Butterfly Network Analysis and The Beneˇ s Network


 Quentin Brooks
 2 years ago
 Views:
Transcription
1 6.895 Theoy of Paallel Systems Lectue 17 Buttefly Netwok Analysis and The Beneˇ s Netwok Lectue: Chales Leiseson Lectue Summay 1. Netwok with N Nodes This section poves pat of the lowe bound on expected outing time fo an abitay N node netwok. 2. The Beneš Netwok This section motivates, intoduces, and analyzes the Beneˇ s connection netwok. 3. Routing on Buttefly Netwoks This section establishes that most outing poblems take only O(lg N ) time on buttefly netwoks. 1 Netwok with N Nodes In this section, we pove a lemma that completes the poof of the Netwok with N Nodes theoem given in lectue 16. Theoem 1 Fo an abitay netwok with N nodes, the expected outing time to simultaneously send a single message fom each pocesso to a andom pocesso is whee BW is the minimum bisection width. Poof E[Routing Time] =Ω(N/BW + diamete) Lemma 2 The expected outing time fo the N andom messages poblem laid out in theoem 1 is Ω(N/BW ). Poof Refe to the notes fo lectue 16 fo poof. Lemma 3 Each node v in a N node netwok chooses a destination dest(v) unifomly at andom. Then, E[Routing Time] =Ω(d), whee d is the diamete. Poof Find node x such that P{δ(x; dest(x)) d/2} 1/2 whee δ(x, y) is the shotest distance fom node x to node y. Then, E[time to oute x to its destination dest(x)] = kp {δ(x; dest(x)) = k} k kp {δ(x; dest(x)) = k} k d/2 d/2 P{δ(x; dest(x)) = k} k d/2 = d/2p{δ(x, dest(x)) d/2} = d/2 =Ω(d) 171
2 Figue 1: Example of a Beneˇ s Netwok. Nodes aligned vetically ae in the same level and nodes aligned hoizontally ae in the same ow. To find such an x, let δ(x, x )= d, and define S = { v : δ(x, v) < d/2} and S = { v : δ(x,v) < d/2}. We know S S = since fo all z S S, δ(x, x ) δ(x, z)+ δ(z, x ) < d/2+ d/2 < d gives a contadiction, implying no such z can exist. Theefoe, at least one of S and S has N/2 nodes. Without loss of geneality, assume that S N/2. Thus, dest(x) S with pobability 1/2, i.e., P{ δ(x, dest(x)) d/2} 1/2. Fom lemma 2 and lemma 3, we know that E[Routing Time] = Ω(N/BW ) and E[Routing Time] = Ω(diamete). Theefoe, we can conclude that E[Routing Time] = Ω(N/BW + diamete). 2 The Beneš Netwok 2.1 Wost Case Poblems fo the Buttefly Netwok We saw last lectue that the wost case congestion fo the buttefly netwok is n fo an n input netwok. This was motivated by consideing the poblem whee inputs x 1 x 2 x 3 x outputs 0000x 1 x 2 x 3 x 4. Thee ae many such bad inputs that cause n congestion fo the buttefly netwok. Fo example, conside the poblem of computing the matix tanspose whee each node epesents an element of a matix and we wish to compute (i, j) (j, i). Matix tanspose and othe opeations that elicit the wost case congestion in a buttefly netwok ae common in pogams witten fo supecomputes. It is theefoe a eal poblem to build supecomputes with buttefly netwoks because typical applications suffe seious pefomance penalties. 3 The Beneš Netwok This section intoduces the Beneš netwok, a netwok that allows povably congestionfee communication fom inputs to a pemutation of the outputs. A Beneš netwok is constucted by ovelapping the lowode 172
3 Figue 2: An example Beneˇ s Netwok with the middle d 2 levels eplaced with two halfsized Beneˇ s netwoks. cycles of two buttefly netwoks. An example is shown in figue 1. Theoem 4 Any npemutation can be outed (offline) on an ninput Beneš netwok with nodedisjoint paths. Poof The poof uses the fact that Beneˇ s netwoks ae decomposable into smalle Beneˇ s netwoks. Let n = 2 d. The poof is based on induction on d. Fo d = 1, the netwok is tivial and the theoem is obvious on examination. As the inductive step, assume that the theoem holds fo a n = 2 d input Beneš netwok. Obseve that the middle d 2 levels of the Beneˇ s netwok fom two Beneˇ s netwoks, one on top and one on bottom, each with n/2 =2 d 1 inputs, as shown in figue 2. By assumption, any input to one of the subbeneš netwoks can be outed to any output of the same subnetwok without congestion. Theefoe, all we need to do is detemine whethe each input is to be outed though the top o the bottom subnetwok and show that the subnetwok outputs can be coectly outed to the final outputs without congestion. The only constaint we must obseve to avoid congestion is that connected pais at level 1 and at level d do not ovelap. That is, each buttefly at the fist and last level must eithe oute packets staight o cossed: butteflies cannot send both input packets to a single output node. Theefoe, by obsevation, the two inputs compising a buttefly