i= if i + ; where i (i =;:::;n) and are crisp constants; is also a Gaussian fuzzy number with mean n i= im i + ; and standard deviation ; where n i= = i i if product t-norm is used; n i= i i if minimum t-norm is used: See Appendix D for the proofoftheorem 5. (3)

10 336 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Table Properties ofmembership grades. In the type- case, we assume convex and normal membership grades; and for type- laws,, and replace,? and 6, respectively. For product t-norm, the laws that are satised in the type- case, but not in the type- case, are highlighted. Results for the minimum t-norm are taken from [3] Set-theoretic laws Minimum t-norm Product t-norm Type- Type- Type- Type- Reexive A 6 A Yes Yes Yes Yes Anti-symmetric A 6 B ; B 6 A Yes Yes Yes Yes A = B Transitive A 6 B ; B 6 C Yes Yes Yes Yes A 6 C Idempotent A A = A Yes Yes Yes No A? A = A Yes Yes No No Commutative A B = B A Yes Yes Yes Yes A? B = B? A Yes Yes Yes Yes Associative ( A B ) C Yes Yes Yes Yes = A ( B C ) ( A? B )? C Yes Yes Yes Yes = A? ( B? C ) Absorption A? ( A B )= A Yes Yes No No A ( A? B )= A Yes Yes Yes No Distributive A? ( B C ) Yes Yes Yes No =( A? B ) ( A? C ) A ( B? C ) Yes Yes No No =( A B )? ( A C ) Involution A = A Yes Yes Yes Yes De Morgan s Laws A B = A? B Yes Yes No No A? B = A B Yes Yes No No Identity A 0= A Yes Yes Yes Yes A? = A Yes Yes Yes Yes A = Yes Yes Yes Yes A? 0 = 0 Yes Yes Yes Yes Complement A A Yes Yes Yes Yes (Failure) A?A 0 Yes Yes Yes Yes 4. Properties of membership grades Mizumoto and Tanaka [3] discuss properties ofmembership grades oftype- sets in detail, under the minimum t-norm and maximum t-conorm. We examined these properties under product t-norm and maximum t-conorm for convex, normal membership grades. Our ndings are summarized in Table. See Chapter 3 of [] for details, which we have omitted here because they are rather straight-forward. In proving the identity law, we use the concepts of0 and membership grades for type- sets [3]; they are represented as =0 and =, respectively, which is in accordance with our earlier discussion about type- sets being a special case oftype- sets. An element is said to have a zero membership in a type- set ifit has a secondary membership equal to corresponding to the primary membership of0, and ifit has all other secondary memberships equal to 0. Similarly, an element is said to have a membership grade equal to in a type- set, ifit has a secondary membership equal to corresponding to the primary membership of and ifall other secondary memberships are zero. All our operations on type- sets collapse to their type- counterparts, i.e., ifall the type- sets are replaced by their principal membership functions (assuming principal membership function can be dened for all of

11 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) them), all our results remain valid. We, therefore, conclude that if there are any set-theoretic laws that are not satised by type- fuzzy sets, we can safely say that type- sets will not satisfy those laws either; however, the converse ofthis statement may not be true. If any condition is satised by type- sets, it may or may not be satised by type- sets. Observe, from Table, that the {max, product} t-conorm=t-norm pair, for type- sets, does not satisfy idempotent, absorption, distributive, De Morgan s and complement laws; hence, ifthe design ofa type- fuzzy logic system (controller) involves the use of these laws, it will be in error. Observe also that some laws that are satised in the type- case under {max, product} t-conorm=t-norm pair are not satised in the type- case. 5. Type- fuzzy relations, their compositions, and cartesian product 5.. Composition of type- fuzzy relations Let X ;X ;:::;X n be n universes. A crisp relation in X X X n is a crisp subset ofthe product space. Similarly, a type- fuzzy relation in X X X n is a type- fuzzy subset of the product space and a type- fuzzy relation in X X X n is a type- fuzzy subset of the product space. We concentrate on binary type- fuzzy relations. Unions and intersections oftype- relations on the same product space can be obtained exactly in the same manner as unions and intersections ofordinary type- sets are obtained. If R(U; V ) and S(U; V ) are two type- relations on the same product space U V, their union and intersection are determined as R S (u; v)= R (u; v) S (u; v) and R S (u; v)= R (u; v) S (u; v). Consider two dierent product spaces, U V and V W, that share a common set and let R(U; V ) and S(V; W ) betwocrisp relations on these spaces. The composition ofthese relations is dened [5] as a subset T (U; W )ofu W such that (u; w) T ifand only if(u; v) R and (v; w) S. This can be expressed as a max min, max-product or, in general, as the sup-star composition R S (u; w) = sup v V [ R (u; v)? S (v; w)] where? indicates any suitable t-norm operation. The validity ofthe sup-star composition for crisp sets is shown in [8]. If R and S are two crisp relations on U V and V W, respectively, then the membership for any pair (u; w); u U and w W, is ifand only ifthere exists at least one v V such that R (u; v)= and S (v; w) =. In [8], it is shown that this condition is equivalent to having the sup-star composition equal to. When we enter the fuzzy domain, set memberships (which are crisp numbers for type- sets, and type- fuzzy sets for type- sets) belong to the interval [0; ] rather than just being 0 or. So, now we can think ofan element as belonging to a set ifit has a non-zero membership in that set. In this respect, the aforementioned condition on the composition of relations can be rephrased as follows (recall the concept of 0 and membership grades in the case oftype- sets discussed in Section 4): IfR ( R)andS( S) are two type- (type-) fuzzy relations on U V and V W, respectively, then the membership for any pair (u; w), u U and w W, is non-zero ifand only ifthere exists at least one v V such that R (u; v) 0 (R (u; v) 0) and S(v; w) =0 ( S (v; w) =0). It can be easily shown that in the type- case, this condition is again equivalent to the sup-star composition, R S (u; w) = sup [ R (u; v)? S (v; w)] (4) v V and, in the type- case, it is equivalent to the following extended version of the sup-star composition. R S (u; w) = v V [ R (u; v) S (v; w)]: (5)

