Science 9 Unit D Electrical Principles Topic 3.0

Size: px
Start display at page:

Download "Science 9 Unit D Electrical Principles Topic 3.0"

Transcription

1 Science 9 Unit D Electrical Principles Topic 3.0 Energy is all around us in many different forms light from lamps, sound from stereos, heat from furnaces and stoves. Yet we rarely think about how much energy we use in a day. It has been estimated that it would take 2800 hours of strenuous manual labour to produce as much energy as a typical Canadian uses daily. You would need a team of 350 people working for eight hours straight to supply the energy for just one person. Kinetic Energy: is the energy which it possesses due to its motion Potential Energy: is the energy stored in a body or in a system due to its position in a force field such as gravity. A spring has more potential energy when it is compressed or stretched. A steel ball has more potential energy raised above the ground than it has after falling to the Earth. In the raised position it is capable of doing more work. The newton is the SI unit for force named after Isaac Newton It is equal to the amount of force required to accelerate a mass of one kilogram at a rate of one meter per second squared 1 N is the force of Earth's gravity on a mass of about 102 g - such as a small apple. The scientific definition of a force is a push or pull upon an object F (Force) = m (mass) X a (acceleration) Force is measured in Newtons 1 Newton = 1 kg-m or 1 kilogram-meter per second squared s 2 An object has a mass of kg and an acceleration of m/s 2. What is the force on the object? The Joule Englishman James Joule ( ) contributed greatly to our understanding of energy by proving that both mechanical work and electricity can produce heat and vice versa. In recognition of the importance of his research, scientists named the unit of energy the joule (J). It is equal to the work done in applying a force of one newton through a distance of one metre In electrical terms it is the work required to produce 1 watt of power for one second 1 J = 1 W per 1 s or J = W x s Work - when a force causes an object to move in the same direction of the force being exerted on it. W (Work) = F (force) X D (distance)

2 How much work is done by a person who uses a force of 27.5N to move a grocery buggy 12.3m? W (Work) = F (force) X D (distance) 55, 000J of work is done to move a rock 25m. How much force was applied? You and 3 friends apply a combined force of 489.5N to push a piano. The amount of work done is J. What distance did the piano move? Watts - named after the Scottish engineer James Watt Power (W) = J s The unit, defined as one joule per second, measures the rate of energy conversion. The terms power and energy are frequently confused. Energy is defined as the amount of work that can be performed by force measured in Joules or kilowatt hours. Power is the rate at which energy is generated or consumed measured in watts. 1 watt is equal to 1 joule per 1 second. When charging for electricity we use kilowatt/hours A unit of energy is kilowatt hour W per 3600 s When a 100W light bulb is turned on for one hour, how much energy is used? How many kilowatt hours of electricity are used? (first convert watts to kilowatts) Then calculate kilowatt hours In Alberta we pay about 10 cents per kilowatt hour. What would it cost for to use a 100 W bulb for 1 hour? Cost = kwh X rate (d dollar)

3 A microwave oven has a power rating of 800 W. If you cook a roast in this oven for 30 min at high, how many joules of electrical energy are converted into heat by the microwave? A hair dryer has a power rating of 1500 W. If you use it for 10 min, how many joules of electrical energy are converted into heat by the hair dryer? ELECTRICAL POWER Power is the rate at which a device converts energy. The faster a device converts energy, the greater its power rating. For an electrical device, the power is the current multiplied by the voltage. Mathematically, the relationship between power (P), current (I), and voltage (V) is Power (W) = I (A) x V watts = amperes x volts Think of our model using waterfalls. The power of a waterfall is equal to the amount of water flowing times the difference in potential energy between the top of the falls and the bottom. (P) Power in watts (I) current in amperes (V) voltage in volts Power (W)= I x V I = W V V = W I A hair dryer uses 10 A of current plugged into a 120 V outlet. What is the power of the hair dryer? A hair dryer has a power rating of 600 W. It is plugged into a 120-V outlet. What is the current flowing through the hair dryer?

4 A hair dryer has a power rating of 600 W uses 10 A of current. What is the voltage of the hair dryer? Kilowatt Hours It doesn t take common electrical devices long to consume a large number of joules. For this reason, the kilowatt hour is often used as a unit for energy. The energy calculation is the same, except that hours are substituted for seconds, and kilowatts (kw) are substituted for watts. Appliance Watts Appliance Watts Coffee Pot 200 Ceiling Fan 50 Toaster 1000 Blow Dryer 1000 Electric Stove 4000 Computer - laptop 50 Blender 300 Computer - desktop 100 Microwave 1000 Refrigerator 112 Hot Plate 1200 Satellite Dish 30 Sewing Machine 100 Plasma TV Calculate how much it would cost to bake a cake for 2 hours in in an electric stove (4000 W). First calculate the kw then calculate the kwh then calculate the cost

5 Energy has a number of different forms. Thermal, or heat energy: The total energy of a substance particles due to their movement or vibrations also the energy of motion in the molecules of a substance. The faster a particle moves, the more kinetic energy it has. Compare two cups holding equal amounts of water: the one containing more thermal energy will feel warmer. Electrical Energy: Energy made available by the flow of electric charge through a conductor. Mechanical Energy: Energy possessed by an object because of its motion or its potential to move. A thrown baseball has mechanical energy because of its movement and its potential to fall. Electromagnetic Energy (light): Energy packets called photons. It is electromagnetic radiation with a wavelength that is visible to the eye. Sound Energy: Energy produced by vibrating objects than can be detected by the ear.sound energy can travel through substances such as, water, air, wood, or fire. Nuclear Energy: Energy released by a nuclear reaction by fission or fusion Chemical Energy Energy found in chemicals, including food. Glucose molecules are used in your body cells to produce thermal energy and mechanical energy. Cellular Respiration