at the fist level must be outed into diffeent subnetwoks and the two inputs compising a buttefly at the last level must come fom diffeent subnetwoks. It is this final constaint that is impotant. Define a buttefly pai as { i + n/2 (i n/2), bfly(i) = i n/2 (i>n/2). The buttefly pai is the othe node (eithe input o output) that defines a buttefly in the netwok, bfly (i) = j and bfly (j) = i. Define π(i) as the pemutation that maps inputs to outputs: π(i) = j denotes that input i should be outed to output j and π 1 (j) = i denotes that output j should be outed fom input i. We now show how to oute inputs into the uppe and lowe subnetwoks in a way that satisfies ou constaints. We stat by outing the fist input though the uppe subnetwok and connecting it to the coect output, π(1). Next, we fulfill the constaint at the last level by outing the fist path s output 173
4 buttefly pai, bfly (π(1)), though the lowe netwok and back to its coect input, π 1 (bfly(π(1))). We satisfy the new constaint at the input by outing the appopiate input, π 1 (bfly(π(1))), though the uppe subnetwok and to its coect output. We continue going back and foth though the uppe subnetwok when connecting an input to an output and though the lowe subnetwok when connecting an output to an input until we have defined a completed loop. Since the fist path went though the uppe subnetwok and the final etun path went though the lowe subnetwok, the input constaint on the oiginal path is satisfied. If the fist cycle of paths doesn t include all nodes, we pick an unouted node and epeat this pocess until all inputs ae outed. Following this algoithm, half of the inputs ae outed though the top subnetwok and half of the inputs ae outed though the bottom subnetwok without congestion. We have satisfied the inductive hypothesis by showing that given a n/2 =2 d 1 input congestion fee Beneˇ s netwok, we can constuct a n =2 d input congestion fee Beneˇ s netwok. By induction, we have poved the theoem. As a side note, since we always have a choice of how to oute the fist input, we can emove a switch fom each inductive level of the buttefly netwok without affecting its pefomance chaacteistics. Consequently, fo a n = 2 d input netwok, we can emove d switches fom the netwok without loss of geneality. Coollay 5 An ninput Beneš netwok can simulate any nnode, degeed netwok in O(d lg n) time. Poof Let G be an nnode netwok with maximum degee d. Let H be an ninput Beneš netwok. We pove the coollay by showing how to simulate G on H. Identify the ith node of G with the ith input of H to simulate node computation. The ticky pat is showing how to simulate communication on edges in G using H s netwok. We do this by identifying d + 1 subsets of the edges in G such that fo each subset, we can oute packets fom input i to output j fo each edge (i, j) in the subset of G with at most O(lg n) congestion. Each subset is outed in a sepaate ound. d + 1 subsets with O(lg n) congestion each gives us a total of O(d lg n) time to simulate G. We now constuct d + 1 disjoint and spanning subsets of edges in G. Constuct a bipatite gaph Γ G =(U, V, E) whee U = {u 1,u 2,...u n }, V = {v 1,v 2,...v n },and E = {(u i,v j ) (i, j) is an edge of G}. Communication fom i to j in G is epesented by edge (u i,v j )inγ G. Since the maximum degee in G is d, the maximum degee in Γ G is also d, making Γ G a degula bipatite gaph. Theefoe, we can constuct an edgecoloing of Γ G using d + 1 colos (see Leighton s Intoduction to Paallel Algoithms and Achitectues fo poof). Each set of edges with a given colo foms one of the d + 1 subsets. Let S be the kth of the d + 1 subsets. Fo each edge (i, j) in S, we simulate communication on (i, j) by sending a packet fom input i to output j on H duing ound k. Since the edges incident to i and the edges incident to j ae all coloed diffeently, we know that no two packets oiginate fom o ae deliveed to the same node duing the same ound. Theefoe, S can be outed with ou O(lg n) bound. One ound fo each of the d + 1 subsets with O(lg n) outing time each completes the poof. 4 Routing on Buttefly Netwoks Even though the buttefly netwok has a outing time of Ω( n) on cetain pemutations (including many inteesting pemutations), most outing poblems take only O(lg n) time. The following theoem coves abitay Npacket outing poblems on buttefly netwoks, not just those that oute inputs to outputs. Theoem 6 Conside the N N Npacket outing poblems on an Nnode (ninput, whee n = Θ(N/ lg N)) buttefly netwok. At least N N (1 1/N Ω(1) ) of these poblems can be outed in O(lg N) time. 174