12 338 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Proofs of(4) and (5) are very similar. We just give the proofof(5) next. In the proof, we use the following method. Let A be the statement R S (u; w) =0, and B be the statement there exists at least one v V such that R (u; v) =0 and S (v; w) =0. We prove that A i B by rst proving that B A (which is equivalent to proving A B, i.e., necessity of B) and then proving that A B (which is equivalent to proving B A, i.e., suciency of B). Proof. (Necessity) Ifthere exists no v V such that R (u; v) =0 and S (v; w) =0, then this means that either R (u; v)==0 or S (v; w)==0 (or both are zero) for every v V. So, assuming that R (u; v) and S (v; w) are normal, then from the identity law ( A =0==0), R (u; v) =0==0 or=0 S (v; w)==0, so that we have that R (u; v) S (v; w)==0 for every v V, and therefore, in (5), v V =0==0. (Suciency) Ifthe extended sup-star composition is zero, then, from (5), v V [ R (u; v) S (v; w)]==0: For each value of v, the term in the bracket is a type- fuzzy set. Suppose, for example, that there are two such terms, say P and Q, so that P Q ==0. Observe, from (), that for two normal membership grades, P = u f(u)=u and Q = v g(v)=v, P Q ==0 u (6) [f(u)?g(v)]=(u v) ==0: (7) v For u v =0; u= v = 0, in which case, P = Q ==0. This means that each ofthe two terms in the bracket of(5) equals /0. The extension ofthis analysis to more than two terms is easy. We conclude, therefore, that R (u; v) S (v; w)==0 for every v V, which means that for every v V, either R (u; v) or S (v; w) (or both) is /0. Consequently, there is no v V such that R (u; v) =0 and S (v; w) =0. Dubois and Prade [3,4] give a formula for the composition of type- relations under minimum t-norm as an extension ofthe type- sup-min composition. Their formula is the same as (5); however, we have demonstrated the validity of(5) for product as well as minimum t-norms. Example. Consider the type- relation u is close to v onu V, where U = {u ;u } and V = {v ;v ;v 3 } are given as: U = {; }, V = {; 7; 3} and close (u; v) = u u ( v v v 3 0:9 0:4 0: 0: 0:4 0:9 ) : (8) Now consider another type- fuzzy relation v is bigger than w onv W where W = {w ;w } = {4; 8}, with the following membership function: bigger (v; w) = w w v 0 0 v 0:6 0 : v 3 0:7 (9)

13 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) As is well known, the statement u is close to v and v is bigger than w indicates the composition ofthese two type- relations, which can be found by using (4) and the min t-norm, as follows: close bigger (u i ;w j )=[ close (u i ;v ) bigger (v ;w j )] [ close (u i ;v ) bigger (v ;w j )] [ close (u i ;v 3 ) bigger (v 3 ;w j )] (0) where i =; and j =; ; 3. Using (0), we get close bigger (u; w) = u u ( w w 0:4 0: 0:9 0:7 ) : () Now, let us consider the type- relations u is close to v and v is bigger than w which are obtained by adding some uncertainty to the type- relations in (8) and (9). Let the membership grades be as follows: close ] (u; v) = u u v 0:3=0:8+=0:9 +0:7= 0:5=0+=0: v 0:7=0:3+=0:4 +0:=0:5 0:7=0:3+=0:4 +0:=0:5 v 3 0:5=0+=0: 0:3=0:8+=0:9 +0:7= () and bigger ] (v; w) = v v v 3 w =0+0:6=0: 0:4=0:5+=0:6 +0:9=0:7 0:7=0:9+= w =0+0:=0: =0+0:8=0: +0:=0: : 0:5=0:6+=0:7 +0:7=0:8 (3) The composition ofthe type- relations u is close to v and v is bigger than w can be found by using (5), as follows: close ] bigger ] (u i;w j )=[ close ] (u i;v ) bigger ] (v ;w j )] [ close ] (u i;v ) bigger ] (v ;w j )] [ close ] (u i;v 3 ) bigger ] (v 3;w j )] (4) where i =; and j =;. Using (4), (), (3), () and (), we have (using min t-norm and max t-conorm) u close ] bigger ] (u; w) = u w w 0:7=0:3+=0:4 0:3=0:8+=0:9 +0:7= 0:5=0+=0: +0:=0: 0:5=0:6+=0:7 +0:7=0:8 : (5) Comparing (5) and (), we observe that the results in (5) are indeed quite similar to the results of the type- sup-star composition in (), i.e., in the type- results, primary memberships corresponding to the memberships in the type- results, have unity secondary memberships. Eq. (5) provides additional uncertainty information to account for the secondary MFs.

