Eratosthenes: Estimating the Circumference of the Earth. Subject: Mathematics Topic: Geometry Grade Level: 8-12 Time: min Pre Show Math Activity

Size: px
Start display at page:

Download "Eratosthenes: Estimating the Circumference of the Earth. Subject: Mathematics Topic: Geometry Grade Level: 8-12 Time: min Pre Show Math Activity"

Transcription

1 Eratosthenes: Estimating the Circumference of the Earth. Subject: Mathematics Topic: Geometry Grade Level: 8-12 Time: min Pre Show Math Activity

2 Introduction: In Show Math, students will learn how in 200 BC, the Greek mathematician Eratosthenes calculated the circumference of the Earth using simple geometry and a few measurements. His estimate of the circumference was remarkably accurate to within 2% of the real value. In this activity, students will follow in Eratosthenes footsteps by finding the circumference of the Earth themselves using sticks, shadows, and abstraction. It is an activity of discovery, where the students will piece together the geometry for themselves, using Eratosthenes s assumptions and the few pieces of information he had available. Learning Objectives: By the end of this activity students should: Understand how abstraction can help solve math and real life problems Explore the problems encountered when measuring the Earth s circumference Examine the ways that errors will occur by measuring circumference in this way Skills: Students should develop: Team work skills Communication adn collaboration skills Abstract thinking skills Material & Resources: Chart Paper WNCP Curriculum Links: Mathematics 9 Apprenticeship and Workplace Mathematics 10 Foundations of Mathematics 10 Solve problems and justify the solution strategy using circle properties. [C, CN, PS, R, T, V] Analyze puzzles and games that involve spatial reasoning, using problem-solving strategies. [C, CN, PS, R] Solve problems that involve parallel, perpendicular and transversal lines, and pairs of angles formed between them. [C, CN, PS, V] Develop and apply the primary trigonometric ratios (sine, cosine, tangent) to solve problems that involve right triangles. [C, CN, PS, R, T, V]

3 Foundations of Mathematics 11 Apprenticeship and Workplace Mathematics 12 Solve problems that involve the properties of angles and triangles. [CN, PS, V] Demonstrate an understanding of the limitations of measuring instruments and solve problems. [C, PS, R, T, V] Background: In ancient times it was widely believed that the world was flat with the heavens a physical dome spanning over it. However, there were some early arguments for a spherical Earth. For example, it was observed that during a lunar eclipse the Earth cast a circular shadow of the Earth on the moon during a lunar eclipse. It was also noted that the star Polaris is seen lower in the sky as one travels South. Pythagoras observed that ships masts appear before their hull when they appear over the horizon. Since these phenomena are observed everywhere, it suggests that the earth is curved everywhere. The logical result is that the earth must be spherical. Archimedes and Plato both believing the Earth to be a sphere, tried to estimate the circumference of the Earth. However, the first to give an accurate calculation of the circumference of the Earth was Eratosthenes in about 240 BC. Eratosthenes knew that in Cyene, Egypt (now known as Aswan) on the summer solstice, when the sun its zenith, sticks and pillars cast no shadow. However, in his home town of Alexandria, he saw that a stick planted in the ground cast a shadow measuring 7.2 degrees. Since the sun is very far away, when its rays hit the Earth they are nearly parallel. Therefore, if the Earth were flat and if a stick in Cyene cast no shadow at noon, then a stick in Alexandria would also cast no shadow. Because the stick in Alexandria does cast a shadow, he could use this information to estimate the earth s circumference Imagine we extend the sticks until they meet at the centre of the Earth. We can see that since the sun s rays are parallel and that alternate angles are equal, we can see that Alexandria and Cyene are separated by an angle of 7.2 degrees.