5 Figue 3: Depiction of a buttefly netwok. hoizontally ae in the same ow. Nodes aligned vetically ae in the same level and nodes aligned Poof We will see the poof of a weake esult than is needed to establish the theoem. The poof establishes a congestion bound that leads to an O(lg 2 n) time esult. WLOG, we oute packets in thee phases (figue 3 shows the ows and levels in a buttefly netwok): 1. Route packets staight acoss ows in the netwok to the coesponding outputs (the ightmost node in each ow). 2. Use geedy input to output outing, to get each packet to the coect ow in the netwok. 3. Route packets staight acoss to the final destination. We analyze the congestion at the output nodes at each ow of the netwok in Phase 1. All packets fom a given ow end up at the output node of that ow at the end of the phase. Each ow contains lg n nodes, and lg n = O(lg N ), so the congestion in Phase 1 is O(lg n). Fo Phase 2, we conside a node x at the kth level of the netwok (whee the inputs ae the 0th level and the outputs ae the (lg n)th level). By symmety, the x is equivalent to any othe node at the kth level. The numbe of packets that can each x duing Phase 2 is 2 k lg n since thee is a path to each node at the kth level of a buttefly netwok fom 2 k input nodes and each input node has at most lg n packets at the beginning of Phase 2. Thus, wost case congestion at a node x at the kth level = 2 k lg n. The pobability that a given packet passes though node x is at most 2 k. This esult follows fom the binay tee popety of buttefly netwoks and the fact that the destination of each packet is chosen independently and unifomly at andom fom all the nodes in the netwok. (See figue 4 fo a depiction of the binaay tee popety). Thus, P [a given packet passes though node x] 2 k. Conside any set of specific packets. Since the destinations of the packets ae independent of one anothe, the pobability that all the packets pass though x is given by P [all packets pass though x] (2 k ) =2 k. 175
6 Figue 4: Binay tee popety of a buttefly netwok. Each choice on a path fom an input node to an output node is the head of a binay tee. The pobability that at least packets pass though x is bounded by the numbe of ways to choose packets fom the total numbe of packets multiplied by the pobability that all packets pass though x: 2 k lg n P [ packets pass though x] 2 k. + Note: This agument ovecounts. If + packets pass though x, this event is counted times within ) the ( 2 k lg n ways. a ea Using the fomula b b,wehave If we choose = 2e lg N, then we obtain b ( e2 k lg n ) P [ packets pass though x] 2 k ( e lg n ) =. P [ packets pass though x] ( 1 ) 2e lg N 2 N 2e 1. N 5.4 By Boole s inequality, the pobability that any node has moe than =2e lg N packets is N times the pobability that a given node has moe than packets: 1 P [ packets pass though some node] N N 5.4 = N
7 Theefoe, N N (1 1/N 4.4 ) outing poblems see 2e lg N congestion. Since thee ae O(lg N ) levels and each node at a level has at most O(lg N ) congestion, the total congestion fo Phase 2 is O(lg 2 N ). At the end of Phase 2, thee ae O(lg N ) packets at each output node with high pobability. Theefoe, at each node in Phase 3 thee is O(lg N ) congestion with high pobability. Thus, the oveall time bound is O(lg 2 N ) foatleast N N (1 1/N Ω(1) ) outing poblems. Coollay 7 E[outing time] = O(lg N )(1 1/N 4.4 )+ O(N )(1/N 4.4 ) = O(lg N ). 7
Saturated and weakly saturated hypergraphs
Satuated and weakly satuated hypegaphs Algebaic Methods in Combinatoics, Lectues 67 Satuated hypegaphs Recall the following Definition. A family A P([n]) is said to be an antichain if we neve have A B
More informationWeek 34: Permutations and Combinations
Week 34: Pemutations and Combinations Febuay 24, 2016 1 Two Counting Pinciples Addition Pinciple Let S 1, S 2,, S m be disjoint subsets of a finite set S If S S 1 S 2 S m, then S S 1 + S 2 + + S m Multiplication
More informationSymmetric polynomials and partitions Eugene Mukhin
Symmetic polynomials and patitions Eugene Mukhin. Symmetic polynomials.. Definition. We will conside polynomials in n vaiables x,..., x n and use the shotcut p(x) instead of p(x,..., x n ). A pemutation
More informationFigure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!
1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the
More informationFast FPTalgorithms for cleaning grids
Fast FPTalgoithms fo cleaning gids Josep Diaz Dimitios M. Thilikos Abstact We conside the poblem that given a gaph G and a paamete k asks whethe the edit distance of G and a ectangula gid is at most k.