14 340 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Next, consider the case where one ofthe relations involved in the composition is just a fuzzy set. The composition ofthe type- set R U and type- fuzzy relation S(U; V ) is given as [6] R S (v) = sup [ R (u)? S (u; v)]; (6) u U which is a type- fuzzy set on V. Similarly, in the type- case, the composition ofa type- fuzzy set in R U and a type- relation S(U; V ) is given by R S (v) = u U [ R (u) S (u; v)]: Eq. (7) plays an important role as the inference mechanism of a rule where antecedents or consequents are type- fuzzy sets, and is the fundamental inference mechanism for rules in type- FLSs (e.g., [0,,7]). 5.. Cartesian product If U and V are domains oftype- fuzzy sets F and G, respectively, characterized by certain membership functions, then the Cartesian product of these membership functions will be supported over U V, and each point {(u; v); u U; v V } in this plane will have a membership grade (a crisp number in [0; ]) which is the result ofa t-norm operation between the membership grade ofu in F and the membership grade of v in G. Now consider the case oftype- sets F and G. The membership grades ofevery element in F and G are now type- fuzzy sets. So, now the t-norm operation in the type- case has to be replaced by the meet operation; therefore, when we nd the Cartesian product, it is still supported over U V as in the type- case; but now each point (u; v) U V will have a membership grade which is again a type- fuzzy set (result ofa meet operation between membership grades of u and v). (7) 6. Conclusions We have discussed set-theoretic operations for type- sets, properties ofmembership grades oftype- sets, and type- relations and their compositions, and cartesian product under minimum and product t-norms. We have also developed easily implementable algorithms to perform set-theoretic and algebraic operations oftype- sets. When actual results are dicult to generalize or implement, we have developed practical approximations. All our results reduce to the correct type- results when all the type- uncertainties collapse to type- uncertainties. All ofthe results in this paper are needed to implement type- FLSs [,7], and should be ofuse to other researchers who explore applications of type- fuzzy sets. Software to implement some of the algorithms developed herein are on-line at the URL: mendel=software. Appendix A. Proof of Theorem In the proofoftheorem, given next, we represent fuzzy sets F i as F i = v f i(v)=v (i =;:::;n), where v, in general, varies over the real line. Ifa real number w 0 is not in F i, f i (w 0 ) is zero. Proof. First we prove (5), and then we prove (6). (I) We rst prove (5) for the case n =. The join operation between F and F can be expressed, as F F = [f (v) f (w)]=(v w): (A.) v w

15 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Let us see what operations are involved here. For every pair ofpoints {v; w}, such that v F and w F, we nd the maximum of v and w and the minimum oftheir memberships, so that v w is an element of F F and f (v) f (w) is the corresponding membership grade. Ifmore than one {v; w} pair gives the same maximum (i.e., the same element in F F ), we use the maximum ofall the corresponding membership grades as the membership ofthis element. So, every element ofthe resulting set is obtained as a result of the max operation on one or more {v; w} pairs, and its membership is the maximum ofall the results ofthe min operation on memberships of v and w. If F F, the possible {v; w} pairs that can give as the result ofthe maximum operation are {v; } where v ( ;] and {; w} where w ( ;]. The process ofnding the membership of in F F can be broken into three steps: () nd the minima between the memberships ofall the pairs {v; } such that v ( ;] and then nd their supremum; () do the same with all the pairs {; w} such that w ( ;]; and, (3) nd the maximum ofthe two suprema, i.e., (F F )() = () () (A.) where and () = sup {f (v) f ()} = f () sup f (v) v ( ;] v ( ;] (A.3) () = sup {f () f (w)} = f () sup f (w): (A.4) w ( ;] w ( ;] We break into the following three ranges: v, v 6 v and v (see Fig. 6). Recall that f (v )= and f (v ) =. Also, observe that convexity of F i (i =; ) is equivalent to the condition that f i is monotonic non-decreasing in ( ;v i ] and monotonic non-increasing in [v i ; ). = v : See Fig. 6(a). Since f and f both are monotonic non-decreasing in ( ;v ], sup v ( ;] f (v)=f () and sup w ( ;] f (w)=f (); therefore, from (A.) (A.4), we have (F F )() =f () f (); v : (A.5) v 6 = v : See Fig. 6(a). Recall that f (v )= and that f is monotonic non-decreasing in ( ;v ]. Therefore, sup v ( ;] f (v) = and sup w ( ;] f (w)=f (). Using these facts in (A.) (A.4), we have (F F )() =f () [f () f ()] = f (); v 6 v (A.6) where we have made use ofthe fact that a [a b]=a, for real a and b. = 3 v : For in this range [see Fig. 6(a)], both f and f have already attained their maximum values; therefore, sup v ( ;] f (v) = sup w ( ;] f (w) =. Consequently, from (A.) (A.4), we have (F F )() =f () f (); v : (A.7) From (A.5) (A.7), we get f () f (); v ; (F F )() = f (); v 6 v ; f () f (); v : (A.8) Observe that, since F and F both are convex and normal with f (v )=f (v )=: () f f is monotonic non-decreasing in ( ;v ]; () f (v ) f (v )=f (v ); (3) f is monotonic non-decreasing in [v ;v ]; and, (4) f f is monotonic non-increasing in [v ; ). From these three observations, we see that (F F ) is

16 34 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Fig. 6. An example oftwo general membership functions, f and f, that satisfy the requirements of Theorem. Observe that for set F, any ofthe points at which f attains its maximum value ofunity may be chosen as v. We arbitrarily chose v =:8: (a) The three possibilities: v, v 6 v, 3 v. (b) Result ofthe join operation. (c) Result ofthe meet operation. The t-norm used is min. monotonic non-decreasing in ( ;v ] and monotonic non-increasing in [v ; ), which implies that F F is convex [see Fig. 6(b)]. Also, F F is normal with (F F )(v )=. Next, we prove (5) for n. Using the associative law [3], we have F F F 3 =(F F ) F 3. Since, as explained in the previous paragraph, F F is also convex and normal, from (A.8) we have [recall that f 3 (v 3 ) = and that v 3 v ] (F F )() f 3 (); v ; (F F F 3)() = f 3 (); v 6 v 3 ; (A.9) (F F )() f 3 (); v 3 : Since v 6v 3, (A.8) and (A.9) can be rewritten as f () f (); v ; f (F F )() = (); v 6 v ; f () f (); v 6 v 3 ; f () f (); v 3 ; (F F )() f 3 (); v ; (F F )() f 3 (); v 6 v ; (F F F 3)() = f 3 (); v 6 v 3 ; (F F )() f 3 (); v 3 : (A.0) (A.)