4 Eratosthenes paid someone to pace out the distance between Cyene and Alexandria which he found to be 5,000 stadia - approximately 800km. Now using proportion he found the circumference using the following equation: Eratosthenes did some rounding to 700 stadia per degree and implied a circumference of 252,000 stadia. If Eratosthenes used the Egyptian stade of about metres his measurement turns out to be 39,690 km, an error of less than 2%. The circumference of the Earth between the North and South Pole is 40,008 km. There are limitations in the accuracy of Eratosthenes calculation. The accuracy of his measurement is reduced by the fact that Cyene is not directly south of Alexandria and that the sun rays are not perfectly parallel when they hit the Earth. However, the greatest limitation of Eratosthenes method is that his distance measurement was not reliable because the roads connecting the two cities were not a straight line path (great arc, actually) between them. Given the margin of error in these aspects of his calculation, the accuracy of Eratosthenes circumference estimate is surprising. Resources: A description of Eratosthenes experiment Details the history of the beliefs about the Earth s shape and size A video that explains Eratosthenes methods Activity Instructions: 1. To class say: Today we are going to go back in time to Ancient Egypt. We need to find the circumference of the Earth without any modern technology. Any ideas how we could do this? 2. Tell class that in Ancient Times, Eratosthenes used a few observations and geometricalreasoning to deter mine the circumference. Put yourself in the Eratosthenes shoes. Here s what you know and what you assume: Display the overhead (Figure 1) of information available to Eratosthenes. You may also want to print off some copies of Figure 1 for the groups. 3. Divide class in groups of 4-5 students. Given them each a piece of chart paper and have each group draw a labelled diagram of the sticks in the earth and the shadow. 4. Allow each group to share their diagrams with the class. If necessary, provide hints using the overhead of the geometry (Figure 2), in case the student diagrams aren t quite right.

5 5. Tell the students to go back into their groups and tell them to use the diagram to find the circumference of the Earth. Circulate through out the class and help groups as they need it. 6. Allow each group to share their calculations. If necessary solve the problem on the board. 7. Explain to the class that there weren t actually two sticks but that Eratosthenes simply noticed that no structures in Cyene such as pillars cast a shadow at solar noon (which is when the sun is at its highest point in the sky for a particular day) on the Summer Solstice (on which day the noontime sun is higher in the sky than any other day of the year). He carefully measured the length of a shadow in Alexandria for an object of known height at noon on the same day. 8. Hand out take home worksheet. Discussion: To aide you in your discussion you may want to use the overhead (Figure 3) of the map, which will help illustrate the error in pacing out the distance between Cyene and Alexandria and that Alexandria and Cyene are not on the same meridian. Today we know the circumference of the Earth is 40,008 km, where does the error come from? Engage in class discussion about the errors that may occur in Eratosthenes method. Discuss ways we could find the circumference in this day and age. What was the hardest step in finding using this information to find the circumference of the Earth? Ancient Measurements You may notice that the measurement of the stick and the shadow are not in centimetres but in cubits. This was the measurement used in Eratosthenes. Although, it is not necessary to convert from cubits to centimetres to solve the problem, students may want to know. A cubit is centimetres. Alternate Angles are Equal You may want to remind the class that Eratosthenes knew that given two parallel lines, the alternate interior angles are equal. If the class is having trouble, ask them where there are two parallel lines in their diagrams? Possible sources of error Include: The measurement of the distance between Cyene and Alexandria was inaccurate - someone paced the distance and there was no straight path Cyene and Alexandria are not on the same meridian - the geometry of Figure 2 assumes the cities are north/south of each other. If the cities are on different longitudes, the distance measurement between overesti mates, giving a larger estimate of the circumference. Imagine, for example, that instead of Alexandria, Eratosthenes had used another city far away in West Africa, but on the same latitude as Alexandria. At noon, the shadow s angle would still be 7 degrees, but the distance between the cities would be several thousand kilometres, providing an enormous estimate of the circumference. A good way to illustrate this to the class would be to use a globe and lamp. Measuring the length of a shadow precisely can be difficult - hard to see a distinct edge. The sun s rays are not perfectly parallel - the sun is a fixed point very far away but not infinitely far away. Measuring Shadows with Your Class There are online projects where you repeat Eratosthenes experiment with your class by measuring shadows and partnering with another school in a different part of the world. The process is a bit more involved and will take a couple class periods. To find out more visit: curriculum/noonday/index.html

6 Figure 1 - Information for Finding Circumference of the Earth Eratosthenes assumed : The earth is a sphere. Therefore a stick planted vertically in the ground will be perpendicular to the earth. The sun is very far away. When its rays hit the Earth they are parallel. Alexandria is directly north of Cyene they lie on the same meridian. Eratosthenes knew: At noon in Cyene, the sun is directly overhead and casts no shadow. The distance from Cyene to Alexandria is approximately 800km. The stick used in Alexandria measures 4 cubits long and its shadow at noon is cubits.