More informationThe Binomial Distribution
The Binomial Distibution A. It would be vey tedious if, evey time we had a slightly diffeent poblem, we had to detemine the pobability distibutions fom scatch. Luckily, thee ae enough similaities between
More informationChapter 3 Savings, Present Value and Ricardian Equivalence
Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,
More informationCoordinate Systems L. M. Kalnins, March 2009
Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean
More informationApproximation Algorithms for Data Management in Networks
Appoximation Algoithms fo Data Management in Netwoks Chistof Kick Heinz Nixdof Institute and Depatment of Mathematics & Compute Science adebon Univesity Gemany kueke@upb.de Haald Räcke Heinz Nixdof Institute
More informationTop K Nearest Keyword Search on Large Graphs
Top K Neaest Keywod Seach on Lage Gaphs Miao Qiao, Lu Qin, Hong Cheng, Jeffey Xu Yu, Wentao Tian The Chinese Univesity of Hong Kong, Hong Kong, China {mqiao,lqin,hcheng,yu,wttian}@se.cuhk.edu.hk ABSTRACT
More informationNURBS Drawing Week 5, Lecture 10
CS 43/585 Compute Gaphics I NURBS Dawing Week 5, Lectue 1 David Been, William Regli and Maim Pesakhov Geometic and Intelligent Computing Laboato Depatment of Compute Science Deel Univesit http://gicl.cs.deel.edu
More informationUNIT CIRCLE TRIGONOMETRY
UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + =   
More informationTransformations in Homogeneous Coordinates
Tansfomations in Homogeneous Coodinates (Com S 4/ Notes) YanBin Jia Aug, 6 Homogeneous Tansfomations A pojective tansfomation of the pojective plane is a mapping L : P P defined as u a b c u au + bv +
More informationNontrivial lower bounds for the least common multiple of some finite sequences of integers
J. Numbe Theoy, 15 (007), p. 393411. Nontivial lowe bounds fo the least common multiple of some finite sequences of integes Bai FARHI bai.fahi@gmail.com Abstact We pesent hee a method which allows to
More informationSeparation probabilities for products of permutations
Sepaation pobabilities fo poducts of pemutations Olivie Benadi, Rosena R. X. Du, Alejando H. Moales and Richad P. Stanley Mach 1, 2012 Abstact We study the mixing popeties of pemutations obtained as a
More informationAn Immunological Approach to Change Detection: Algorithms, Analysis and Implications
An Immunological Appoach to Change Detection: Algoithms, Analysis and Implications Patik D haeselee Dept. of Compute Science Univesity of New Mexico Albuqueque, NM, 87131 patik@cs.unm.edu Stephanie Foest
More informationSoftware Engineering and Development
I T H E A 67 Softwae Engineeing and Development SOFTWARE DEVELOPMENT PROCESS DYNAMICS MODELING AS STATE MACHINE Leonid Lyubchyk, Vasyl Soloshchuk Abstact: Softwae development pocess modeling is gaining
More information1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2
Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the
More informationCarterPenrose diagrams and black holes
CatePenose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example
More informationOn Correlation Coefficient. The correlation coefficient indicates the degree of linear dependence of two random variables.
C.Candan EE3/53METU On Coelation Coefficient The coelation coefficient indicates the degee of linea dependence of two andom vaiables. It is defined as ( )( )} σ σ Popeties: 1. 1. (See appendi fo the poof
More informationExplicit, analytical solution of scaling quantum graphs. Abstract
Explicit, analytical solution of scaling quantum gaphs Yu. Dabaghian and R. Blümel Depatment of Physics, Wesleyan Univesity, Middletown, CT 064590155, USA Email: ydabaghian@wesleyan.edu (Januay 6, 2003)
More informationCHAPTER 10 Aggregate Demand I
CHAPTR 10 Aggegate Demand I Questions fo Review 1. The Keynesian coss tells us that fiscal policy has a multiplied effect on income. The eason is that accoding to the consumption function, highe income
More information1.4 Phase Line and Bifurcation Diag
Dynamical Systems: Pat 2 2 Bifucation Theoy In pactical applications that involve diffeential equations it vey often happens that the diffeential equation contains paametes and the value of these paametes
More informationTheory and practise of the gindex
Theoy and pactise of the gindex by L. Egghe (*), Univesiteit Hasselt (UHasselt), Campus Diepenbeek, Agoalaan, B3590 Diepenbeek, Belgium Univesiteit Antwepen (UA), Campus Die Eiken, Univesiteitsplein,
More informationAN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM
AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM Main Golub Faculty of Electical Engineeing and Computing, Univesity of Zageb Depatment of Electonics, Micoelectonics,
More informationModel Question Paper Mathematics Class XII
Model Question Pape Mathematics Class XII Time Allowed : 3 hous Maks: 100 Ma: Geneal Instuctions (i) The question pape consists of thee pats A, B and C. Each question of each pat is compulsoy. (ii) Pat
More informationQuestions for Review. By buying bonds This period you save s, next period you get s(1+r)
MACROECONOMICS 2006 Week 5 Semina Questions Questions fo Review 1. How do consumes save in the twopeiod model? By buying bonds This peiod you save s, next peiod you get s() 2. What is the slope of a consume
More informationSeshadri constants and surfaces of minimal degree
Seshadi constants and sufaces of minimal degee Wioletta Syzdek and Tomasz Szembeg Septembe 29, 2007 Abstact In [] we showed that if the multiple point Seshadi constants of an ample line bundle on a smooth
More informationAlgebra and Trig. I. A point is a location or position that has no size or dimension.