6 Transformations Involving Chemical and Electrical Energy Examples of Devices That Convert Energy from One Form to Another Input Energy Device Output Energy electrical toaster chemical flashlight electrical blender chemical battery-operated clock Electric Motors Motors have a place in many of the electrical devices that we use every day. The beginnings of this important energy converter the motor can be traced back to the early 1800s. Oersted had discovered that current flowing through a wire creates a magnetic field around the wire. Eleven years later, Michael Faraday constructed a device that used electromagnetic forces to move an object. In Faraday s device, a hanging wire circled around a fixed magnet Faraday also made a device in which a magnet rotated around a fixed wire. Faraday s devices led to the development of the electric motors that we use. Early experimenters found that they could make a strong electromagnet by winding currentcarrying wire into a coil usually around an iron core. They also found that an electromagnet will move to line up with the magnetic field from a nearby permanent magnet. This is the same way that two permanent magnets attract each other.

7 Many electric motors use a commutator and brushes to reverse the flow of electricity through the electromagnetic coil. The commutator is a split ring that breaks the flow of electricity for a moment and then reverses the connection of the coil. When the contact is broken, so is the magnetic force. But the armature continues to spin because of its momentum. The armature is the rotating shaft with the coil wrapped around it. As a result of the spinning, the commutator reconnects with the brushes. The magnetic force on the coil keeps it spinning continuously. The brushes are usually bars of carbon pushed against the metal commutator by springs. They make electrical contact with the moving commutator by brushing against it Vacuum Cleaner Vacuum cleaners work with the help of an electric motor. The motor has a fan attached. When it spins, the blades of the fan force air out, which creates suction inside the vacuum cleaner. Air from the room forces its way into the vacuum, carrying dirt with it. DIRECT AND ALTERNATING CURRENT Some motors run on direct current (DC). It s called direct current because the electricity flows in only one direction. Many devices such as ipods, computers, cell phones, and calculators also use DC. The electricity in your household circuits is alternating current (AC). It s called alternating because it flows back and forth 60 times per second. Plug-in devices that require DC come with their own power supplies. The power supply converts the power company s 120-V AC to DC and supplies the voltage that the device requires. Generating DC and AC A DC generator is much the same as a DC motor. The spinning armature produces the electricity (if electricity is passed through a DC generator, it will spin like a motor). The central axle of an AC generator has a loop of wire attached to two slip rings. The current is switched as the loops move up and down alternatively through the magnetic field.

8 The slip rings conduct the alternating current to the circuit through the brushes (the brush and ring assembly allows the whole loop to spin freely). In large AC generators many loops of wire are wrapped around an iron core. Massive coils of wire rotating in huge generators can produce enough electricity to power an entire city. Electric Lights Incandescent Light What used to be a "normal light bulb" is also known as an incandescent light bulb. These bulbs have a very thin tungsten filament that is housed inside a glass sphere. They typically come in sizes like "60 watt," "75 watt," "100 watt" and so on. Electricity runs through the filament. Because the filament is so thin, it offers a good bit of resistance to the electricity, and this resistance turns electrical energy into heat. The heat is enough to make the filament white hot, and the "white" part is light. The filament glows because of the heat - it incandesces. Fluorescent Light A fluorescent bulb uses a completely different method to produce light. There are electrodes at both ends of a fluorescent tube, and a gas containing argon and mercury vapor is inside the tube. A stream of electrons flows through the gas from one electrode to the other in a manner similar to the stream of electrons in a cathode ray tube. These electrons bump into the mercury atoms and excite them. As the mercury atoms move from the excited state back to the unexcited state, they give off ultraviolet photons. These photons hit the phosphor coating the inside of the fluorescent tube, and this phosphor creates visible light. The phosphor fluoresces to produce light.

9 Compact Fluorescent Light A compact fluorescent lamp (CFL), is a fluorescent lamp designed to replace an incandescent lamp. The lamps use a tube which is curved or folded to fit into the space of an incandescent bulb, and a compact electronic ballast in the base of the lamp. CFLs use one-fifth to one-third the electric power, and last eight to fifteen times longer. A CFL has a higher purchase price than an incandescent lamp, but can save over five times its purchase price in electricity costs over the lamp's lifetime. Like all fluorescent lamps, CFLs contain toxic mercury which complicates their disposal. Light-emitting diode (LED s) An LED lamp is a light-emitting diode (LED) product that is assembled into a lamp (or light bulb) for use in lighting fixtures. LED lamps have a lifespan and electrical efficiency that is several times better than incandescent lamps, and significantly better than most fluorescent lamps, with some chips able to emit more than 100 lumens per watt. The LED lamp market is projected to grow more than 12-fold over the next decade Energy Dissipation Energy is neither created nor destroyed. It doesn't appear and then disappear, but transformed from one form to another. This is known as the Law of Conservation of Energy. No device is able to be 100% efficient in transforming energy. Most often, the energy is lost, or dissipated as heat. Mechanical systems also dissipate energy to their surroundings, but not as obvious as the heat loss. Much of the dissipated energy is sound. Measuring Energy Input and Output We use energy in every aspect of our daily lives driving to work or school, heating our homes, preparing our food, texting, or watching television. Sometimes, we can choose which kind of energy we will use. For example, we could use electricity, gasoline, natural gas, propane, or hydrogen to power a vehicle. But how do we know which is best? To determine that, we need to measure the types and amounts of energy going into and coming out of the devices we use. Understanding Efficiency The efficiency of a device is the ratio of the useful energy that comes out of a device to the total energy that went in. The more input energy converted to output energy, the more efficient the device is. % Efficiency = Joules of useful output x 100% Joules of input energy Most of the energy transformed in a light bulb is wasted as heat. (5% is light energy, while 95% is heat)