17 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Substituting for (F F )() from (A.0) into (A.), we have f () f () f 3 (); v ; f (F F F 3)() = () f 3 (); v 6 v ; f 3 (); v 6 v 3 ; f () f () f 3 (); v 3 ; (A.) 3 i= f i(); v ; 3 = i=k+ f i(); v k 6 v k+ ; 6k6; 3 f i (); v 3 : i= (A.3) It is straightforward to show that F F F 3 is also a convex and normal set. Therefore, (A.8) can be applied again to obtain (F F F 3 F 4). Continuing in this fashion, we get (5). (II) For the case, n =, the meet operation between F and F can be represented as F F = v [f (v) f (w)]=(v w): (A.4) w The only dierence between this operation and the join operation in (A.) is that every F F is the result ofthe minimum operation on some pair {v; w}, such that v F and w F ; the possible such pairs being {v; } where v [; ) and {; w} where w [; ). The process ofnding the membership of in F F can be broken into three steps: () nd the minima between the memberships ofall the pairs {v; } such that v [; ) and then nd their supremum; () do the same with all the pairs {; w} such that w [; ); and, (3) nd the maximum ofthe two suprema. By proceeding in a manner very similar to that in part (I) ofthe proof, we get the result in (6). For details, see []. Appendix B. Solving for the Gaussian meet approximation Consider two Gaussian type- sets F and F characterized by membership functions f and f, having means m and m and standard deviations and. Since we will perform the join and meet operations on the membership grades oftype- sets when computing unions and intersections oftype- sets, the type- sets involved in the operations will have [0; ] as their domains. The membership functions of these type- sets may, therefore, be clipped (i.e., any portion of the membership function lying outside [0; ] is cut o); and, this clipping may aect the result ofthe meet operation. This constraint needs to be considered in the derivation ofthe actual result ofthe meet between two Gaussian type- sets under the product t-norm; however, we will ignore it for simplicity, while deriving the Gaussian approximation. For a detailed discussion about the eects ofthis constraint on the actual result, as well as on the Gaussian approximation and its upper and lower bounds, see []. Applying (9) for Gaussian membership functions, we have F F () = sup v R ;v 0 { [ (v exp ) ( ) ]} m =v m + ; R ; 0; (B.)

18 344 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) { F F (0) = exp ( m ) } { exp ( ) } m : (B.) Finding F F () for 0, requires minimization of ( ) ( ) ( ) ( ) v m =v m v m m v J (v) = + = + : (B.3) v Observe that J is non-convex and dicult to minimize. Therefore, we simplify the problem by replacing the v in the denominator ofthe second term ofj (v) by a constant k. This gives us the following objective function to minimize: ( ) ( ) v m m v H(v) = + : (B.4) k Observe that H is convex (H == +m = 0). Therefore, equating H to zero and assuming that the inmum is obtained at v = v,weget ( v )( m ) + ( m v )( ) m k Substituting (B.5) into (B.4), we get inf v H(v) = ( k =0 v = m + m k m + k : (B.5) m m m + k ) : (B.6) Recall that the type- sets involved in the meet operation have [0; ] as their domains. Since the constant k in (B.4) replaces v that varies between 0 and, it seems apparent that some value of k between 0 and will give a good approximation to the actual result ofthe meet operation. Observe, from (B.5), that replacing k by m, makes the Gaussian approximation commutative [i.e., ifwe interchange {m ; } and {m ; },we still get the same result] just as the actual meet operation is (see Section 4). Therefore, by replacing k with m, we obtain the Gaussian approximation. ( F F () exp m m m + m ) : (B.7) Generalization ofthis result to the meet of n Gaussian type- sets is straightforward and gives the result in (0). For a detailed derivation ofbounds on the approximation error between (0) and the actual value of F F F n (), see []. Appendix C. Proof of Theorem 4 Consider F i =[m i s i ;m i + s i ]. Multiplying F i by a crisp constant i (== i ) yields (see ()) i F i = =( i v); v [m i s i ;m i + s i ]: (C.) v

19 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) Adding a crisp constant (==) to i F i yields i F i + = =( i v + ); v [m i s i ;m i + s i ]: (C.) v Substituting w = i v +, (C.) gives us i F i + = =w; w [ i m i + i s i ; i m i + + i s i ]: (C.3) w Since F i can be represented as [l i ;r i ], where l i = m i s i and r i = m i + s i, then [ n n ] n n n F i = m i s i ; m i + s i : (C.4) i= i= i= i= i= Using (C.3) and (C.4), we get the result in Theorem 4. Appendix D. Proof of Theorem 5 We follow a method similar to the one used in the proofoftheorem 4 in Appendix C. We prove the theorem in two parts: (a) we prove that i F i + is a Gaussian fuzzy number with mean i m i + and standard deviation i i ; and (b) we prove that n i= F i is a Gaussian fuzzy number with mean n i= m i and standard deviation, where n i= = i ifproduct t-norm is used; (D.) n i= i ifminimum t-norm is used: (a) Consider { F i = exp ( ) }/ v mi v: (D.) v i Multiplying F i by a constant i (== i ) and adding a constant (==) to i F i, yields [see ()] [ { i F i + = exp ( ) } ]/ v mi? ( i v + ) v i { = exp ( ) }/ v mi ( i v + ): (D.3) v i Let i v + = v ; this gives v =(v )= i, which when substituted into (D.3), leads to { i F i + = exp [ (v ] }/ )= i m i v v i { = exp [ v ] }/ ( i m i + ) v i i v (D.4)

20 346 N.N. Karnik, J.M. Mendel / Fuzzy Sets and Systems (00) which shows that i F i + is a Gaussian fuzzy number with mean i m i + and standard deviation i i. Note that this result does not depend on the kind oft-norm used, since i and are crisp numbers. (b) Consider F and F, with means m and m and standard deviations and, respectively. The sum ofthese two fuzzy numbers can be expressed as [see ()] { F + F = ( ) } { v m? exp ( ) }/ w m [v + w] (D.5) v F w F exp where? indicates the chosen t-norm. (i) Product t-norm: In this case, (D.5) reduces to { F + F = ( ) } { v m exp ( ) }/ w m [v + w]: (D.6) v F w F exp If is an element of F + F, the membership grade of in F + F can be obtained by considering all the {v; w} pairs such that v F and w F and v + w =, multiplying the memberships of v and w in every pair, and, choosing the maximum ofall these membership products. In other words, { [ (v (F+F )() = sup exp ) ( ) ]} m ( v) m + : (D.7) v Let v maximize the expression on the RHS of(d.7). v is obtained by minimizing ( ) [ ] v m ( v) m J (v) = + : (D.8) Since J is convex (J == += 0), equating the rst derivative of J to zero, we get ( v )( ) [ m ( v ) ) m + ]( =0; ( v + ) = m + m ; v = m +( m ) + : Substituting (D.9) into (D.7), we get [ ] (F+F )() = exp (m + m ) + : (D.9) (D.0) This result generalizes easily to the sum of n Gaussian type- sets, F ;:::;F n ; hence, n i= F i, under product t-norm, is a Gaussian fuzzy number with mean n i= m n i and standard deviation i= i. (ii) Minimum t-norm: In this case, (D.5) reduces to { F + F = ( ) } { v m exp ( ) }/ w m [v + w]: (D.) v F w F exp