Algeba and Tig. I 4.1 Angles and Radian Measues A Point A A B Line AB AB A point is a location o position that has no size o dimension. A line extends indefinitely in both diections and contains an infinite
More informationInteger sequences from walks in graphs
otes on umbe Theoy and Discete Mathematics Vol. 9, 3, o. 3, 78 84 Intege seuences fom walks in gahs Enesto Estada, and José A. de la Peña Deatment of Mathematics and Statistics, Univesity of Stathclyde
More informationLecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3
Lectue 16: Colo and Intensity and he made him a coat of many colous. Genesis 37:3 1. Intoduction To display a pictue using Compute Gaphics, we need to compute the colo and intensity of the light at each
More informationPAN STABILITY TESTING OF DC CIRCUITS USING VARIATIONAL METHODS XVIII  SPETO  1995. pod patronatem. Summary
PCE SEMINIUM Z PODSTW ELEKTOTECHNIKI I TEOII OBWODÓW 8  TH SEMIN ON FUNDMENTLS OF ELECTOTECHNICS ND CICUIT THEOY ZDENĚK BIOLEK SPŠE OŽNO P.., CZECH EPUBLIC DLIBO BIOLEK MILITY CDEMY, BNO, CZECH EPUBLIC
More informationThe Supply of Loanable Funds: A Comment on the Misconception and Its Implications
JOURNL OF ECONOMICS ND FINNCE EDUCTION Volume 7 Numbe 2 Winte 2008 39 The Supply of Loanable Funds: Comment on the Misconception and Its Implications. Wahhab Khandke and mena Khandke* STRCT Recently FieldsHat
More informationFunctions of a Random Variable: Density. Math 425 Intro to Probability Lecture 30. Definition Nice Transformations. Problem
Intoduction One Function of Random Vaiables Functions of a Random Vaiable: Density Math 45 Into to Pobability Lectue 30 Let gx) = y be a onetoone function whose deiatie is nonzeo on some egion A of the
More informationContinuous Compounding and Annualization
Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem
More informationAn Introduction to Omega
An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei iskewad chaacteistics? The Finance Development Cente 2002 1 Fom
More informationRisk Sensitive Portfolio Management With CoxIngersollRoss Interest Rates: the HJB Equation
Risk Sensitive Potfolio Management With CoxIngesollRoss Inteest Rates: the HJB Equation Tomasz R. Bielecki Depatment of Mathematics, The Notheasten Illinois Univesity 55 Noth St. Louis Avenue, Chicago,
More information2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,
3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects
More informationQuestions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing
M13914 Questions & Answes Chapte 10 Softwae Reliability Pediction, Allocation and Demonstation Testing 1. Homewok: How to deive the fomula of failue ate estimate. λ = χ α,+ t When the failue times follow
More informationest using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years.
9.2 Inteest Objectives 1. Undestand the simple inteest fomula. 2. Use the compound inteest fomula to find futue value. 3. Solve the compound inteest fomula fo diffeent unknowns, such as the pesent value,
More informationPerformance Analysis of an Inverse Notch Filter and Its Application to F 0 Estimation
Cicuits and Systems, 013, 4, 1171 http://dx.doi.og/10.436/cs.013.41017 Published Online Januay 013 (http://www.scip.og/jounal/cs) Pefomance Analysis of an Invese Notch Filte and Its Application to F 0
More information2. SCALARS, VECTORS, TENSORS, AND DYADS
2. SCALARS, VECTORS, TENSORS, AND DYADS This section is a eview of the popeties of scalas, vectos, and tensos. We also intoduce the concept of a dyad, which is useful in MHD. A scala is a quantity that
More informationIn the lecture on double integrals over nonrectangular domains we used to demonstrate the basic idea
Double Integals in Pola Coodinates In the lectue on double integals ove nonectangula domains we used to demonstate the basic idea with gaphics and animations the following: Howeve this paticula example
More informationPower and Sample Size Calculations for the 2Sample ZStatistic
Powe and Sample Size Calculations fo the Sample ZStatistic James H. Steige ovembe 4, 004 Topics fo this Module. Reviewing Results fo the Sample Z (a) Powe and Sample Size in Tems of a oncentality Paamete.
