Thermodynamics of a Tire Pump


 Hortense Carter
 2 years ago
 Views:
Transcription
1 1 roblem Thermodynamics of a Tire ump Kirk T. McDonald Joseph Henry Laboratories, rinceton University, rinceton, NJ 8544 November 9, 7; updated September 9, 8 lthough a tire pump is a simple device, making a satisfactory, simple thermodynamic model of its behavior is challenging. Suppose the tire has volume V that remains constant as its absolute pressure is increased by the tire pump from,where = atmospheric pressure, to a final pressure at the ambient absolute temperature T. The process of pumping may be assumed to be adiabatic, so the pressure and temperature in the tire reach maximum values of max and T max before the tire cools slowly back to temperature T and the pressure drops to the desired pressure. You may assume that air is a diatomic ideal gas. First discuss how a tire pump at a gas station works, before turning to the slightly more complicated case of a hand pump. t a gas station, a compressor first compresses a lot of air to some desired pressure C and stores this in a tank. Before this air is injected into a tire, it comes back to room temperature T. You may ignore the details of the thermodynamics of the compressor. Then, we connect the storage tank to the tire via a oneway valve. So long as the pressure in the tank is greater than the pressure in the tire, air flows from the tank into the tire. The simple model is that the pressure in the compressor s tank stays constant during this process. Solution ThetireofvolumeV must end up with n = V/RT moles of air assumed to be an ideal gastobeatpressure at ambient temp T,whereR is the gas constant. Suppose the tire has pressure to start with. Then it already contains n = n / = V/RT moles of air. So, we must add n = n n moles from the tank into the tire, which we can also express as n = n. 1.1 The Tire Is umped by a Compressor The volume V of these n moles in the tank at pressure C and temperature T is V = n RT = nrt. C C s air flows from the tank into the tire through the oneway valve, the tank does work W C at constant by assumption pressure C given by W C = C V = nrt 3 1
2 on the n moles of air. This work appears as internal energy of the air that is injected into the tire. Given the assumption that air is an ideal gas, the motion of air through the oneway valve into the tire is a free expansion, and no work is done in the latter process. So, the internal energy U of the air in the tire rises by amount W C assuming that the air transfer is adiabatic. Therefore, the temperature of the air in the tire rises to T max = T +ΔT,wherenC V ΔT = ΔU = W C. Here, C V =5R/ is the molar specific heat of air at constant volume. Thus, ΔT = W C = RT nc V C V = 5 and T max = T +ΔT = 1+ 5 s a result, the pressure in the tire rises temporarily to max = nrt max V 1 1 = T max = 1+ T 5 T, 4 ] T. 5 1 ]. 6 fter a while, the air cools down to temperature T, and the pressure will be the desired value. However, the filling process won t work if max > C. Example: =1atm, = 3 atm these are absolute pressures, not gauge pressures, and T = 3K = 3C. Then, max =1..7 =3.8 atm,andt max =1.7T = 38K = 17C. The pressure in the compressor must be greater than 3.8 atm.8 atm gauge pressure to be able to pump the tire up to 3 atm atm gauge pressure quickly.. The Tire Is umped by a Hand ump Now we turn to the case of a hand pump, which has a working volume V p that is small compared to the volume V of the tire. The number n p of moles or air delivered in each stroke of the pump is n p = V p n, 7 RT where = atmospheric pressure. So, a large number N of strokes of the hand pump will be required, N = n = V, 8 n p V p recalling eq. 1, and each stroke will make only a tiny difference in the pressure of the tire. t the beginning of the ith stroke, the tire has pressure i 1,wherefori =1, =initial pressure in the tire. My model is that during the ith stroke the pressure in the pump increases until it reaches pressure i, the pressure in the tire at the end of the stoke, after which the pump pressure is held constant at this value while the air in the pump is transferred into the tire.