### The Algebra of Truth Values of Type-2 Fuzzy Sets: A Survey

Noname manuscript No. (will be inserted by the editor) The Algebra of Truth Values of Type-2 Fuzzy Sets: A Survey Carol L. Walker, Elbert A. Walker New Mexico State University hardy@nmsu.edu, elbert@nmsu.edu

### On closed-form solutions of a resource allocation problem in parallel funding of R&D projects

Operations Research Letters 27 (2000) 229 234 www.elsevier.com/locate/dsw On closed-form solutions of a resource allocation problem in parallel funding of R&D proects Ulku Gurler, Mustafa. C. Pnar, Mohamed

### A New Operation on Triangular Fuzzy Number for. Solving Fuzzy Linear Programming Problem

Applied Mathematical Sciences, Vol. 6, 2012, no. 11, 525 532 A New Operation on Triangular Fuzzy Number for Solving Fuzzy Linear Programming Problem A. Nagoor Gani PG and Research Department of Mathematics

### Models for Inexact Reasoning. Fuzzy Logic Lesson 1 Crisp and Fuzzy Sets. Master in Computational Logic Department of Artificial Intelligence

Models for Inexact Reasoning Fuzzy Logic Lesson 1 Crisp and Fuzzy Sets Master in Computational Logic Department of Artificial Intelligence Origins and Evolution of Fuzzy Logic Origin: Fuzzy Sets Theory

### Fuzzy regression model with fuzzy input and output data for manpower forecasting

Fuzzy Sets and Systems 9 (200) 205 23 www.elsevier.com/locate/fss Fuzzy regression model with fuzzy input and output data for manpower forecasting Hong Tau Lee, Sheu Hua Chen Department of Industrial Engineering

### Computational Intelligence

Plan for Today Computational Intelligence Winter Term 2/2 Fuzzy sets Axioms of fuzzy complement, t- and s-norms Generators Dual tripels Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS

### Optimization of Fuzzy Inventory Models under Fuzzy Demand and Fuzzy Lead Time

Tamsui Oxford Journal of Management Sciences, Vol. 0, No. (-6) Optimization of Fuzzy Inventory Models under Fuzzy Demand and Fuzzy Lead Time Chih-Hsun Hsieh (Received September 9, 00; Revised October,

### Topic 1: Matrices and Systems of Linear Equations.

Topic 1: Matrices and Systems of Linear Equations Let us start with a review of some linear algebra concepts we have already learned, such as matrices, determinants, etc Also, we shall review the method

### Project Management Efficiency A Fuzzy Logic Approach

Project Management Efficiency A Fuzzy Logic Approach Vinay Kumar Nassa, Sri Krishan Yadav Abstract Fuzzy logic is a relatively new technique for solving engineering control problems. This technique can

### Portfolio selection based on upper and lower exponential possibility distributions

European Journal of Operational Research 114 (1999) 115±126 Theory and Methodology Portfolio selection based on upper and lower exponential possibility distributions Hideo Tanaka *, Peijun Guo Department

### A FUZZY LOGIC APPROACH FOR SALES FORECASTING

A FUZZY LOGIC APPROACH FOR SALES FORECASTING ABSTRACT Sales forecasting proved to be very important in marketing where managers need to learn from historical data. Many methods have become available for

### Subspaces of R n LECTURE 7. 1. Subspaces

LECTURE 7 Subspaces of R n Subspaces Definition 7 A subset W of R n is said to be closed under vector addition if for all u, v W, u + v is also in W If rv is in W for all vectors v W and all scalars r

### The Characteristic Polynomial

Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

### Mathematics for Economics (Part I) Note 5: Convex Sets and Concave Functions

Natalia Lazzati Mathematics for Economics (Part I) Note 5: Convex Sets and Concave Functions Note 5 is based on Madden (1986, Ch. 1, 2, 4 and 7) and Simon and Blume (1994, Ch. 13 and 21). Concave functions

### FS I: Fuzzy Sets and Fuzzy Logic. L.A.Zadeh, Fuzzy Sets, Information and Control, 8(1965)

FS I: Fuzzy Sets and Fuzzy Logic Fuzzy sets were introduced by Zadeh in 1965 to represent/manipulate data and information possessing nonstatistical uncertainties. L.A.Zadeh, Fuzzy Sets, Information and

### CHAPTER 2 OPERATIONS ON FUZZY SETS. Remark: 1. All functions that satisfy axioms c1 and c2 form the most general class of fuzzy complements.