More informationOverencryption: Management of Access Control Evolution on Outsourced Data
Oveencyption: Management of Access Contol Evolution on Outsouced Data Sabina De Capitani di Vimecati DTI  Univesità di Milano 26013 Cema  Italy decapita@dti.unimi.it Stefano Paaboschi DIIMM  Univesità
More informationON THE (Q, R) POLICY IN PRODUCTIONINVENTORY SYSTEMS
ON THE R POLICY IN PRODUCTIONINVENTORY SYSTEMS Saifallah Benjaafa and JoonSeok Kim Depatment of Mechanical Engineeing Univesity of Minnesota Minneapolis MN 55455 Abstact We conside a poductioninventoy
More informationFinancing Terms in the EOQ Model
Financing Tems in the EOQ Model Habone W. Stuat, J. Columbia Business School New Yok, NY 1007 hws7@columbia.edu August 6, 004 1 Intoduction This note discusses two tems that ae often omitted fom the standad
More informationReduced Pattern Training Based on Task Decomposition Using Pattern Distributor
> PNN05P762 < Reduced Patten Taining Based on Task Decomposition Using Patten Distibuto ShengUei Guan, Chunyu Bao, and TseNgee Neo Abstact Task Decomposition with Patten Distibuto (PD) is a new task
More informationThings to Remember. r Complete all of the sections on the Retirement Benefit Options form that apply to your request.
Retiement Benefit 1 Things to Remembe Complete all of the sections on the Retiement Benefit fom that apply to you equest. If this is an initial equest, and not a change in a cuent distibution, emembe to
More information92.131 Calculus 1 Optimization Problems
9 Calculus Optimization Poblems ) A Noman window has the outline of a semicicle on top of a ectangle as shown in the figue Suppose thee is 8 + π feet of wood tim available fo all 4 sides of the ectangle
More informationMechanics 1: Work, Power and Kinetic Energy
Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).
More informationResearch Article A ReputationBased Identity Management Model for Cloud Computing
Mathematical Poblems in Engineeing Volume 2015, Aticle ID 238245, 15 pages http://dx.doi.og/10.1155/2015/238245 Reseach Aticle A ReputationBased Identity Management Model fo Cloud Computing Lifa Wu, 1
More informationMULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION
MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION K.C. CHANG AND TAN ZHANG In memoy of Pofesso S.S. Chen Abstact. We combine heat flow method with Mose theoy, supe and subsolution method with
More informationSUPPORT VECTOR MACHINE FOR BANDWIDTH ANALYSIS OF SLOTTED MICROSTRIP ANTENNA
Intenational Jounal of Compute Science, Systems Engineeing and Infomation Technology, 4(), 20, pp. 677 SUPPORT VECTOR MACHIE FOR BADWIDTH AALYSIS OF SLOTTED MICROSTRIP ATEA Venmathi A.R. & Vanitha L.
More informationLINES AND TANGENTS IN POLAR COORDINATES
LINES AND TANGENTS IN POLAR COORDINATES ROGER ALEXANDER DEPARTMENT OF MATHEMATICS 1. Polacoodinate equations fo lines A pola coodinate system in the plane is detemined by a point P, called the pole, and
More informationCIRCUITS LABORATORY EXPERIMENT 7
CIRCUITS LABORATORY EXPERIMENT 7 Design of a Single Tansisto Amplifie 7. OBJECTIVES The objectives of this laboatoy ae to: (a) Gain expeience in the analysis and design of an elementay, single tansisto
More informationEconomics 326: Input Demands. Ethan Kaplan
Economics 326: Input Demands Ethan Kaplan Octobe 24, 202 Outline. Tems 2. Input Demands Tems Labo Poductivity: Output pe unit of labo. Y (K; L) L What is the labo poductivity of the US? Output is ouhgly
More informationDeflection of Electrons by Electric and Magnetic Fields
Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An
More informationLife Insurance Purchasing to Reach a Bequest. Erhan Bayraktar Department of Mathematics, University of Michigan Ann Arbor, Michigan, USA, 48109
Life Insuance Puchasing to Reach a Bequest Ehan Bayakta Depatment of Mathematics, Univesity of Michigan Ann Abo, Michigan, USA, 48109 S. David Pomislow Depatment of Mathematics, Yok Univesity Toonto, Ontaio,
More informationVector Calculus: Are you ready? Vectors in 2D and 3D Space: Review
Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.7. find the vecto defined
More informationEfficient Redundancy Techniques for Latency Reduction in Cloud Systems
Efficient Redundancy Techniques fo Latency Reduction in Cloud Systems 1 Gaui Joshi, Emina Soljanin, and Gegoy Wonell Abstact In cloud computing systems, assigning a task to multiple seves and waiting fo
More informationSTUDENT RESPONSE TO ANNUITY FORMULA DERIVATION
Page 1 STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION C. Alan Blaylock, Hendeson State Univesity ABSTRACT This pape pesents an intuitive appoach to deiving annuity fomulas fo classoom use and attempts