3 I will again assume that all this happens quickly i.e., adiabatically. We need to know the volume V p of air in the pump when it first reaches pressure i.for, this, we use the law of adiabatic compression of an ideal gas: V γ = V 7/5 = constant, where γ = C /C V =7R//5R/ = 7/5 for air. Thus, 5/7 V p = V p. 9 i The temperature of the air in the pump has now risen to T i V /7 p i = T = T. 1 V p The temperature rise of the air in the pump is /7 ΔT = T i T = T 1]. 11 To accomplish this, we must have done work W equal to the increase in the internal energy of the air in the pump, namely W = n p C V ΔT = V p 5R /7 RT T i 1] = 5 /7 i V p 1]. 1 Next, we push the hot gas of volume V p into the tire at constant pressure i. This requires that we do additional work 5/7 /7 W = i V i = i V p = V p. 13 i So, the total work required to accomplish the ith stroke is W i = W + W = V p 7 /7 i 5 ]. 14 Not only is the energy W i added to that of the gas in the tire during the ith stroke, but also the initial energy U p = C V n p RT =5/ V p of the gas in the pump. Thus, the total energy added to the gas during the ith stroke is ΔU i = W i + 5 V p = 7 /7 i V p = 7 5/7 /7 i V p. 15 The internal energy U of volume V of air at pressure is related by U = C V nrt = C V V = 5 V, 16 so the change in pressure Δ i in the tire during the ith stroke is related by Δ i = 5 ΔU i V = 7 5 5/7 3 /7 V p i V. 17
4 s Δ i is small, we treat eq. 17 as a differential equation, which integrates to or V p d i = 7 /7 5 5/7 V 5/7 = i = 5/7 + 5/7 V p 5/7 + 5/7 V p di, 18 V i, 19 7/5 V i. fter the N strokes needed, according to eq. 8, to fill the tire so that it has pressure when it returns to temperature T, the maximum pressure in the tire is max = 5/7 + 5/7 7/5 = 1+ 5/7 ] 7/5, 1 which is independent of the volume V p of the hand pump. The maximum temperature of the air in the tire is T max = max T, The final internal energy of the air in the tire at temperature T max isu f =5/ max V, while the initial internal energy of the air in the tire plus the N volumes V p of pumped air is U =5/ V + N V p. Hence, the total work done while pumping is W = U f U = 5 maxv V N V p = 5 5/7 ] 7/5 V Example: = =1atm, =3atm,V =.1 m 3, V p =.1 m 3,andT = 3K. Then, N = strokes, max =4.65 atm, T max = 465K = 19C, and W 41, J. To pump up the tire in 1 minutes requires 115 W of power delivered into the air of the tire. n estimate of the efficiency of the engine that provides this power is beyond the scope of this problem...1 Entropy Change The free expansion during filling of the tire, and the cooling at constant volume after filling, are both irreversible processes, so we expect that the entropy of the system has increased. In classical thermodynamics, the entropy S of an ideal gas can be calculated only up to an additive constant. Namely, n moles of gas at temperature T in a volume V have entropy where is an undetermined constant. S = nr +ln VTC V n 4, 4
5 In the present example, n = V/RT moles of air end up in the tire of volume V at pressure and temperature T. Initially, this air was also at temperature T,withn = n / moles in volume V at pressure,andn = n / moles at pressure where they occupied volume NV p = V /, recalling eqs. 1 and 8. Hence, the change in entropy of the air that ends up inside the tire during the pumping is ΔS tire = nr ln VT5/ n R ln VT5/ n R ln V T 5/ n n n = nr ln 1 n n R ln n R ln = n R ln n R ln n n = nr ln + ln = nr ln + ln, 5 which is negative. However, this is not the total entropy change of the Universe, because as the tire cooled from temperature T max back to T,heatΔQ, givenby ΔQ = C V nrt max T = 5 nrt max 1, 6 was transferred into the environment at temperature T, so the entropy of the environment increased by ΔQ/T. Thus, the total entropy change of the Universe during the pumping is 5 ΔS = nr 1+ 5/7 ] 7/5 5 ln ln. 7 For the example with = 1 =1atmand =3atm,ΔS =.8nR. 5