10 A 330 W hot plate produces 38 kj of thermal energy while operating for 2 min. What is the efficiency of this device? Calculate the input energy first Input Useful Device Energy Output Gasoline- powered sport utility vehicle 675 kj 81 kj Efficiency Gasoline- electric hybrid vehicle 675 kj 195 kj Mid- efficiency natural- gas furnace 110 MJ 85 MJ Electric baseboard heater 9.5 kj 9.5 kj Alkaline dry cell kj kj Fluorescent light 50 kj 10 kj Incandescent light 800 J 40 J Increasing Efficiency Increasing the efficiency of a device depends on its purpose. The easiest way to increase efficiency in many devices is to reduce friction, as much as possible. Insulating a device from heat loss is also another practical way to increase efficiency. Using capacitors in electrical circuits is also another way to increase efficiency. Capacitors store a charge and then release it smoothing out the supply of electricity Limits to Efficiency Electric heaters come very close to being 100% efficient, but devices which convert electricity to other forms can never be 100% efficient. Some energy is lost, or dissipated in a form that is not useful output. Friction causes thermal energy to be lost, or dissipated in many devices. Power Distribution Grid Electrical power is a little bit like the air you breathe: You don't really think about it until it is missing. Power travels from the power plant to your house through an amazing system called the power distribution grid.

11 The Power Plant Electrical power starts at the power plant. In almost all cases, the power plant consists of a spinning electrical generator. Something has to spin that generator -- it might be a water wheel in a hydroelectric dam, a large diesel engine or a gas turbine. But in most cases, the thing spinning the generator is a steam turbine. The steam might be created by burning coal, oil or natural gas. Or the steam may come from a nuclear reactor. The Power Plant: Alternating Current Single-phase power is what you have in your house. You generally talk about household electrical service as single-phase, 120-volt AC service. The rate of oscillation for the sine wave is 60 cycles per second. AC has at least three advantages over DC in a power distribution grid: 1.Large electrical generators happen to generate AC naturally, so conversion to DC would involve an extra step. 2.Transformers must have alternating current to operate, and we will see that the power distribution grid depends on transformers. 3.It is easy to convert AC to DC but expensive to convert DC to AC, so if you were going to pick one or the other AC would be the better choice. In 3-phase power, at any given moment one of the three phases is nearing a peak. High-power 3-phase motors (used in industrial applications) and things like 3-phase welding equipment therefore have even power output. The three-phase power leaves the generator and enters a transmission substation at the power plant. The substation uses large transformers to convert the generator's voltage (which is at the thousands of volts level) up to extremely high voltages for long-distance transmission on the transmission grid. Typical voltages for long distance transmission are in the range of 155,000 to 765,000 volts in order to reduce line losses. A typical maximum transmission distance is about 300 miles (483 km). All power towers like this have three wires for the three phases. Many towers, like the ones shown above, have extra wires running along the tops of the towers. These are ground wires and are there primarily in an attempt to attract lightning.

12 For power to be useful in a home or business, it comes off the transmission grid and is stepped-down to the distribution grid Transformers are used to change the amount of voltage with hardly any energy loss. Voltage change is necessary because the most efficient way to transmit current over long distances is at high voltage and then reduced when it reaches its destination, where it will be used. A step-up transformer increases voltage, while a step-down transformer reduces voltage. Over drying Millions of dollars of energy are wasted each year running clothes dryers to heat clothes that are already dry. Over drying does nothing for your clothes.over drying creates static cling and contributesto shrinking and fabric damage. The solution? Cut down on drying time. Your clothes and electric bill will look a lot better! Devices, which have an energy-efficient design, are an important consideration for the consumer, because these devices use less electricity. Energy costs money and it also affects the environment, so reducing energy consumption is a good practice. Electrical Safety In many places, power lines and towers were knocked down. Such situations can be extremely dangerous because power lines carry electrons at thousands of volts - enough to seriously injure or kill anyone who comes close to them. You should never approach a downed power line. Any person coming in contact with a power line may create an unintended path for the electricity. Such a path is sometimes called a short circuit because the current bypasses part of the normal circuit. The Dangers of Electrical Shock High voltage power lines can carry 50,000 V of electricity. However, amperage is more important to consider A (1 milliamp) - will likely not be felt at all A to A (15 to 20 milliamps) - will cause a painful shock and loss of muscle control (which means you will not be able to let go of the line) A to A (30 to 50 milliamps) - Increasing pain breathing may become difficult Current as low as 0.1 A (100 milliamps) - can be fatal. Electrical Dangers vary, depending on the situation. When the current can flow easily, it is more dangerous. Insulators (such as wood, rubber and air) hamper the flow of electricity. Moisture is a good conductor of electricity, so avoid water when working with electricity. Protecting Yourself From Electrical Shock The Canadian Standards Council issues labels to identify the amount of voltage required to operate electrical devices and the maximum current they use.