7 Figure 2 - Eratosthenes Diagram

8 Figure 3 - The Distance Between Cyene and Alexandria

Measuring the Earth Using a GPS M. Scott Wilkerson & M. Beth Wilkerson, DePauw University, May 10, 2007

Measuring the Earth Using a GPS M. Scott Wilkerson & M. Beth Wilkerson, DePauw University, May 10, 2007 Measuring the Earth Using a GPS M. Scott Wilkerson & M. Beth Wilkerson, DePauw University, May 10, 2007 Modified from: Kerski, J.J., 2007, Measuring the Earth s Circumference with GPS, Copyright ESRI,

More information

Basic Coordinates & Seasons Student Guide

Basic Coordinates & Seasons Student Guide Name: Basic Coordinates & Seasons Student Guide There are three main sections to this module: terrestrial coordinates, celestial equatorial coordinates, and understanding how the ecliptic is related to

More information

Earth In Space Chapter 3

Earth In Space Chapter 3 Earth In Space Chapter 3 Shape of the Earth Ancient Greeks Earth casts a circular shadow on the moon during a lunar eclipse Shape of the Earth Ancient Greeks Ships were observed to disappear below the

More information

Measuring Your Latitude from the Angle of the Sun at Noon

Measuring Your Latitude from the Angle of the Sun at Noon Measuring Your Latitude from the Angle of the Sun at Noon Background: You can measure your latitude in earth's northern hemisphere by finding out the altitude of the celestial equator from the southern

More information

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

More information

Solar Angles and Latitude

Solar Angles and Latitude Solar Angles and Latitude Objectives The student will understand that the sun is not directly overhead at noon in most latitudes. The student will research and discover the latitude ir classroom and calculate

More information

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF SECOND GRADE UNIVERSE WEEK 1. PRE: Discovering stars. LAB: Analyzing the geometric pattern of constellations. POST: Exploring

More information

Phases of the Moon. Preliminaries:

Phases of the Moon. Preliminaries: Phases of the Moon Sometimes when we look at the Moon in the sky we see a small crescent. At other times it appears as a full circle. Sometimes it appears in the daylight against a bright blue background.

More information

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades. Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

More information

Lab Activity on the Causes of the Seasons

Lab Activity on the Causes of the Seasons Lab Activity on the Causes of the Seasons 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab you

More information

The Earth Really is Flat! The Globe and Coordinate Systems. Long History of Mapping. The Earth is Flat. Long History of Mapping

The Earth Really is Flat! The Globe and Coordinate Systems. Long History of Mapping. The Earth is Flat. Long History of Mapping The Earth Really is Flat! The Globe and Coordinate Systems Intro to Mapping & GIS The Earth is Flat Day to day, we live life in a flat world sun rises in east, sets in west sky is above, ground is below

More information

Activity 3: Observing the Moon

Activity 3: Observing the Moon Activity 3: Observing the Moon Print Name: Signature: 1.) KEY. 2.). 3.). 4.). Activity: Since the dawn of time, our closest neighbor the moon has fascinated humans. In this activity we will explore the

More information

Measuring the Diameter of the Sun

Measuring the Diameter of the Sun Chapter 24 Studying the Sun Investigation 24 Measuring the Diameter of the Sun Introduction The sun is approximately 150,000,000 km from Earth. To understand how far away this is, consider the fact that

More information

DETERMINING SOLAR ALTITUDE USING THE GNOMON. How does the altitude change during the day or from day to day?

DETERMINING SOLAR ALTITUDE USING THE GNOMON. How does the altitude change during the day or from day to day? Name Partner(s) Section Date DETERMINING SOLAR ALTITUDE USING THE GNOMON Does the Sun ever occur directly overhead in Maryland? If it does, how would you determine or know it was directly overhead? How

More information

Today FIRST HOMEWORK DUE NEXT TIME. Seasons/Precession Recap. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy

Today FIRST HOMEWORK DUE NEXT TIME. Seasons/Precession Recap. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy Today FIRST HOMEWORK DUE NEXT TIME Seasons/Precession Recap Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy How do we mark the progression of the seasons? We define four special points: summer

More information

Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME

Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME Today Solstices & Equinoxes Precession Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy FIRST HOMEWORK DUE NEXT TIME The Reason for Seasons Hypothesis check: How would seasons in the northern

More information

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10 Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?