The First Law of Thermodynamics
Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat Pumps The Carnot
More informationEntropy and the Second Law of Thermodynamics. The Adiabatic Expansion of Gases
Lecture 7 Entropy and the Second Law of Thermodynamics 15/08/07 The Adiabatic Expansion of Gases In an adiabatic process no heat is transferred, Q=0 = C P / C V is assumed to be constant during this process
More informationProblem Set 3 Solutions
Chemistry 360 Dr Jean M Standard Problem Set 3 Solutions 1 (a) One mole of an ideal gas at 98 K is expanded reversibly and isothermally from 10 L to 10 L Determine the amount of work in Joules We start
More informationChapter 15: Thermodynamics
Chapter 15: Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat
More informationTHE KINETIC THEORY OF GASES
Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure
More informationAnswer, Key Homework 6 David McIntyre 1
Answer, Key Homework 6 David McIntyre 1 This printout should have 0 questions, check that it is complete. Multiplechoice questions may continue on the next column or page: find all choices before making
More informationa) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L
hermodynamics: Examples for chapter 4. 1. One mole of nitrogen gas is allowed to expand from 0.5 to 10 L reversible and isothermal process at 300 K. Calculate the change in molar entropy using a the ideal
More informationProblem Set 4 Solutions
Chemistry 360 Dr Jean M Standard Problem Set 4 Solutions 1 Two moles of an ideal gas are compressed isothermally and reversibly at 98 K from 1 atm to 00 atm Calculate q, w, ΔU, and ΔH For an isothermal
More informationReading. Spontaneity. Monday, January 30 CHEM 102H T. Hughbanks
Thermo Notes #3 Entropy and 2nd Law of Thermodynamics Monday, January 30 CHEM 102H T. Hughbanks Reading You should reading Chapter 7. Some of this material is quite challenging, be sure to read this material
More informationThe Stirling Engine. Gunther Cronenberg. March 28, written in addition to the Stirling Lab at Uppsala University in February 2005
The Stirling Engine Gunther Cronenberg March 28, 2005 written in addition to the Stirling Lab at Uppsala University in February 2005 1 Contents 1 Introduction 3 2 History 3 3 Applications and Advantages
More informationc. Applying the first law of thermodynamics from Equation 15.1, we find that c h c h.
Week 11 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationThe First Law of Thermodynamics: Closed Systems. Heat Transfer
The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy gained
More informationCHAPTER 25 IDEAL GAS LAWS
EXERCISE 139, Page 303 CHAPTER 5 IDEAL GAS LAWS 1. The pressure of a mass of gas is increased from 150 kpa to 750 kpa at constant temperature. Determine the final volume of the gas, if its initial volume
More informationHeat and Work. First Law of Thermodynamics 9.1. Heat is a form of energy. Calorimetry. Work. First Law of Thermodynamics.