13 Electrical Safety Pointers Never handle electrical devices if you are wet or near water Don't use devices that have a frayed or exposed power cord Always unplug an electrical device before disassembling it Don't put anything into an electrical outlet - except a proper plug for an electrical device Don't overload an electrical circuit, by trying to operate too many devices at once Avoid power lines Don't bypass safety precautions when you are in a hurry Pull on the plug, not the wire Never remove the third prong from a 3 prong plug Fuses and circuit breakers interrupt a circuit when there is too much current flowing through it. Circuit breakers trip a spring mechanism, which shuts off the flow of electricity through the circuit, when there is too much current. It can be reused over and over (provided the cause of the increased flow is corrected). Transformations Between Thermal and Electrical Energy A thermocouple is a device that can convert thermal energy into electrical energy. It consists of two different metals (bimetal) joined together that conduct heat at slightly different rates. When heated, the difference in conduction results in electricity flowing from one metal to the other. Thermocouples are useful for measuring temperatures in areas that are difficult to access or too hot for a regular liquid-filled thermometer. For example, some Alberta farmers hang thermocouple cables in their grain bins. The amount of electricity the cable produces indicates whether the grain is getting too hot. This can happen if the grain is too moist. Ovens and heaters do the opposite. They convert electrical energy into thermal energy.

Chapter 2: Forms of Energy

Chapter 2: Forms of Energy Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3 To describe energy storage

More information

Chapter 2: Forms of Energy

Chapter 2: Forms of Energy Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3: To define the efficiency

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

ELECTRICITY (E) So, what is this mysterious stuff that we call E? Where does it come from? Where does it go and why is it

ELECTRICITY (E) So, what is this mysterious stuff that we call E? Where does it come from? Where does it go and why is it ELECTRICITY (E) Electricity how it works, how we measure and pay for it. INTRODUCTION: HOW ELECTRICITY WORKS: E completely surrounds us. Modern life would be rather primitive without it. A few examples

More information

Uses of Energy. reflect. look out!

Uses of Energy. reflect. look out! reflect Take a moment to think about three common objects: a flashlight, a computer, and a toaster. A flashlight provides light. A computer stores information and displays it on a screen. A toaster cooks

More information

STUDY GUIDE: ELECTRICITY AND MAGNETISM

STUDY GUIDE: ELECTRICITY AND MAGNETISM 319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: info@questionsgalore.net Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three

More information

What is Energy? What is the relationship between energy and work?

What is Energy? What is the relationship between energy and work? What is Energy? What is the relationship between energy and work? Compare kinetic and potential energy What are the different types of energy? What is energy? Energy is the ability to do work. Great, but

More information

Section B: Electricity

Section B: Electricity Section B: Electricity We use mains electricity, supplied by power stations, for all kinds of appliances in our homes, so it is very important to know how to use it safely. In this chapter you will learn

More information

UNIT D ELECTRICAL PRINCIPLES & TECHNOLOGIES. Science 9

UNIT D ELECTRICAL PRINCIPLES & TECHNOLOGIES. Science 9 UNIT D ELECTRICAL PRINCIPLES & TECHNOLOGIES Science 9 LEARNING GOALS Investigate and interpret devices that convert various forms of energy Describe technologies for the transfer and control of electrical

More information

Energy Test Study Guide

Energy Test Study Guide Name: Energy Test Study Guide (Test Dates: A Day May 5 th B Day May 6 th ) USE YOUR INTERACTIVE NOTEBOOK TO STUDY CLASSROOM ASSIGNMENTS, LABS, FORMATIVE ASSESSMENTS, AND HOMEWORK. ENERGY AND THE TWO MAIN

More information

Unit 4: Electricity (Part 2)

Unit 4: Electricity (Part 2) Unit 4: Electricity (Part 2) Learning Outcomes Students should be able to: 1. Explain what is meant by power and state its units 2. Discuss the importance of reducing electrical energy wastage 3. State

More information

Energy and Energy Transformations Test Review

Energy and Energy Transformations Test Review Energy and Energy Transformations Test Review Completion: 1. Mass 13. Kinetic 2. Four 14. thermal 3. Kinetic 15. Thermal energy (heat) 4. Electromagnetic/Radiant 16. Thermal energy (heat) 5. Thermal 17.

More information

Energy Transformations

Energy Transformations Energy Transformations Concept Sheet Energy Transformations PS.6: The student will investigate and understand states and forms of energy and how energy is transferred and transformed. 1. Energy is the

More information

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which

More information

WindWise Education. 2 nd. T ransforming the Energy of Wind into Powerful Minds. editi. A Curriculum for Grades 6 12

WindWise Education. 2 nd. T ransforming the Energy of Wind into Powerful Minds. editi. A Curriculum for Grades 6 12 WindWise Education T ransforming the Energy of Wind into Powerful Minds A Curriculum for Grades 6 12 Notice Except for educational use by an individual teacher in a classroom setting this work may not

More information

I = V/r P = VI. I = P/V = 100 W / 6 V = 16.66 amps. What would happen if you use a 12-volt battery and a 12-volt light bulb to get 100 watts of power?

I = V/r P = VI. I = P/V = 100 W / 6 V = 16.66 amps. What would happen if you use a 12-volt battery and a 12-volt light bulb to get 100 watts of power? Volts, Amps and Ohms Measuring Electricity The three most basic units in electricity are voltage (V), current (I) and resistance (r). Voltage is measured in volts, current is measured in amps and resistance

More information

Energy What is Energy? Energy is the ability to do work. Any object that has energy has the ability to create force. Energy is one of the fundamental building blocks of our universe. Energy appears in

More information

Forms of Energy. Freshman Seminar

Forms of Energy. Freshman Seminar Forms of Energy Freshman Seminar Energy Energy The ability & capacity to do work Energy can take many different forms Energy can be quantified Law of Conservation of energy In any change from one form

More information

Electricity. Electricity: The Mysterious Force. 32 Intermediate Energy Infobook CARBON ATOM SEVERAL COMMON ELEMENTS

Electricity. Electricity: The Mysterious Force. 32 Intermediate Energy Infobook CARBON ATOM SEVERAL COMMON ELEMENTS Electricity: The Mysterious Force What exactly is the mysterious force we call electricity? It is simply moving electrons. And what exactly are electrons? They are tiny particles found in atoms. Everything