More information

Use WITH Investigation 4, Part 2, Step 2

Use WITH Investigation 4, Part 2, Step 2 INVESTIGATION 4 : The Sundial Project Use WITH Investigation 4, Part 2, Step 2 EALR 4: Earth and Space Science Big Idea: Earth in Space (ES1) Projects: Tether Ball Pole Sundial Globe and a Light Indoors

More information

Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013

Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013 Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is

More information

Session 5 Indirect Measurement and Trigonometry

Session 5 Indirect Measurement and Trigonometry Session 5 Indirect Measurement and Trigonometry Key Terms in This Session Previously Introduced ratio scale factor New in This Session proportion similar triangles tangent Introduction How do people determine

More information

Geometry and Measurement

Geometry and Measurement The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for

More information

Chapter 3 The Science of Astronomy

Chapter 3 The Science of Astronomy Chapter 3 The Science of Astronomy Days of the week were named for Sun, Moon, and visible planets. What did ancient civilizations achieve in astronomy? Daily timekeeping Tracking the seasons and calendar

More information

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time

More information

Pre and post-visit activities - Navigating by the stars

Pre and post-visit activities - Navigating by the stars Pre and post-visit activities - Navigating by the stars Vocabulary List Adult Education at Scienceworks Pre-visit Activity 1: What is longitude and latitude? Activity 2: Using the Southern Cross to find

More information

Shadows, Angles, and the Seasons

Shadows, Angles, and the Seasons Shadows, Angles, and the Seasons If it's cold in winter, why is Earth closer to the Sun? This activity shows the relationship between Earth-Sun positions and the seasons. From The WSU Fairmount Center

More information

Periods of Western Astronomy. Chapter 1. Prehistoric Astronomy. Prehistoric Astronomy. The Celestial Sphere. Stonehenge. History of Astronomy

Periods of Western Astronomy. Chapter 1. Prehistoric Astronomy. Prehistoric Astronomy. The Celestial Sphere. Stonehenge. History of Astronomy Periods of Western Astronomy Chapter 1 History of Astronomy Western astronomy divides into 4 periods Prehistoric (before 500 B.C.) Cyclical motions of Sun, Moon and stars observed Keeping time and determining

More information

1.2 Chord Tables of Hipparchus and Ptolemy (Copyright: Bryan Dorner all rights reserved)

1.2 Chord Tables of Hipparchus and Ptolemy (Copyright: Bryan Dorner all rights reserved) 1.2 Chord Tables of Hipparchus and Ptolemy (Copyright: Bryan Dorner all rights reserved) Hipparchus: The birth of trigonometry occurred in the chord tables of Hipparchus (c 190-120 BCE) who was born shortly

More information

Earth-Sun Relationships. The Reasons for the Seasons

Earth-Sun Relationships. The Reasons for the Seasons Earth-Sun Relationships The Reasons for the Seasons Solar Radiation The earth intercepts less than one two-billionth of the energy given off by the sun. However, the radiation is sufficient to provide

More information

How To Understand General Relativity

How To Understand General Relativity Chapter S3 Spacetime and Gravity What are the major ideas of special relativity? Spacetime Special relativity showed that space and time are not absolute Instead they are inextricably linked in a four-dimensional

More information

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS INTRODUCTION CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS This is a scientific presentation to provide you with knowledge you can use to understand the sky above in relation to the earth. Before

More information

Noon Sun Angle = 90 Zenith Angle

Noon Sun Angle = 90 Zenith Angle Noon Sun Angle Worksheet Name Name Date Subsolar Point (Latitude where the sun is overhead at noon) Equinox March 22 nd 0 o Equinox September 22 nd 0 o Solstice June 22 nd 23.5 N Solstice December 22 nd

More information

The following words and their definitions should be addressed before completion of the reading:

The following words and their definitions should be addressed before completion of the reading: Seasons Vocabulary: The following words and their definitions should be addressed before completion of the reading: sphere any round object that has a surface that is the same distance from its center