Heat and First Law of Thermodynamics 9. Heat Heat and Thermodynamic rocesses Thermodynamics is the science of heat and work Heat is a form of energy Calorimetry Mechanical equivalent of heat Mechanical
More information20 m neon m propane 20
Problems with solutions:. A m 3 tank is filled with a gas at room temperature 0 C and pressure 00 Kpa. How much mass is there if the gas is a) Air b) Neon, or c) Propane? Given: T73K; P00KPa; M air 9;
More informationLaws of Thermodynamics
Laws of Thermodynamics Thermodynamics Thermodynamics is the study of the effects of work, heat, and energy on a system Thermodynamics is only concerned with macroscopic (largescale) changes and observations
More informationLecture 36 (Walker 18.8,18.56,)
Lecture 36 (Walker 18.8,18.56,) Entropy 2 nd Law of Thermodynamics Dec. 11, 2009 Help Session: Today, 3:104:00, TH230 Review Session: Monday, 3:104:00, TH230 Solutions to practice Lecture 36 final on
More informationThe Kinetic Theory of Gases Sections Covered in the Text: Chapter 18
The Kinetic Theory of Gases Sections Covered in the Text: Chapter 18 In Note 15 we reviewed macroscopic properties of matter, in particular, temperature and pressure. Here we see how the temperature and
More informationPSS 17.1: The Bermuda Triangle
Assignment 6 Consider 6.0 g of helium at 40_C in the form of a cube 40 cm. on each side. Suppose 2000 J of energy are transferred to this gas. (i) Determine the final pressure if the process is at constant
More information= T T V V T = V. By using the relation given in the problem, we can write this as: ( P + T ( P/ T)V ) = T
hermodynamics: Examples for chapter 3. 1. Show that C / = 0 for a an ideal gas, b a van der Waals gas and c a gas following P = nr. Assume that the following result nb holds: U = P P Hint: In b and c,
More informationExpansion and Compression of a Gas
Physics 6B  Winter 2011 Homework 4 Solutions Expansion and Compression of a Gas In an adiabatic process, there is no heat transferred to or from the system i.e. dq = 0. The first law of thermodynamics
More information31 Copyright Richard M. Felder, Lisa G. Bullard, and Michael D. Dickey (2014)
EQUATIONS OF STATE FOR GASES Questions A gas enters a reactor at a rate of 255 SCMH. What does that mean? An orifice meter mounted in a process gas line indicates a flow rate of 24 ft 3 /min. The gas temperature
More informationChem 338 Homework Set #2 solutions September 12, 2001 From Atkins: 2.8, 2.15, 2.16, 2.17, 2.18, 2.21, 2.23, 2.26
Chem 8 Homework Set # solutions September 1, 001 From Atkins:.8,.15,.16,.17,.18,.1,.,.6.8) A sample of methane of mass 4.50 g occupies 1.7 L at 10 K. (a) Calculate the work done when the gas expands isothermally
More informationStatistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004
Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein
More informationExperiment 12E LIQUIDVAPOR EQUILIBRIUM OF WATER 1
Experiment 12E LIQUIDVAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tallform beaker, 10 ml graduated cylinder, 10 to 110 o C thermometer, thermometer clamp, plastic pipet, long
More informationProblem Set 1 3.20 MIT Professor Gerbrand Ceder Fall 2003
LEVEL 1 PROBLEMS Problem Set 1 3.0 MIT Professor Gerbrand Ceder Fall 003 Problem 1.1 The internal energy per kg for a certain gas is given by U = 0. 17 T + C where U is in kj/kg, T is in Kelvin, and C
More informationENTROPY AND THE SECOND LAW OF THERMODYNAMICS
Chapter 20: ENTROPY AND THE SECOND LAW OF THERMODYNAMICS 1. In a reversible process the system: A. is always close to equilibrium states B. is close to equilibrium states only at the beginning and end
More informationThermodynamics AP Physics B. Multiple Choice Questions
Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium
More informationSecond Law of Thermodynamics Alternative Statements
Second Law of Thermodynamics Alternative Statements There is no simple statement that captures all aspects of the second law. Several alternative formulations of the second law are found in the technical
More informationTemperature, Expansion, Ideal Gas Law
Temperature, Expansion, Ideal Gas Law Physics 1425 Lecture 30 Michael Fowler, UVa Everything s Made of Atoms This idea was only fully accepted about 100 years ago in part because of Einstein s analysis
More informationLecture 6: Intro to Entropy
Lecture 6: Intro to Entropy Reading: Zumdahl 0., 0., 0.3 Outline: Why enthalpy isn t enough. Statistical interpretation of entropy Boltzmann s Formula Heat engine leads to Entropy as a state function Problems:Z0.4,
More informationChapter 22. Heat Engines, Entropy, and the Second Law of Thermodynamics
Chapter 22 Heat Engines, Entropy, and the Second Law of Thermodynamics C HAP T E R O UTLI N E 221 Heat Engines and the Second Law of Thermodynamics 222 Heat Pumps and Refrigerators 223 Reversible and Irreversible