More informationThe transport performance evaluation system building of logistics enterprises
Jounal of Industial Engineeing and Management JIEM, 213 6(4): 194114 Online ISSN: 213953 Pint ISSN: 2138423 http://dx.doi.og/1.3926/jiem.784 The tanspot pefomance evaluation system building of logistics
More informationExperiment 6: Centripetal Force
Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee
More informationHow to create RAID 1 mirroring with a hard disk that already has data or an operating system on it
AnswesThatWok TM How to set up a RAID1 mio with a dive which aleady has Windows installed How to ceate RAID 1 mioing with a had disk that aleady has data o an opeating system on it Date Company PC / Seve
More informationOnline Competitive Algorithms for Ad Allocation in Cellular Networks (AdCell)
Online Competitive Algoithms fo Ad Allocation in Cellula Netwoks (AdCell) Saeed Alaei 1, Mohammad T. Hajiaghayi 12, Vahid Liaghat 1, Dan Pei 2, and Bana Saha 1 {saeed, hajiagha, vliaghat, bana}@cs.umd.edu,
More informationQoSConstrained Resource Allocation for a GridBased Multiple Source Electrocardiogram Application
QoSConstained Resouce Allocation fo a GidBased Multiple Souce Electocadiogam Application Dong Su Nam 1,5, ChanHyun Youn 1,3, Bong Hwan Lee 2, Gai Cliffod 3, and Jennife Healey 4 1 School of Engineeing,
More informationProgramming Assignment #1
Due: Nov 3 (11:59pm). Pogamming Assignment #1 CMSC 351 Fall 2014 Rules 1) You may only use C/C++, Java. 2) You pogam should use the standad input/output. Fo example C/C++ uses should use scanf/pintf/cin/cout
More informationGauss Law. Physics 231 Lecture 21
Gauss Law Physics 31 Lectue 1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing
More informationSemipartial (Part) and Partial Correlation
Semipatial (Pat) and Patial Coelation his discussion boows heavily fom Applied Multiple egession/coelation Analysis fo the Behavioal Sciences, by Jacob and Paticia Cohen (975 edition; thee is also an updated
More informationStrength Analysis and Optimization Design about the key parts of the Robot
Intenational Jounal of Reseach in Engineeing and Science (IJRES) ISSN (Online): 23209364, ISSN (Pint): 23209356 www.ijes.og Volume 3 Issue 3 ǁ Mach 2015 ǁ PP.2529 Stength Analysis and Optimization Design
More informationSecure SmartcardBased Fingerprint Authentication
Secue SmatcadBased Fingepint Authentication [full vesion] T. Chales Clancy Compute Science Univesity of Mayland, College Pak tcc@umd.edu Nega Kiyavash, Dennis J. Lin Electical and Compute Engineeing Univesity
More informationExperiment MF Magnetic Force
Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuentcaying conducto is basic to evey electic moto  tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating
More information2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES
. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an
More informationINITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS
INITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS Vesion:.0 Date: June 0 Disclaime This document is solely intended as infomation fo cleaing membes and othes who ae inteested in
More informationHigh Availability Replication Strategy for Deduplication Storage System
Zhengda Zhou, Jingli Zhou College of Compute Science and Technology, Huazhong Univesity of Science and Technology, *, zhouzd@smail.hust.edu.cn jlzhou@mail.hust.edu.cn Abstact As the amount of digital data
More informationFinancial Derivatives for Computer Network Capacity Markets with QualityofService Guarantees
Financial Deivatives fo Compute Netwok Capacity Makets with QualityofSevice Guaantees Pette Pettesson pp@kth.se Febuay 2003 SICS Technical Repot T2003:03 Keywods Netwoking and Intenet Achitectue. Abstact
More informationFI3300 Corporate Finance
Leaning Objectives FI00 Copoate Finance Sping Semeste 2010 D. Isabel Tkatch Assistant Pofesso of Finance Calculate the PV and FV in multipeiod multicf timevalueofmoney poblems: Geneal case Pepetuity
More informationBIOS American Megatrends Inc (AMI) v02.61 BIOS setup guide and manual for AM2/AM2+/AM3 motherboards
BIOS Ameican Megatends Inc (AMI) v02.61 BIOS setup guide and manual fo AM2/AM2+/AM3 motheboads The BIOS setup, also called CMOS setup, is a cucial pat of the pope setting up of a PC the BIOS (Basic Input
More informationHow to recover your Exchange 2003/2007 mailboxes and emails if all you have available are your PRIV1.EDB and PRIV1.STM Information Store database
AnswesThatWok TM Recoveing Emails and Mailboxes fom a PRIV1.EDB Exchange 2003 IS database How to ecove you Exchange 2003/2007 mailboxes and emails if all you have available ae you PRIV1.EDB and PRIV1.STM
More informationDo Vibrations Make Sound?