More information

In science, energy is the ability to do work. Work is done when a force causes an

In science, energy is the ability to do work. Work is done when a force causes an What is energy? In science, energy is the ability to do work. Work is done when a force causes an object to move in the direction of the force. Energy is expressed in units of joules (J). A joule is calculated

More information

Science Tutorial TEK 6.9C: Energy Forms & Conversions

Science Tutorial TEK 6.9C: Energy Forms & Conversions Name: Teacher: Pd. Date: Science Tutorial TEK 6.9C: Energy Forms & Conversions TEK 6.9C: Demonstrate energy transformations such as energy in a flashlight battery changes from chemical energy to electrical

More information

SIZE. Energy. Non-Mechanical Energy. Mechanical Energy. Part II. Examples of Non-Mechanical Energy. Examples of Mechanical Energy.

SIZE. Energy. Non-Mechanical Energy. Mechanical Energy. Part II. Examples of Non-Mechanical Energy. Examples of Mechanical Energy. Energy Part II Non-Mechanical Energy Wait a minute if all energy is either kinetic or potential and TME = KE + PE then how can there possibly be such thing as non-mechanical energy!?!? Mechanical Energy

More information

Electrical Charge: a type of energy that comes from the flow of charged particles; it allows electrical devices to function.

Electrical Charge: a type of energy that comes from the flow of charged particles; it allows electrical devices to function. Unit E: Electrical Applications Chapter 11: Electrical Energy 11.1: Generating Electricity pg. 420 Key Concepts: 1. Electrical energy is generated using a variety of technologies. 2. Electrical energy

More information

Mechanical Energy. Mechanical Energy is energy due to position or motion.

Mechanical Energy. Mechanical Energy is energy due to position or motion. Mechanical Energy Mechanical Energy is energy due to position or motion. Position: This means that matter can have energy even though it is not moving. If you knock something off of your kitchen counter,

More information

Forms of Energy: Multiple Transformations : Teacher Notes

Forms of Energy: Multiple Transformations : Teacher Notes Forms of Energy: Multiple Transformations : Teacher Notes Introduction The focus of the investigation is to further define energy and realize that chains of energy transformations can occur. The VoltageCurrent,

More information

The Magic School Bus and the Electric Field Trip Written by Joanna Cole Illustrated by Bruce Degen 1997, Scholastic Inc.

The Magic School Bus and the Electric Field Trip Written by Joanna Cole Illustrated by Bruce Degen 1997, Scholastic Inc. Teacher s Guide to Third and Fourth Grade Reading and Writing Exercises for The Magic School Bus and the Electric Field Trip Written by Joanna Cole Illustrated by Bruce Degen 1997, Scholastic Inc. ISBN

More information

ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Work is a transfer of a. energy. c. mass. b. force. d. motion. 2. What

More information

Unit 2 Lesson 1 Introduction to Energy. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 2 Lesson 1 Introduction to Energy. Copyright Houghton Mifflin Harcourt Publishing Company Get Energized! What are two types of energy? Energy is the ability to cause change. Energy takes many different forms and causes many different effects. There are two general types of energy: kinetic energy

More information

ENERGY AND ENERGY TRANSFORMATIONS. The scientific definition of energy is the ability to do work. The four most common forms of energy are:

ENERGY AND ENERGY TRANSFORMATIONS. The scientific definition of energy is the ability to do work. The four most common forms of energy are: ENERGY AND ENERGY TRANSFORMATIONS The scientific definition of energy is the ability to do work. The four most common forms of energy are: chemical - potential or stored energy stored in chemicals, released

More information

How To Keep An Eye On Electric Safety

How To Keep An Eye On Electric Safety Table of Contents Keep an Eye on Electric Safety................ 1 Safety in an Emergency...................... 1 Downed Power Lines...................... 1 Keep an Eye on Electric Safety Electricity is

More information

Chen. Vibration Motor. Application note

Chen. Vibration Motor. Application note Vibration Motor Application note Yangyi Chen April 4 th, 2013 1 Table of Contents Pages Executive Summary ---------------------------------------------------------------------------------------- 1 1. Table

More information

Student Reader. Energy Systems UNIT 7. E5 Student Reader v. 8.0 Unit 7 Page 1 2012 KnowAtom TM

Student Reader. Energy Systems UNIT 7. E5 Student Reader v. 8.0 Unit 7 Page 1 2012 KnowAtom TM Student Reader UNIT 7 Energy Systems E5 Student Reader v. 8.0 Unit 7 Page 1 2012 KnowAtom TM Front Cover: The cover shows a photograph of a sled that is not in motion. The movement of a sled from one place

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

What s a Kilowatt-hour Good For?

What s a Kilowatt-hour Good For? What s a Kilowatt-hour Good For? Introduction Given 1 kw-h of energy, what can an electrical appliance do? How long will a lamp shine before it s consumed 1 kw-h? How many slices of toast can a toaster

More information

Science Standard 3 Energy and Its Effects Grade Level Expectations

Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects The flow of energy drives processes of change in all biological, chemical, physical, and geological

More information

Work and Energy. Work = Force Distance. Work increases the energy of an object. Energy can be converted back to work.