More informationChapter 6 Thermodynamics: The First Law
Key Concepts 6.1 Systems Chapter 6 Thermodynamics: The First Law Systems, States, and Energy (Sections 6.1 6.8) thermodynamics, statistical thermodynamics, system, surroundings, open system, closed system,
More informationThe Second Law of Thermodynamics
The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction
More informationPhysics 5D  Nov 18, 2013
Physics 5D  Nov 18, 2013 30 Midterm Scores B } Number of Scores 25 20 15 10 5 F D C } A A A + 0 059.9 6064.9 6569.9 7074.9 7579.9 8084.9 Percent Range (%) The two problems with the fewest correct
More informationPhysics 23 Fall 1993 Lab 2  Adiabatic Processes
Physics 23 Fall 1993 Lab 2  Adiabatic Processes Theory This laboratory is a study of the adiabatic expansion of three gases: helium, air, and carbon dioxide The experiments are carried out at a pressure
More informationThe first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.
The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed
More informationCHAPTER 12. Gases and the KineticMolecular Theory
CHAPTER 12 Gases and the KineticMolecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids
More informationTHERMODYNAMIC PROPERTIES AND CALCULATION. Academic Resource Center
THERMODYNAMIC PROPERTIES AND CALCULATION Academic Resource Center THERMODYNAMIC PROPERTIES A quantity which is either an attribute of an entire system or is a function of position which is continuous and
More informationEXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor
EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,
More informationLecture 14 Chapter 19 Ideal Gas Law and Kinetic Theory of Gases. Chapter 20 Entropy and the Second Law of Thermodynamics
Lecture 14 Chapter 19 Ideal Gas Law and Kinetic Theory of Gases Now we to look at temperature, pressure, and internal energy in terms of the motion of molecules and atoms? Relate to the 1st Law of Thermodynamics
More informationReversible & Irreversible Processes
Reversible & Irreversible Processes Example of a Reversible Process: Cylinder must be pulled or pushed slowly enough (quasistatically) that the system remains in thermal equilibrium (isothermal). Change
More informationCHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank
CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS Blank SONNTAG/BORGNAKKE STUDY PROBLEM 71 7.1 A car engine and its fuel consumption A car engine produces 136 hp on the output shaft with a thermal efficiency
More informationLecture 3: State Functions
Lecture 3: State Functions Reading: Zumdahl 9.3, 9.4 Outline Example of Thermo. Pathways State Functions (9.4 for laboratory) Problems: (Z9.72,Z9.84),(Z9.29,Z9.30),(Z9.32,Z9.38) Z9.13 (Find the mistake)
More informationCompressor Efficiency Definitions
Compressor Efficiency Definitions K. Ueno, PhD, and R. E. Bye, VAIREX Corporation K. S. Hunter, PhD, University of Colorado May 12th, 2003 Many standard efficiency definitions exist that qualify the mass
More informationLiquid Hydrogen. Properties of Cooper Pairs. Two forms of hydrogen molecule. Percent para H 2 vs. Temperature. Liquefaction of Gases
Liquefaction of Gases Hydrogen as an example See Flynn Ch. 3 and 6 Properties of Cooper Pairs Which of the following is true for Cooper pairs? A. All Cooper pairs have total spin S = 0 B. All Cooper pairs
More informationAP CHEMISTRY 2007 SCORING GUIDELINES. Question 2
AP CHEMISTRY 2007 SCORING GUIDELINES Question 2 N 2 (g) + 3 F 2 (g) 2 NF 3 (g) ΔH 298 = 264 kj mol 1 ; ΔS 298 = 278 J K 1 mol 1 The following questions relate to the synthesis reaction represented by the
More informationObjective  Determining characteristic curve of a fourstroke Diesel engine  Calculating thermal efficiency of the engine
Objective  Determining characteristic curve of a fourstroke Diesel engine  Calculating thermal efficiency of the engine Apparatus The experimental setup, shown in Fig. 1, has three main parts: engine,
More informationStirling heat engine Internal combustion engine (Otto cycle) Diesel engine Steam engine (Rankine cycle) Kitchen Refrigerator
Lecture. Real eat Engines and refrigerators (Ch. ) Stirling heat engine Internal combustion engine (Otto cycle) Diesel engine Steam engine (Rankine cycle) Kitchen Refrigerator Carnot Cycle  is not very
More informationHEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases
UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius
More informationR = 1545 ftlbs/lb mole ºR R = 1.986 BTU/lb mole ºR R = 1.986 cal/gm mole ºK
Flow Through the Regulator The SCUBA tank regulator arrangement can be idealized with the diagram shown below. This idealization is useful for computing pressures and gas flow rates through the system.