Do Vibations Make Sound? Gade 1: Sound Pobe Aligned with National Standads oveview Students will lean about sound and vibations. This activity will allow students to see and hea how vibations do in fact
More informationUncertain Version Control in Open Collaborative Editing of TreeStructured Documents
Uncetain Vesion Contol in Open Collaboative Editing of TeeStuctued Documents M. Lamine Ba Institut Mines Télécom; Télécom PaisTech; LTCI Pais, Fance mouhamadou.ba@ telecompaistech.f Talel Abdessalem
More informationCloud Service Reliability: Modeling and Analysis
Cloud Sevice eliability: Modeling and Analysis YuanShun Dai * a c, Bo Yang b, Jack Dongaa a, Gewei Zhang c a Innovative Computing Laboatoy, Depatment of Electical Engineeing & Compute Science, Univesity
More informationA framework for the selection of enterprise resource planning (ERP) system based on fuzzy decision making methods
A famewok fo the selection of entepise esouce planning (ERP) system based on fuzzy decision making methods Omid Golshan Tafti M.s student in Industial Management, Univesity of Yazd Omidgolshan87@yahoo.com
More informationAn Efficient Group Key Agreement Protocol for Ad hoc Networks
An Efficient Goup Key Ageement Potocol fo Ad hoc Netwoks Daniel Augot, Raghav haska, Valéie Issany and Daniele Sacchetti INRIA Rocquencout 78153 Le Chesnay Fance {Daniel.Augot, Raghav.haska, Valéie.Issany,
More informationBINOMIAL THEOREM. 1. Introduction. 2. The Binomial Coefficients. ( x + 1), we get. and. When we expand
BINOMIAL THEOREM Itoductio Whe we epad ( + ) ad ( + ), we get ad ( + ) = ( + )( + ) = + + + = + + ( + ) = ( + )( + ) = ( + )( + + ) = + + + + + = + + + 4 5 espectively Howeve, whe we ty to epad ( + ) ad
More informationA Comparative Analysis of Data Center Network Architectures
A Compaative Analysis of Data Cente Netwok Achitectues Fan Yao, Jingxin Wu, Guu Venkataamani, Suesh Subamaniam Depatment of Electical and Compute Engineeing, The Geoge Washington Univesity, Washington,
More informationLoad Balancing in Processor Sharing Systems
Load Balancing in ocesso Shaing Systems Eitan Altman INRIA Sophia Antipolis 2004, oute des Lucioles 06902 Sophia Antipolis, Fance altman@sophia.inia.f Utzi Ayesta LAASCNRS Univesité de Toulouse 7, Avenue
More informationLoad Balancing in Processor Sharing Systems
Load Balancing in ocesso Shaing Systems Eitan Altman INRIA Sophia Antipolis 2004, oute des Lucioles 06902 Sophia Antipolis, Fance altman@sophia.inia.f Utzi Ayesta LAASCNRS Univesité de Toulouse 7, Avenue
More informationResearch on Risk Assessment of the Transformer Based on Life Cycle Cost
ntenational Jounal of Smat Gid and lean Enegy eseach on isk Assessment of the Tansfome Based on Life ycle ost Hui Zhou a, Guowei Wu a, Weiwei Pan a, Yunhe Hou b, hong Wang b * a Zhejiang Electic Powe opoation,
More informationThe Role of Gravity in Orbital Motion
! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State
More informationMining Relatedness Graphs for Data Integration
Mining Relatedness Gaphs fo Data Integation Jeemy T. Engle (jtengle@indiana.edu) Ying Feng (yingfeng@indiana.edu) Robet L. Goldstone (goldsto@indiana.edu) Indiana Univesity Bloomington, IN. 47405 USA Abstact
More informationEpisode 401: Newton s law of universal gravitation
Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce
More informationHow to create a default user profile in Windows 7
AnswesThatWok TM How to ceate a default use pofile in Windows 7 (Win 7) How to ceate a default use pofile in Windows 7 When to use this document Use this document wheneve you want to ceate a default use
More informationSkills Needed for Success in Calculus 1
Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell
More informationPhysics 235 Chapter 5. Chapter 5 Gravitation
Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus
More informationDatabase Management Systems
Contents Database Management Systems (COP 5725) D. Makus Schneide Depatment of Compute & Infomation Science & Engineeing (CISE) Database Systems Reseach & Development Cente Couse Syllabus 1 Sping 2012
More informationThe LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero.
Poject Decision Metics: Levelized Cost of Enegy (LCOE) Let s etun to ou wind powe and natual gas powe plant example fom ealie in this lesson. Suppose that both powe plants wee selling electicity into the
More informationGraphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.
Gaphs of Equations CHAT PeCalculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such
More informationAn Approach to Optimized Resource Allocation for Cloud Simulation Platform
An Appoach to Optimized Resouce Allocation fo Cloud Simulation Platfom Haitao Yuan 1, Jing Bi 2, Bo Hu Li 1,3, Xudong Chai 3 1 School of Automation Science and Electical Engineeing, Beihang Univesity,
More information