More information

Solving the Giza Puzzle

Solving the Giza Puzzle Solving the Giza Puzzle by Johan H. Oldenkamp, Ph.D. Pateo.nl In this paper, I present facts that will change our understanding of why the Giza pyramids were built, and also when this was done. Let us

More information

5- Minute Refresher: Daily Observable Patterns in the Sky

5- Minute Refresher: Daily Observable Patterns in the Sky 5- Minute Refresher: Daily Observable Patterns in the Sky Key Ideas Daily Observable Patterns in the Sky include the occurrence of day and night, the appearance of the moon, the location of shadows and

More information

Motions of Earth, Moon, and Sun

Motions of Earth, Moon, and Sun Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning

More information

Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons?

Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons? Reasons for Seasons Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the

More information

Algebra Geometry Glossary. 90 angle

Algebra Geometry Glossary. 90 angle lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

More information

Navigation: Latitude and Longitude

Navigation: Latitude and Longitude Sextants and Chronometers Help Sailors Find Their Position at Sea Latitude lines run horizontally across the globe and are used to measure distances north and south of the equator. Sailors used a sextant

More information

The Size & Shape of the Galaxy

The Size & Shape of the Galaxy name The Size & Shape of the Galaxy The whole lab consists of plotting two graphs. What s the catch? Aha visualizing and understanding what you have plotted of course! Form the Earth Science Picture of

More information

Celestial Observations

Celestial Observations Celestial Observations Earth experiences two basic motions: Rotation West-to-East spinning of Earth on its axis (v rot = 1770 km/hr) (v rot Revolution orbit of Earth around the Sun (v orb = 108,000 km/hr)

More information

Newton s Law of Gravity

Newton s Law of Gravity Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has

More information

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST: Exploring

More information

Lunar Phase Simulator Student Guide

Lunar Phase Simulator Student Guide Name: Lunar Phase Simulator Student Guide Part I: Background Material Answer the following questions after reviewing the background pages for the simulator. Page 1 Introduction to Moon Phases Is there

More information

The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases

The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases The Four Seasons A Warm Up Exercise What fraction of the Moon s surface is illuminated by the Sun (except during a lunar eclipse)? a) Between zero and one-half b) The whole surface c) Always half d) Depends

More information

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram?

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 5. During how many days of a calendar year is the Sun directly overhead

More information

Heat Transfer. Energy from the Sun. Introduction

Heat Transfer. Energy from the Sun. Introduction Introduction The sun rises in the east and sets in the west, but its exact path changes over the course of the year, which causes the seasons. In order to use the sun s energy in a building, we need to

More information

Pythagoras Theorem. Page I can... 1... identify and label right-angled triangles. 2... explain Pythagoras Theorem. 4... calculate the hypotenuse

Pythagoras Theorem. Page I can... 1... identify and label right-angled triangles. 2... explain Pythagoras Theorem. 4... calculate the hypotenuse Pythagoras Theorem Page I can... 1... identify and label right-angled triangles 2... eplain Pythagoras Theorem 4... calculate the hypotenuse 5... calculate a shorter side 6... determine whether a triangle

More information

6. The greatest atmospheric pressure occurs in the 1) troposphere 3) mesosphere 2) stratosphere 4) thermosphere

6. The greatest atmospheric pressure occurs in the 1) troposphere 3) mesosphere 2) stratosphere 4) thermosphere 1. The best evidence of the Earth's nearly spherical shape is obtained through telescopic observations of other planets photographs of the Earth from an orbiting satellite observations of the Sun's altitude

More information

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...

More information

Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.

Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material

More information

Coordinate Systems. Orbits and Rotation

Coordinate Systems. Orbits and Rotation Coordinate Systems Orbits and Rotation Earth orbit. The earth s orbit around the sun is nearly circular but not quite. It s actually an ellipse whose average distance from the sun is one AU (150 million

More information

LATITUDE GNOMON AND QUADRANT FOR THE WHOLE YEAR

LATITUDE GNOMON AND QUADRANT FOR THE WHOLE YEAR LATITUDE GNOMON AND QUADRANT FOR THE WHOLE YEAR Sakari Ekko EAAE Summer School Working Group (Finland) Abstract In this workshop, we examine the correlation between our latitude and the altitude of the

More information

Essential Question. Enduring Understanding

Essential Question. Enduring Understanding Earth In Space Unit Diagnostic Assessment: Students complete a questionnaire answering questions about their ideas concerning a day, year, the seasons and moon phases: My Ideas About A Day, Year, Seasons

More information

Squaring the Circle. A Case Study in the History of Mathematics Part II

Squaring the Circle. A Case Study in the History of Mathematics Part II Squaring the Circle A Case Study in the History of Mathematics Part II π It is lost in the mists of pre-history who first realized that the ratio of the circumference of a circle to its diameter is a constant.

More information

GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY. Constructions OBJECTIVE #: G.CO.12 GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

More information

ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS

ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS SYNOPSIS: The objective of this lab is to become familiar with the apparent motions of the Sun, Moon, and stars in the Boulder sky. EQUIPMENT:

More information

Wednesday 15 January 2014 Morning Time: 2 hours

Wednesday 15 January 2014 Morning Time: 2 hours Write your name here Surname Other names Pearson Edexcel Certificate Pearson Edexcel International GCSE Mathematics A Paper 4H Centre Number Wednesday 15 January 2014 Morning Time: 2 hours Candidate Number

More information

Tropical Horticulture: Lecture 2

Tropical Horticulture: Lecture 2 Lecture 2 Theory of the Tropics Earth & Solar Geometry, Celestial Mechanics The geometrical relationship between the earth and sun is responsible for the earth s climates. The two principal movements of

More information

Where on Earth are the daily solar altitudes higher and lower than Endicott?

Where on Earth are the daily solar altitudes higher and lower than Endicott? Where on Earth are the daily solar altitudes higher and lower than Endicott? In your notebooks, write RELATIONSHIPS between variables we tested CAUSE FIRST EFFECT SECOND EVIDENCE As you increase the time

More information

Accelerated Mathematics II Frameworks Student Edition Unit 4 Right Triangle Trigonometry

Accelerated Mathematics II Frameworks Student Edition Unit 4 Right Triangle Trigonometry Accelerated Mathematics II Frameworks Student Edition Unit 4 Right Triangle Trigonometry 1 st Student Edition August 2009 Table of Contents Introduction..3 Eratosthenes Finds the Circumference of the Earth

More information

Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun)

Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun) Lecture 3: Motions of the and Moon ecliptic (path of ) ecliptic (path of ) The 23.5 degree tilt of Earth s spin axis relative to its orbital axis around the causes the seasons Celestial Sphere Celestial

More information

Orientation to the Sky: Apparent Motions

Orientation to the Sky: Apparent Motions Chapter 2 Orientation to the Sky: Apparent Motions 2.1 Purpose The main goal of this lab is for you to gain an understanding of how the sky changes during the night and over the course of a year. We will

More information

Geometry and Geography

Geometry and Geography Geometry and Geography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles March 12, 2011 1 Pedagogical Advice I have been leading mathematical circles using this topic for many years,

More information

alternate interior angles

alternate interior angles alternate interior angles two non-adjacent angles that lie on the opposite sides of a transversal between two lines that the transversal intersects (a description of the location of the angles); alternate

More information

4 The Rhumb Line and the Great Circle in Navigation

4 The Rhumb Line and the Great Circle in Navigation 4 The Rhumb Line and the Great Circle in Navigation 4.1 Details on Great Circles In fig. GN 4.1 two Great Circle/Rhumb Line cases are shown, one in each hemisphere. In each case the shorter distance between

More information

A Correlation of Pearson Texas Geometry Digital, 2015

A Correlation of Pearson Texas Geometry Digital, 2015 A Correlation of Pearson Texas Geometry Digital, 2015 To the Texas Essential Knowledge and Skills (TEKS) for Geometry, High School, and the Texas English Language Proficiency Standards (ELPS) Correlations

More information

Lesson Plan. Skills: Describe, model Knowledge: position, size, motion, earth, moon, sun, day, night, solar eclipse, lunar eclipse, phases, moon