Work and Energy. Work = Force Distance. Work increases the energy of an object. Energy can be converted back to work. Work and Energy Ch. 6 Work = Force Distance Work increases the energy of an object. Energy can be converted back to work. Therefore, energy and work have the same unit: Newton meter = Nm Energy per gram,

More information

Basic Forms of Energy:

Basic Forms of Energy: Background Information: Energy can be defined in many different ways: the ability to do work, the ability to the change the properties of a material, or simply the ability to do something. Energy is a

More information

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb. Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling

More information

TIPS ON ENERGY SAVING

TIPS ON ENERGY SAVING TIPS ON ENERGY SAVING IN HOME APPLIANCES AND ELECTRICITY SAFETY The Domestic Sector accounts for 30% of total energy consumption in the country. There is a tremendous scope to conserve energy by adopting

More information

Objectives 200 CHAPTER 4 RESISTANCE

Objectives 200 CHAPTER 4 RESISTANCE Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys

More information

Energy Transfer in a Flash-Light. (Teacher Copy)

Energy Transfer in a Flash-Light. (Teacher Copy) Energy Transfer in a Flash-Light (Teacher Copy) Florida Sunshine State Standards Benchmark: SC.B. 1.3.1 AA The student identifies forms of energy and explains that they can be measured and compared. (Also

More information

UNIT 1 GCSE PHYSICS 2011 FXA. 1.3.1 Transferring Electrical Energy APPLIANCE USEFUL ENERGY NON-USEFUL ENERGY

UNIT 1 GCSE PHYSICS 2011 FXA. 1.3.1 Transferring Electrical Energy APPLIANCE USEFUL ENERGY NON-USEFUL ENERGY UNIT 1 Examples of energy transformations that everyday electrical devices bring about. APPLIANCE USEFUL ENERGY NON-USEFUL ENERGY 40 The amount of electrical energy a device transforms depends on how long

More information

Chapter 4 Forms of energy

Chapter 4 Forms of energy Chapter 4 Forms of energy Introduction This chapter compromises a set of activities that focuses on the energy sources and conversion. The activities illustrate The concept and forms of energy; The different

More information

Electrical Design TABLE OF CONTENTS FOREWORD... 1. BASIC ELEMENTS OF ELECTRICITY... 2 Electricity works much like water Ohm s Law

Electrical Design TABLE OF CONTENTS FOREWORD... 1. BASIC ELEMENTS OF ELECTRICITY... 2 Electricity works much like water Ohm s Law TABLE OF CONTENTS Electrical Design TABLE OF CONTENTS FOREWORD.......................................................................... 1 BASIC ELEMENTS OF ELECTRICITY..................................................

More information

Stay Safe Around Electricity and Natural Gas Teacher s Guide

Stay Safe Around Electricity and Natural Gas Teacher s Guide Stay Safe Around Electricity and Natural Gas Teacher s Guide INTRODUCTION The Stay Safe Around Electricity and Natural Gas activity booklet can be used as a follow-up to a utility presentation or as a

More information

Temperature coefficient of resistivity

Temperature coefficient of resistivity Temperature coefficient of resistivity ρ slope = α ρ = ρ o [ 1+ α(t To )] R = R o [1+ α(t T o )] T T 0 = reference temperature α = temperature coefficient of resistivity, units of (ºC) -1 For Ag, Cu, Au,

More information

Energy comes in many flavors!

Energy comes in many flavors! Forms of Energy Energy is Fun! Energy comes in many flavors! Kinetic Energy Potential Energy Thermal/heat Energy Chemical Energy Electrical Energy Electrochemical Energy Electromagnetic Radiation Energy

More information

Introduction to Forms of Energy

Introduction to Forms of Energy FORMS OF ENERGY LESSON PLAN 2.1 Introduction to Forms of Energy This lesson is designed for 3rd 5th grade students in a variety of school settings (public, private, STEM schools, and home schools) in the

More information

HOUSING QUALITY STANDARDS (HQS)

HOUSING QUALITY STANDARDS (HQS) HOUSING QUALITY STANDARDS (HQS) Series 5 Electrical Safety And INSPECTIONS 5.01 ELS Revised 8-17-06 Electricity is Dangerous All electrical repairs should be made by licensed professionals. Touching any

More information

Lesson 2 - Design a Robot. Grades: 6-8

Lesson 2 - Design a Robot. Grades: 6-8 Lesson 2 - Design a Robot Grades: 6-8 Essential Questions: What steps do manufacturers take to design and build a product? What role does robotics have in manufacturing? How have robotics changed how products

More information

Potential and Kinetic Energy

Potential and Kinetic Energy Potential and Kinetic Energy What is Energy? The ability to cause change Energy notes entry # 4 11/5 Potential Energy Kinetic Energy Definitions Dependent on Examples Forms of Potential Energy Definition

More information

PHYSICAL WORLD. Heat & Energy GOD S DESIGN. 4th Edition Debbie & Richard Lawrence

PHYSICAL WORLD. Heat & Energy GOD S DESIGN. 4th Edition Debbie & Richard Lawrence PHYSICAL WORLD Heat & Energy GOD S DESIGN 4th Edition Debbie & Richard Lawrence God s Design for the Physical World is a complete physical science curriculum for grades 3 8. The books in this series are

More information

Energy Types. Exercise 1: Find The 10 Basic Types of Energy

Energy Types. Exercise 1: Find The 10 Basic Types of Energy Energy Types Exercise 1: Find The 10 Basic Types of Energy Group any types, sources, or associated words that seem to refer to the same type of energy. You can do this using colored pencils, or by making

More information

Energy transfers. Coal is mined and transported to the power station. It is ground into a powder to make it burn quicker. Step 2:

Energy transfers. Coal is mined and transported to the power station. It is ground into a powder to make it burn quicker. Step 2: Energy transfers Name: The national grid system is the energy system that generates electricity and distributes it to consumers. Electricity is generated at a power station and it transfers through pylons

More information

E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

More information

Physics PH1FP. (Jun15PH1FP01) General Certificate of Secondary Education Foundation Tier June 2015. Unit Physics P1. Unit Physics P1 TOTAL