CHPTER OPERTIONS ON FUZZY SETS Fuzzy Complement Fuzzy Union Fuzzy Intersection Combinations of Operations General ggregation Operations Fuzzy Complement Remark: ll functions that satisfy axioms c and c

### Optimization under fuzzy if-then rules

Optimization under fuzzy if-then rules Christer Carlsson christer.carlsson@abo.fi Robert Fullér rfuller@abo.fi Abstract The aim of this paper is to introduce a novel statement of fuzzy mathematical programming

### Applications of Methods of Proof

CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The set-theoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are

### 2.5 Gaussian Elimination

page 150 150 CHAPTER 2 Matrices and Systems of Linear Equations 37 10 the linear algebra package of Maple, the three elementary 20 23 1 row operations are 12 1 swaprow(a,i,j): permute rows i and j 3 3

### Fuzzy Inventory Model without Shortages Using Signed Distance Method

Applied Mathematics & Information Sciences 1(2)(2007), 203-209 An International Journal c 2007 Dixie W Publishing Corporation, U. S. A. Fuzzy Inventory Model without Shortages Using Signed Distance Method

### Structure of Measurable Sets

Structure of Measurable Sets In these notes we discuss the structure of Lebesgue measurable subsets of R from several different points of view. Along the way, we will see several alternative characterizations

### Convex analysis and profit/cost/support functions

CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m

### Notes from February 11

Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The

### This chapter describes set theory, a mathematical theory that underlies all of modern mathematics.

Appendix A Set Theory This chapter describes set theory, a mathematical theory that underlies all of modern mathematics. A.1 Basic Definitions Definition A.1.1. A set is an unordered collection of elements.

### December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

### A COMPUTATIONAL METHOD FOR FUZZY ARITHMETIC OPERATIONS

8 DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 4, ISSUE, JANUARY 009 A COMPUTATIONAL METHOD FOR FUZZY ARITHMETIC OPERATIONS Thowhida Akther and Sanwar Uddin Ahmad Faculty

### Incorporating Evidence in Bayesian networks with the Select Operator

Incorporating Evidence in Bayesian networks with the Select Operator C.J. Butz and F. Fang Department of Computer Science, University of Regina Regina, Saskatchewan, Canada SAS 0A2 {butz, fang11fa}@cs.uregina.ca

### Systems of Linear Equations in Two Variables

Chapter 6 Systems of Linear Equations in Two Variables Up to this point, when solving equations, we have always solved one equation for an answer. However, in the previous chapter, we saw that the equation

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### Arithmetic Operations on Generalized Trapezoidal Fuzzy Number and its Applications

TJFS: Turkish Journal of Fuzzy Systems (eissn: 1309 1190) An Official Journal of Turkish Fuzzy Systems Association Vol.3, No.1, pp. 16-44, 2012. Arithmetic Operations on Generalized Trapezoidal Fuzzy Number

### Why Product of Probabilities (Masses) for Independent Events? A Remark

Why Product of Probabilities (Masses) for Independent Events? A Remark Vladik Kreinovich 1 and Scott Ferson 2 1 Department of Computer Science University of Texas at El Paso El Paso, TX 79968, USA, vladik@cs.utep.edu

### FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM

International Journal of Innovative Computing, Information and Control ICIC International c 0 ISSN 34-48 Volume 8, Number 8, August 0 pp. 4 FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT

### A set is a Many that allows itself to be thought of as a One. (Georg Cantor)

Chapter 4 Set Theory A set is a Many that allows itself to be thought of as a One. (Georg Cantor) In the previous chapters, we have often encountered sets, for example, prime numbers form a set, domains

### Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

### can be extended into NC and RNC algorithms, respectively, that solve more

Extending NC and RNC Algorithms Nimrod Megiddo A technique is presented by which NC and RNC algorithms for some problems can be extended into NC and RNC algorithms, respectively, that solve more general

### Elements of probability theory

2 Elements of probability theory Probability theory provides mathematical models for random phenomena, that is, phenomena which under repeated observations yield di erent outcomes that cannot be predicted

### Summary. Operations on Fuzzy Sets. Zadeh s Definitions. Zadeh s Operations T-Norms S-Norms. Properties of Fuzzy Sets Fuzzy Measures

Summary Operations on Fuzzy Sets Zadeh s Operations T-Norms S-Norms Adriano Cruz 00 NCE e IM/UFRJ adriano@nce.ufrj.br Properties of Fuzzy Sets Fuzzy Measures One should not increase, beyond what is necessary,

### Rational inequality. Sunil Kumar Singh. 1 Sign scheme or diagram for rational function

OpenStax-CNX module: m15464 1 Rational inequality Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 Rational inequality is an inequality

### OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

### Problem Set. Problem Set #2. Math 5322, Fall December 3, 2001 ANSWERS

Problem Set Problem Set #2 Math 5322, Fall 2001 December 3, 2001 ANSWERS i Problem 1. [Problem 18, page 32] Let A P(X) be an algebra, A σ the collection of countable unions of sets in A, and A σδ the collection

### On Development of Fuzzy Relational Database Applications

On Development of Fuzzy Relational Database Applications Srdjan Skrbic Faculty of Science Trg Dositeja Obradovica 3 21000 Novi Sad Serbia shkrba@uns.ns.ac.yu Aleksandar Takači Faculty of Technology Bulevar

### 9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

### A goal programming approach for solving random interval linear programming problem

A goal programming approach for solving random interval linear programming problem Ziba ARJMANDZADEH, Mohammadreza SAFI 1 1,2 Department of Mathematics, Semnan University E-mail: z.arjmand@students.semnan.ac.ir,

### 4.3 Lagrange Approximation

206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

### Fuzzy Implication Rules. Adnan Yazıcı Dept. of Computer Engineering, Middle East Technical University Ankara/Turkey

Fuzzy Implication Rules Adnan Yazıcı Dept. of Computer Engineering, Middle East Technical University Ankara/Turkey Fuzzy If-Then Rules Remember: The difference between the semantics of fuzzy mapping rules

### Conventional Sets and Fuzzy Sets

Conventional Sets and Conventional Sets A set is a collection of things, for example the room temperature, the set of all real numbers, etc. 2 Conventional Sets Such collection of things are called the

### Maximum likelihood estimation of mean reverting processes

Maximum likelihood estimation of mean reverting processes José Carlos García Franco Onward, Inc. jcpollo@onwardinc.com Abstract Mean reverting processes are frequently used models in real options. For

### Any Improved Trapezoidal Approximation to Intersection (Fusion) of Trapezoidal Fuzzy Numbers Leads to Non-Associativity: A Theorem