Lesson Plan. Skills: Describe, model Knowledge: position, size, motion, earth, moon, sun, day, night, solar eclipse, lunar eclipse, phases, moon Gallmeyer 1 Lesson Plan Lesson: Rotation of the Earth Length: 45 minutes Age or Grade Level Intended: 4 th Academic Standard(s): Science: Earth and Space: 6.2.1 Describe and model how the position, size

More information

Geometry Notes PERIMETER AND AREA

Geometry Notes PERIMETER AND AREA Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

More information

Area of Parallelograms (pages 546 549)

Area of Parallelograms (pages 546 549) A Area of Parallelograms (pages 546 549) A parallelogram is a quadrilateral with two pairs of parallel sides. The base is any one of the sides and the height is the shortest distance (the length of a perpendicular

More information

National Quali cations 2015

National Quali cations 2015 N5 X747/75/01 TUESDAY, 19 MAY 9:00 AM 10:00 AM FOR OFFICIAL USE National Quali cations 015 Mark Mathematics Paper 1 (Non-Calculator) *X7477501* Fill in these boxes and read what is printed below. Full

More information

The Triangle and its Properties

The Triangle and its Properties THE TRINGLE ND ITS PROPERTIES 113 The Triangle and its Properties Chapter 6 6.1 INTRODUCTION triangle, you have seen, is a simple closed curve made of three line segments. It has three vertices, three

More information

Radius, Diameter, Circumference, π, Geometer s Sketchpad, and You! T. Scott Edge

Radius, Diameter, Circumference, π, Geometer s Sketchpad, and You! T. Scott Edge TMME,Vol.1, no.1,p.9 Radius, Diameter, Circumference, π, Geometer s Sketchpad, and You! T. Scott Edge Introduction I truly believe learning mathematics can be a fun experience for children of all ages.

More information

Worksheet to Review Vector and Scalar Properties

Worksheet to Review Vector and Scalar Properties Worksheet to Review Vector and Scalar Properties 1. Differentiate between vectors and scalar quantities 2. Know what is being requested when the question asks for the magnitude of a quantity 3. Define

More information

Stellar, solar, and lunar demonstrators

Stellar, solar, and lunar demonstrators Stellar, solar, and lunar demonstrators Rosa M. Ros, Francis Berthomieu International Astronomical Union, Technical University of Catalonia (Barcelona, España), CLEA (Nice, France) Summary This worksheet

More information

STONEHENGE AS A SOLSTICE INDICATOR

STONEHENGE AS A SOLSTICE INDICATOR STONEHENGE AS A SOLSTICE INDICATOR One of the most impressive megalithic structures in the world is Stonehenge just north of Salisbury, England. I first visited the monument during my post-doctorate year

More information

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target

More information

Calculating Astronomical Unit from Venus Transit

Calculating Astronomical Unit from Venus Transit Calculating Astronomical Unit from Venus Transit A) Background 1) Parallaxes of the Sun (the horizontal parallaxes) By definition the parallaxes of the Sun is the angle β shown below: By trigonometry,

More information

Discovering Math: Exploring Geometry Teacher s Guide

Discovering Math: Exploring Geometry Teacher s Guide Teacher s Guide Grade Level: 6 8 Curriculum Focus: Mathematics Lesson Duration: Three class periods Program Description Discovering Math: Exploring Geometry From methods of geometric construction and threedimensional

More information

MULTI-LEVEL LESSON PLAN GUIDE Earth, Moon, and Beyond

MULTI-LEVEL LESSON PLAN GUIDE Earth, Moon, and Beyond 1 MULTI-LEVEL LESSON PLAN GUIDE Earth, Moon, and Beyond Jeni Gonzales e-mail: JeniLG7@aol.com SED 5600 Dr. Michael Peterson December 18, 2001 1 2 Unit Plan: Multi-level- Earth, Moon, and Beyond Theme:

More information

MATH STUDENT BOOK. 8th Grade Unit 6

MATH STUDENT BOOK. 8th Grade Unit 6 MATH STUDENT BOOK 8th Grade Unit 6 Unit 6 Measurement Math 806 Measurement Introduction 3 1. Angle Measures and Circles 5 Classify and Measure Angles 5 Perpendicular and Parallel Lines, Part 1 12 Perpendicular

More information

Week 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test

Week 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test Thinkwell s Homeschool Geometry Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Geometry! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson plan