More informationEntropy Changes & Processes
Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3, 7th edition; 3.3, 8th edition Entropy of Phase ransition at the ransition emperature Expansion of the Perfect Gas
More information39th International Physics Olympiad  Hanoi  Vietnam  2008. Theoretical Problem No. 3
CHANGE OF AIR TEMPERATURE WITH ALTITUDE, ATMOSPHERIC STABILITY AND AIR POLLUTION Vertical motion of air governs many atmospheric processes, such as the formation of clouds and precipitation and the dispersal
More informationAP CHEMISTRY 2008 SCORING GUIDELINES (Form B)
AP CHEMISTRY 2008 SCORING GUIDELINES (Form B) Question 6 Use principles of thermodynamics to answer the following questions. (a) The gas N 2 O 4 decomposes to form the gas NO 2 according to the equation
More informationIDEAL AND NONIDEAL GASES
2/2016 ideal gas 1/8 IDEAL AND NONIDEAL GASES PURPOSE: To measure how the pressure of a lowdensity gas varies with temperature, to determine the absolute zero of temperature by making a linear fit to
More informationEngineering Software P.O. Box 2134, Kensington, MD 20891 Phone: (301) 9199670 Web Site:
Engineering Software P.O. Box 2134, Kensington, MD 20891 Phone: (301) 9199670 EMail: info@engineering4e.com Web Site: http://www.engineering4e.com Brayton Cycle (Gas Turbine) for Propulsion Application
More information= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm
Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by
More informationFUNDAMENTALS OF ENGINEERING THERMODYNAMICS
FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant
More informationBoltzmann Distribution Law
Boltzmann Distribution Law The motion of molecules is extremely chaotic Any individual molecule is colliding with others at an enormous rate Typically at a rate of a billion times per second We introduce
More informationEXPERIMENT 13: THE IDEAL GAS LAW AND THE MOLECULAR WEIGHT OF GASES
Name Section EXPERIMENT 13: THE IDEAL GAS LAW AND THE MOLECULAR WEIGHT OF GASES PRELABORATORY QUESTIONS The following preparatory questions should be answered before coming to lab. They are intended to
More informationExergy: the quality of energy N. Woudstra
Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if
More informationTHE SECOND LAW OF THERMODYNAMICS
1 THE SECOND LAW OF THERMODYNAMICS The FIRST LAW is a statement of the fact that ENERGY (a useful concept) is conserved. It says nothing about the WAY, or even WHETHER one form of energy can be converted
More informationMolar Mass of Butane
Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine the molar mass of butane using Dalton s Law of Partial Pressures
More informationCalculating Power of a CO 2 Compressor
Undergraduate Journal of Mathematical Modeling: One + Two Volume 2 2009 Fall Issue 1 Article 9 Calculating Power of a CO 2 Compressor Jennifer Wedebrock University of South Florida Advisors: Mohamed Elhamdadi,
More informationEntropy and The Second Law of Thermodynamics
The Second Law of Thermodynamics (SL) Entropy and The Second Law of Thermodynamics Explain and manipulate the second law State and illustrate by example the second law of thermodynamics Write both the
More information7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.
CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,
More informationChapter 6 Energy Equation for a Control Volume
Chapter 6 Energy Equation for a Control Volume Conservation of Mass and the Control Volume Closed systems: The mass of the system remain constant during a process. Control volumes: Mass can cross the boundaries,
More informationTHERMODYNAMICS NOTES  BOOK 2 OF 2
THERMODYNAMICS & FLUIDS (Thermodynamics level 1\Thermo & Fluids Module Thermo Book 2ContentsDecember 07.doc) UFMEQU201 THERMODYNAMICS NOTES  BOOK 2 OF 2 Students must read through these notes and
More informationGas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.
Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.
More information1 CHAPTER 10 THE JOULE AND JOULETHOMSON EXPERIMENTS
AER 0 E JOLE AND JOLEOMON EXERIMEN 0 Introduction Equation 84, γ constant, tells us how to calculate the drop in temperature if a gas expands adiabatically and reversibly; it is expanding against an external
More informationApplied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture  1 Introduction & Some Definitions Good afternoon everybody.
More informationPhysics 2101 Section 3 April 26th: Chap. 18 : Chap Ann n ce n e t nnt : Exam #4, April Exam #4,
Physics 2101 Section 3 April 26 th : Chap. 181919 Announcements: n nt Exam #4, April 28 th (Ch. 13.618.8) 18.8) Final Exam: May 11 th (Tuesday), 7:30 AM Make up Final: May 15 th (Saturday) 7:30 AM Class
More informationUNIT 5 REFRIGERATION SYSTEMS
UNIT REFRIGERATION SYSTEMS Refrigeration Systems Structure. Introduction Objectives. Vapour Compression Systems. Carnot Vapour Compression Systems. Limitations of Carnot Vapour Compression Systems with
More informationThe Gas Laws. The effect of adding gas. 4 things. Pressure and the number of molecules are directly related. Page 1
The Gas Laws Describe HOW gases behave. Can be predicted by the theory. The Kinetic Theory Amount of change can be calculated with mathematical equations. The effect of adding gas. When we blow up a balloon
More informationWe will try to get familiar with a heat pump, and try to determine its performance coefficient under different circumstances.
C4. Heat Pump I. OBJECTIVE OF THE EXPERIMENT We will try to get familiar with a heat pump, and try to determine its performance coefficient under different circumstances. II. INTRODUCTION II.1. Thermodynamic
More informationLesson 42c: PV Diagrams
Lesson 42c: V Diagrams From the last section, you were probably wondering what happens when we do something like add heat to a sealed cylinder. This sounds like a pretty dangerous idea if you think back
More informationChapter 6: Using Entropy
Chapter 6: Using Entropy Photo courtesy of U.S. Military Academy photo archives. Combining the 1 st and the nd Laws of Thermodynamics ENGINEERING CONTEXT Up to this point, our study of the second law has
More informationPhys222 W11 Quiz 1: Chapters 1921 Keys. Name:
Name:. In order for two objects to have the same temperature, they must a. be in thermal equilibrium.
More information( ) = ( ) = {,,, } β ( ), < 1 ( ) + ( ) = ( ) + ( )
{ } ( ) = ( ) = {,,, } ( ) β ( ), < 1 ( ) + ( ) = ( ) + ( ) max, ( ) [ ( )] + ( ) [ ( )], [ ( )] [ ( )] = =, ( ) = ( ) = 0 ( ) = ( ) ( ) ( ) =, ( ), ( ) =, ( ), ( ). ln ( ) = ln ( ). + 1 ( ) = ( ) Ω[ (
More informationGas Laws. vacuum. 760 mm. air pressure. mercury
Gas Laws Some chemical reactions take place in the gas phase and others produce products that are gases. We need a way to measure the quantity of compounds in a given volume of gas and relate that to moles.