Physics PH1FP. (Jun15PH1FP01) General Certificate of Secondary Education Foundation Tier June 2015. Unit Physics P1. Unit Physics P1 TOTAL Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Question Mark Science A Unit Physics P1 Physics Unit Physics P1 Friday 12 June 2015 General

More information

ELECTRICAL FUNDAMENTALS

ELECTRICAL FUNDAMENTALS General Electricity is a form of energy called electrical energy. It is sometimes called an "unseen" force because the energy itself cannot be seen, heard, touched, or smelled. However, the effects of

More information

Section 15.1 Energy and Its Forms (pages 446 452)

Section 15.1 Energy and Its Forms (pages 446 452) Section 15.1 and Its Forms (pages 446 452) This section describes how energy and work are related. It defines kinetic energy and potential energy, and gives examples for calculating these forms of energy.

More information

3053 Electrical Safety Training Program Course Outline

3053 Electrical Safety Training Program Course Outline 3053 Electrical Safety Training Program Course Outline The following outline summarizes the major points of information presented in the program. The outline can be used to review the program before conducting

More information

A kilowatt-hour (kwh) is a unit for measuring energy. It is, as its name suggests, one kilowatt of power used over a period of one hour.

A kilowatt-hour (kwh) is a unit for measuring energy. It is, as its name suggests, one kilowatt of power used over a period of one hour. How Much Electricity Does a Light Bulb Use and What will it Cost Me? We (the Village of Paw Paw) are often asked How do I know how much electricity a home appliance or device is using and what is the charge

More information

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

More information

Study Guide CCA week 12 - Key

Study Guide CCA week 12 - Key Study Guide CCA week 12 - Key Vocabulary to know: (define on separate paper & give an example of each) Electrical Energy Mechanical Energy Force Energy carried by electricity Ex: Toaster, Fan, Anything

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, 2014 1:15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, 2014 1:15 to 4:15 p.m. P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Friday, June 20, 2014 1:15 to 4:15 p.m., only The possession or use of any communications device

More information

Junior Cert Science Numeracy Resources

Junior Cert Science Numeracy Resources Focus on Numeracy Junior Cert Science Numeracy Resources Let s Talk About Measurement Measurement of Time Directions: Put a < (less than), > (greater than), or = symbol between the two amounts of time.

More information

Preview of Period 2: Forms of Energy

Preview of Period 2: Forms of Energy Preview of Period 2: Forms of Energy 2.1 Forms of Energy How are forms of energy defined? 2.2 Energy Conversions What happens when energy is converted from one form into another form? 2.3 Efficiency of

More information

STEM 2 3: The Basics of Energy, Electricity, and Water Jigsaw

STEM 2 3: The Basics of Energy, Electricity, and Water Jigsaw STEM 2 3: The Basics of Energy, Electricity, and Water Jigsaw Objective To increase understanding of forms of energy, sources of energy, atomic structure, electricity, magnetism, electricity generation,

More information

7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A

7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A 1. Compared to the number of free electrons in a conductor, the number of free electrons in an insulator of the same volume is less the same greater 2. Most metals are good electrical conductors because

More information

Components. Transformers

Components. Transformers Components Transformers How does a transformer work? A transformer is based on a simple fact about electricity: when a fluctuating electric current flows through a wire, it generates a magnetic field (an

More information

Name Class Date. You do twice as much work. b. You lift two identical books one meter above the ground.

Name Class Date. You do twice as much work. b. You lift two identical books one meter above the ground. Exercises 9.1 Work (pages 145 146) 1. Circle the letter next to the correct mathematical equation for work. work = force distance work = distance force c. work = force distance d. work = force distance

More information

Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives. Capacitors 262 CHAPTER 5 ENERGY Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

More information

Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

More information

Educational Innovations

Educational Innovations Educational Innovations Next Generation Science Standards: SS-11 World s Simplest Motor MS-PS2-3 Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

More information

Module 2.2. Heat transfer mechanisms

Module 2.2. Heat transfer mechanisms Module 2.2 Heat transfer mechanisms Learning Outcomes On successful completion of this module learners will be able to - Describe the 1 st and 2 nd laws of thermodynamics. - Describe heat transfer mechanisms.

More information

Your Guide to. Electrical Safety

Your Guide to. Electrical Safety Your Guide to Electrical Safety AN INTRODUCTION Electricity is an important part of our daily lives. It's everywhere. It lights our homes, cooks our food, powers our tools, and runs our televisions, radios

More information

Textbook pp. 148-153

Textbook pp. 148-153 Textbook pp. 148-153 ENERGY is the ability to do WORK or cause change Name 2 things that ARE energy or that HAVE energy WORK is when a FORCE moves an object a FORCE is a push or a pull There are two main

More information

Measuring Electricity Class Activity

Measuring Electricity Class Activity Measuring Electricity Class Activity Objective: To understand what energy is, how it impacts our daily lives, and how one can become an energy steward. Learning Outcomes: Students will: 1. Understand where

More information

What Is Energy? Energy and Work: Working Together. 124 Chapter 5 Energy and Energy Resources

What Is Energy? Energy and Work: Working Together. 124 Chapter 5 Energy and Energy Resources 1 What You Will Learn Explain the relationship between energy and work. Compare kinetic and potential energy. Describe the different forms of energy. Vocabulary energy kinetic energy potential energy mechanical

More information

Electric Motor. Your Activity Build a simple electric motor. Material. Create. Science Topics. What s going on? 2 Jumbo Safety Pins (or Paper Clips)

Electric Motor. Your Activity Build a simple electric motor. Material. Create. Science Topics. What s going on? 2 Jumbo Safety Pins (or Paper Clips) Electric Motor Your Activity Build a simple electric motor Material D-Cell Battery Coil made out of magnet wire 2 Jumbo Safety Pins (or Paper Clips) Scissors (or sand paper) 1 Rubber Band Ceramic Magnet

More information

Illuminating Light Bulbs

Illuminating Light Bulbs www.pwc.com/corporateresponsibility Illuminating Light Bulbs PwC's Earn Your Future Curriculum Table of contents Introduction... 4 Lesson description... 4 Grade(s)... 4 Lesson time... 4 Pre-visit prep...