Any Improved Trapezoidal Approximation to Intersection (Fusion) of Trapezoidal Fuzzy Numbers Leads to Non-Associativity: A Theorem Gang Xiang and Vladik Kreinovich, Senior Member, IEEE Abstract In some

### Linear Systems. Singular and Nonsingular Matrices. Find x 1, x 2, x 3 such that the following three equations hold:

Linear Systems Example: Find x, x, x such that the following three equations hold: x + x + x = 4x + x + x = x + x + x = 6 We can write this using matrix-vector notation as 4 {{ A x x x {{ x = 6 {{ b General

### Module MA1S11 (Calculus) Michaelmas Term 2016 Section 3: Functions

Module MA1S11 (Calculus) Michaelmas Term 2016 Section 3: Functions D. R. Wilkins Copyright c David R. Wilkins 2016 Contents 3 Functions 43 3.1 Functions between Sets...................... 43 3.2 Injective

### Types of Degrees in Bipolar Fuzzy Graphs

pplied Mathematical Sciences, Vol. 7, 2013, no. 98, 4857-4866 HIKRI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.37389 Types of Degrees in Bipolar Fuzzy Graphs Basheer hamed Mohideen Department

### Solving Systems of Linear Equations

LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

### Advanced Image Compression on the Basis of Fuzzy Transforms

University of Ostrava Institute for Research and Applications of Fuzzy Modeling Advanced Image Compression on the Basis of Fuzzy Transforms Irina Perfilieva, Viktor Pavliska, Marek Vajgl, Bernard De Baets

### The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

### Fuzzy Decision Making in Business Intelligence

Master Thesis Mathematical Modeling and Simulation Thesis no:2009-6 October 2009 Fuzzy Decision Making in Business Intelligence Application of fuzzy models in retrieval of optimal decision Asif Ali, Muhammad

### Chap2: The Real Number System (See Royden pp40)

Chap2: The Real Number System (See Royden pp40) 1 Open and Closed Sets of Real Numbers The simplest sets of real numbers are the intervals. We define the open interval (a, b) to be the set (a, b) = {x

### Induction Problems. Tom Davis November 7, 2005

Induction Problems Tom Davis tomrdavis@earthlin.net http://www.geometer.org/mathcircles November 7, 2005 All of the following problems should be proved by mathematical induction. The problems are not necessarily

### Fuzzy Numbers in the Credit Rating of Enterprise Financial Condition

C Review of Quantitative Finance and Accounting, 17: 351 360, 2001 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. Fuzzy Numbers in the Credit Rating of Enterprise Financial Condition

### A PARAMETRIC REPRESENTATION OF FUZZY NUMBERS AND THEIR ARITHMETIC OPERATORS

A PARAMETRIC REPRESENTATION OF FUZZY NUMBERS AND THEIR ARITHMETIC OPERATORS Ronald E. Giachetti Manufacturing Systems Integration Division National Institute of Standards and Technology Bldg. 304, Rm.

### So let us begin our quest to find the holy grail of real analysis.

1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

### A Direct Numerical Method for Observability Analysis

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL 15, NO 2, MAY 2000 625 A Direct Numerical Method for Observability Analysis Bei Gou and Ali Abur, Senior Member, IEEE Abstract This paper presents an algebraic method

### Fuzzy Set Theory : Soft Computing Course Lecture 29 34, notes, slides RC Chakraborty, Aug.

Fuzzy Set Theory : Soft Computing Course Lecture 29 34, notes, slides www.myreaders.info/, RC Chakraborty, e-mail rcchak@gmail.com, Aug. 10, 2010 http://www.myreaders.info/html/soft_computing.html www.myreaders.info

### Regression Using Support Vector Machines: Basic Foundations

Regression Using Support Vector Machines: Basic Foundations Technical Report December 2004 Aly Farag and Refaat M Mohamed Computer Vision and Image Processing Laboratory Electrical and Computer Engineering

### MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

### ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

### Another fuzzy membership function that is often used to represent vague, linguistic terms is the Gaussian which is given by:

Gaussian Membership Functions Another fuzzy membership function that is often used to represent vague, linguistic terms is the Gaussian which is given by: µ A i(x) = exp( (c i x) 2 ), (1) 2σ 2 i where

### Linguistic Preference Modeling: Foundation Models and New Trends. Extended Abstract

Linguistic Preference Modeling: Foundation Models and New Trends F. Herrera, E. Herrera-Viedma Dept. of Computer Science and Artificial Intelligence University of Granada, 18071 - Granada, Spain e-mail:

### Infinitely Repeated Games with Discounting Ù

Infinitely Repeated Games with Discounting Page 1 Infinitely Repeated Games with Discounting Ù Introduction 1 Discounting the future 2 Interpreting the discount factor 3 The average discounted payoff 4

### Solving Linear Programming Problem with Fuzzy Right Hand Sides: A Penalty Method

Solving Linear Programming Problem with Fuzzy Right Hand Sides: A Penalty Method S.H. Nasseri and Z. Alizadeh Department of Mathematics, University of Mazandaran, Babolsar, Iran Abstract Linear programming

### Domain representations of topological spaces

Theoretical Computer Science 247 (2000) 229 255 www.elsevier.com/locate/tcs Domain representations of topological spaces Jens Blanck University of Gavle, SE-801 76 Gavle, Sweden Received October 1997;

### Solving nonlinear equations in one variable

Chapter Solving nonlinear equations in one variable Contents.1 Bisection method............................. 7. Fixed point iteration........................... 8.3 Newton-Raphson method........................

### Sets and functions. {x R : x > 0}.

Sets and functions 1 Sets The language of sets and functions pervades mathematics, and most of the important operations in mathematics turn out to be functions or to be expressible in terms of functions.