More information

Lesson 18: Looking More Carefully at Parallel Lines

Lesson 18: Looking More Carefully at Parallel Lines Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using

More information

Objectives After completing this section, you should be able to:

Objectives After completing this section, you should be able to: Chapter 5 Section 1 Lesson Angle Measure Objectives After completing this section, you should be able to: Use the most common conventions to position and measure angles on the plane. Demonstrate an understanding

More information

Mathematics Geometry Unit 1 (SAMPLE)

Mathematics Geometry Unit 1 (SAMPLE) Review the Geometry sample year-long scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This

More information

Mathematics (Project Maths)

Mathematics (Project Maths) Pre-Leaving Certificate Examination Mathematics (Project Maths) Paper 2 Higher Level February 2010 2½ hours 300 marks Running total Examination number Centre stamp For examiner Question Mark 1 2 3 4 5

More information

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d. Chapter 1 1-1. How long does it take the Earth to orbit the Sun? a.) one sidereal day b.) one month c.) one year X d.) one hour 1-2. What is the name given to the path of the Sun as seen from Earth? a.)

More information

GEOMETRIC MENSURATION

GEOMETRIC MENSURATION GEOMETRI MENSURTION Question 1 (**) 8 cm 6 cm θ 6 cm O The figure above shows a circular sector O, subtending an angle of θ radians at its centre O. The radius of the sector is 6 cm and the length of the

More information

Discovery of Pi: Day 1

Discovery of Pi: Day 1 Discovery of Pi: Day 1 75 min Minds On Action! Consolidate Debrief Reflection Math Learning Goals Make sense of the relationships between radius, diameter, and circumference of circles. Use of variety

More information

Lesson 33: Example 1 (5 minutes)

Lesson 33: Example 1 (5 minutes) Student Outcomes Students understand that the Law of Sines can be used to find missing side lengths in a triangle when you know the measures of the angles and one side length. Students understand that

More information

G C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

G C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle. Performance Assessment Task Circle and Squares Grade 10 This task challenges a student to analyze characteristics of 2 dimensional shapes to develop mathematical arguments about geometric relationships.

More information

WEDNESDAY, 4 MAY 10.40 AM 11.15 AM. Date of birth Day Month Year Scottish candidate number

WEDNESDAY, 4 MAY 10.40 AM 11.15 AM. Date of birth Day Month Year Scottish candidate number FOR OFFICIAL USE G KU RE Paper 1 Paper 2 2500/403 Total NATIONAL QUALIFICATIONS 2011 WEDNESDAY, 4 MAY 10.40 AM 11.15 AM MATHEMATICS STANDARD GRADE General Level Paper 1 Non-calculator Fill in these boxes

More information

Shadows and Solar Zenith

Shadows and Solar Zenith Shadows and Solar Zenith Name Lab Partner Section Introduction: The solar zenith angle is defined to be the angle between the sun and a line that goes straight up (to the zenith) In reality the sun is

More information

The Reasons for the Seasons

The Reasons for the Seasons The Reasons for the Seasons (The Active Learning Approach) Materials: 4 Globes, One light on stand with soft white bulb, 4 flashlights, Four sets of "Seasons" Cards, Four laminated black cards with 1 inch

More information

Geometry Enduring Understandings Students will understand 1. that all circles are similar.

Geometry Enduring Understandings Students will understand 1. that all circles are similar. High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

More information

Mathematics (Project Maths)

Mathematics (Project Maths) 2010. M128 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination Mathematics (Project Maths) Paper 2 Ordinary Level Monday 14 June Morning 9:30 12:00 300 marks Examination

More information

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9 Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

More information

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Grade 7 C O R R E L A T E D T O from March 2009 Grade 7 Problem Solving Build new mathematical knowledge through problem solving. Solve problems

More information

2.1. Inductive Reasoning EXAMPLE A

2.1. Inductive Reasoning EXAMPLE A CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers

More information

Numeracy and mathematics Experiences and outcomes

Numeracy and mathematics Experiences and outcomes Numeracy and mathematics Experiences and outcomes My learning in mathematics enables me to: develop a secure understanding of the concepts, principles and processes of mathematics and apply these in different

More information