More information

Odyssey of the Mind Technology Fair. Simple Electronics

Odyssey of the Mind Technology Fair. Simple Electronics Simple Electronics 1. Terms volts, amps, ohms, watts, positive, negative, AC, DC 2. Matching voltages a. Series vs. parallel 3. Battery capacity 4. Simple electronic circuit light bulb 5. Chose the right

More information

Using mechanical energy for daily

Using mechanical energy for daily unit 3 Using mechanical energy for daily activities Physics Chapter 3 Using mechanical energy for daily activities Competency Uses mechanical energy for day-to-day activities Competency level 3.1 Investigates

More information

Electricity and Magnetism

Electricity and Magnetism Electricity and Magnetism A Science AZ Physical Series Word Count: 1,668 Electricity and Magnetism Written by David Dreier Visit www.sciencea-z.com www.sciencea-z.com Electricity and Magnetism Key elements

More information

Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Pros:

Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Pros: P a g e 1 Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Generating Electrical Energy Using Moving Water: Hydro-Electric Generation

More information

XX. Introductory Physics, High School

XX. Introductory Physics, High School XX. Introductory Physics, High School High School Introductory Physics Test The spring 2013 high school Introductory Physics test was based on learning standards in the Physics content strand of the Massachusetts

More information

Electrical Safety Plugs What are the different types of plugs? Extension Cords What are some potential hazards involving extension cords?

Electrical Safety Plugs What are the different types of plugs? Extension Cords What are some potential hazards involving extension cords? Electrical Safety Electricity can be a friend, but it can also hurt if you do not treat it with respect. Everyday someone loses his or her home or business due to an electrical fire. These tragedies are

More information

Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Practice final for Basic Physics spring 2005 answers on the last page Name: Date: Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible

More information

October Safety Subject

October Safety Subject October Safety Subject Electrical Hazards All electrical equipment should be kept in good repair. Replace defective equipment or have it repaired by a qualified person. Watch for wiring on appliances that

More information

2 electrical. electrical. 2010 PulteGroup, Inc. All Rights Reserved.

2 electrical. electrical. 2010 PulteGroup, Inc. All Rights Reserved. 2 12 2010 PulteGroup, Inc. All Rights Reserved. circuit breakers Circuit breakers protect your home s system from power failure. The wiring in your home is protected by circuit breakers. Circuit breakers,

More information

DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

More information

MCQ - ENERGY and CLIMATE

MCQ - ENERGY and CLIMATE 1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated

More information

ELECTRODYNAMICS 05 AUGUST 2014

ELECTRODYNAMICS 05 AUGUST 2014 ELECTRODYNAMICS 05 AUGUST 2014 In this lesson we: Lesson Description Discuss the motor effect Discuss how generators and motors work. Summary The Motor Effect In order to realise the motor effect, the

More information

Understanding and Measuring School Electronics

Understanding and Measuring School Electronics Understanding and Measuring School Electronics MATERIALS NEEDED: 1. 6 energy monitoring devices (note: these can be obtained from a variety of sources, i.e., local hardware stores, internet [average cost

More information

Sources of electricity

Sources of electricity Sources of electricity This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Sources of electricity

Sources of electricity Sources of electricity This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

CHAPTER 4 UTILITY SYSTEMS ELECTRICAL. Utility Systems Electrical. Main Panel

CHAPTER 4 UTILITY SYSTEMS ELECTRICAL. Utility Systems Electrical. Main Panel CHAPTER 4 UTILITY SYSTEMS ELECTRICAL Utility Systems Electrical The electrical supply to your home begins outside, where you will see either an overhead feed and piping down the side of your home or (if

More information

Home Electrical Safety Challenge

Home Electrical Safety Challenge Home Electrical Safety Challenge Home Electrical Safety Challenge Why is there a different kind of outlet in my bathroom? What does that TEST button do? Why does the circuit breaker trip every time my

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, 2015 1:15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, 2015 1:15 to 4:15 p.m. P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Wednesday, June 17, 2015 1:15 to 4:15 p.m., only The possession or use of any communications

More information

NATIONAL CERTIFICATE (VOCATIONAL)

NATIONAL CERTIFICATE (VOCATIONAL) NATIONAL CERTIFICATE (VOCATIONAL) SUBJECT GUIDELINES ELECTRICAL PRINCIPLES AND PRACTICE NQF Level 4 September 2007 ELECTRICAL PRINCIPLES AND PRACTICE LEVEL 4 CONTENTS INTRODUCTION 1 DURATION AND TUITION

More information

Cathode Ray Tube. Introduction. Functional principle

Cathode Ray Tube. Introduction. Functional principle Introduction The Cathode Ray Tube or Braun s Tube was invented by the German physicist Karl Ferdinand Braun in 897 and is today used in computer monitors, TV sets and oscilloscope tubes. The path of the

More information

Single-Phase AC Synchronous Generator

Single-Phase AC Synchronous Generator ST Series Single-Phase AC Synchronous Generator Instructions for Operation and Maintenance English to English translation by R.G. Keen, May 2004. ST Series of Single-Phase AC Synchronous Generators Description

More information