### Using Generalized Forecasts for Online Currency Conversion

Using Generalized Forecasts for Online Currency Conversion Kazuo Iwama and Kouki Yonezawa School of Informatics Kyoto University Kyoto 606-8501, Japan {iwama,yonezawa}@kuis.kyoto-u.ac.jp Abstract. El-Yaniv

### This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1 A Greedy Link Scheduler for Wireless Networks With Gaussian Multiple-Access and Broadcast Channels Arun Sridharan, Student Member, IEEE, C Emre Koksal, Member, IEEE,

### By W.E. Diewert. July, Linear programming problems are important for a number of reasons:

APPLIED ECONOMICS By W.E. Diewert. July, 3. Chapter : Linear Programming. Introduction The theory of linear programming provides a good introduction to the study of constrained maximization (and minimization)

### Extracting Fuzzy Rules from Data for Function Approximation and Pattern Classification

Extracting Fuzzy Rules from Data for Function Approximation and Pattern Classification Chapter 9 in Fuzzy Information Engineering: A Guided Tour of Applications, ed. D. Dubois, H. Prade, and R. Yager,

### Notes on Factoring. MA 206 Kurt Bryan

The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

### Mathematics for Econometrics, Fourth Edition

Mathematics for Econometrics, Fourth Edition Phoebus J. Dhrymes 1 July 2012 1 c Phoebus J. Dhrymes, 2012. Preliminary material; not to be cited or disseminated without the author s permission. 2 Contents

### Information Granulation and Approximation in a Decision-theoretic Model of Rough Sets

Information Granulation and Approximation in a Decision-theoretic Model of Rough Sets Y.Y. Yao Department of Computer Science University of Regina Regina, Saskatchewan Canada S4S 0A2 E-mail: yyao@cs.uregina.ca

### On the Algebraic Structures of Soft Sets in Logic

Applied Mathematical Sciences, Vol. 8, 2014, no. 38, 1873-1881 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.43127 On the Algebraic Structures of Soft Sets in Logic Burak Kurt Department

### constraint. Let us penalize ourselves for making the constraint too big. We end up with a

Chapter 4 Constrained Optimization 4.1 Equality Constraints (Lagrangians) Suppose we have a problem: Maximize 5, (x 1, 2) 2, 2(x 2, 1) 2 subject to x 1 +4x 2 =3 If we ignore the constraint, we get the

### Double Sequences and Double Series

Double Sequences and Double Series Eissa D. Habil Islamic University of Gaza P.O. Box 108, Gaza, Palestine E-mail: habil@iugaza.edu Abstract This research considers two traditional important questions,

### x if x 0, x if x < 0.

Chapter 3 Sequences In this chapter, we discuss sequences. We say what it means for a sequence to converge, and define the limit of a convergent sequence. We begin with some preliminary results about the

### Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network

Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network Dušan Marček 1 Abstract Most models for the time series of stock prices have centered on autoregressive (AR)

### On the Relationship between Classes P and NP

Journal of Computer Science 8 (7): 1036-1040, 2012 ISSN 1549-3636 2012 Science Publications On the Relationship between Classes P and NP Anatoly D. Plotnikov Department of Computer Systems and Networks,

### MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

### Topology-based network security

Topology-based network security Tiit Pikma Supervised by Vitaly Skachek Research Seminar in Cryptography University of Tartu, Spring 2013 1 Introduction In both wired and wireless networks, there is the

### Fuzzy sets I. Prof. Dr. Jaroslav Ramík

Fuzzy sets I Prof. Dr. Jaroslav Ramík Fuzzy sets I Content Basic definitions Examples Operations with fuzzy sets (FS) t-norms and t-conorms Aggregation operators Extended operations with FS Fuzzy numbers:

### max cx s.t. Ax c where the matrix A, cost vector c and right hand side b are given and x is a vector of variables. For this example we have x

Linear Programming Linear programming refers to problems stated as maximization or minimization of a linear function subject to constraints that are linear equalities and inequalities. Although the study

### By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This material is posted here with permission of the IEEE Such permission of the IEEE does not in any way imply IEEE endorsement of any of Helsinki University of Technology's products or services Internal

### Degrees of Truth: the formal logic of classical and quantum probabilities as well as fuzzy sets.

Degrees of Truth: the formal logic of classical and quantum probabilities as well as fuzzy sets. Logic is the study of reasoning. A language of propositions is fundamental to this study as well as true

### The Collapsing Method of Defuzzification for Discretised Interval Type-2 Fuzzy Sets

The Collapsing Method of Defuzzification for Discretised Interval Tpe- Fuzz Sets Sarah Greenfield, Francisco Chiclana, Robert John, Simon Coupland Centre for Computational Intelligence De Montfort niversit

### A DECISION SUPPORT SYSTEM FOR MATERIAL AND MANUFACTURING PROCESS

A DECISION SUPPORT SYSTEM FOR MATERIAL AND MANUFACTURING PROCESS SELECTION 1 Ronald E. Giachetti Manufacturing Systems Integration Division National Institute of Standards and Technology Bldg. 304 Rm.

### The Language of Mathematics

CHPTER 2 The Language of Mathematics 2.1. Set Theory 2.1.1. Sets. set is a collection of objects, called elements of the set. set can be represented by listing its elements between braces: = {1, 2, 3,

### Ideal Class Group and Units

Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

### ORDERS OF ELEMENTS IN A GROUP

ORDERS OF ELEMENTS IN A GROUP KEITH CONRAD 1. Introduction Let G be a group and g G. We say g has finite order if g n = e for some positive integer n. For example, 1 and i have finite order in C, since

### The Relation between Two Present Value Formulae

James Ciecka, Gary Skoog, and Gerald Martin. 009. The Relation between Two Present Value Formulae. Journal of Legal Economics 15(): pp. 61-74. The Relation between Two Present Value Formulae James E. Ciecka,

### Fuzzy Continuous Resource Allocation Mechanisms in Workflow Management Systems

Fuzzy Continuous Resource Allocation Mechanisms in Workflow Management Systems Joslaine Cristina Jeske, Stéphane Julia, Robert Valette Faculdade de Computação, Universidade Federal de Uberlândia, Campus