More informationBasic problems for ideal gases and problems to the first law of thermodynamics and cycles
Basic problems for ideal gases and problems to the first law of thermodynamics and cycles SHORT SUMMARY OF THE FORMS: Equation of ideal gases: Number of moles: Universal gas constant: General gas equation
More informationCO 2 41.2 MPa (abs) 20 C
comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle
More informationThermodynamics and Kinetics. Lecture 14 Properties of Mixtures Raoult s Law Henry s Law Activity NC State University
Thermodynamics and Kinetics Lecture 14 Properties of Mixtures Raoult s Law Henry s Law Activity NC State University Measures of concentration There are three measures of concentration: molar concentration
More informationChemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES
Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES The learning objectives of this experiment are to explore the relationship between the temperature and vapor pressure of water. determine the molar
More information(b) 1. Look up c p for air in Table A.6. c p = 1004 J/kg K 2. Use equation (1) and given and looked up values to find s 2 s 1.
Problem 1 Given: Air cooled where: T 1 = 858K, P 1 = P = 4.5 MPa gage, T = 15 o C = 88K Find: (a) Show process on a Ts diagram (b) Calculate change in specific entropy if air is an ideal gas (c) Evaluate
More informationEngineering Software P.O. Box 2134, Kensington, MD 20891 Phone: (301) 9199670 Web Site:
Engineering Software P.O. Box 2134, Kensington, MD 20891 Phone: (301) 9199670 EMail: info@engineering4e.com Web Site: http://www.engineering4e.com Carnot Cycle Analysis Carnot Cycle Analysis by Engineering
More informationAnswers: Given: No. [COCl 2 ] = K c [CO][Cl 2 ], but there are many possible values for [CO]=[Cl 2 ]
Chemical Equilibrium What are the concentrations of reactants and products at equilibrium? How do changes in pressure, volume, temperature, concentration and the use of catalysts affect the equilibrium
More informationEsystem = 0 = Ein Eout
AGENDA: I. Introduction to Thermodynamics II. First Law Efficiency III. Second Law Efficiency IV. Property Diagrams and Power Cycles V. Additional Material, Terms, and Variables VI. Practice Problems I.
More informationis the stagnation (or total) pressure, constant along a streamline.
70 Incompressible flow (page 60): Bernoulli s equation (steady, inviscid, incompressible): p 0 is the stagnation (or total) pressure, constant along a streamline. Pressure tapping in a wall parallel to
More informationThe Basic Physics of Heat Pumps
The Basic Physics of Heat Pumps Hilliard Kent Macomber Emeritus Professor of Physics University of Northern Iowa June 2002 Introduction In order to understand the basic physics of heat pumps, it is necessary
More informationThe Precharge Calculator
5116 Bissonnet #341, Bellaire, TX 77401 Telephone and Fax: (713) 6636361 www.mcadamsengineering.com The Precharge Calculator Purpose: The Precharge Calculator by Interlink Systems, Inc. is a Windows based
More informationSupplementary Notes on Entropy and the Second Law of Thermodynamics
ME 4 hermodynamics I Supplementary Notes on Entropy and the Second aw of hermodynamics Reversible Process A reversible process is one which, having taken place, can be reversed without leaving a change
More informationCHAPTER 27 SPECIFIC HEAT CAPACITIES OF GASES
HATE 7 SEIFI HEAT AAITIES OF GASES. N mole, W g/mol, m/s K.E. of the vessel Internal energy of the gas (/) mv (/) J n r(t) 8. T T k. 8.. m g, t.7 cal/g J. J/al. dq du + dw Now, (for a rigid body) So,
More informationApplied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture  7 Ideal Gas Laws, Different Processes Let us continue
More informationThe Equipartition Theorem
The Equipartition Theorem Degrees of freedom are associated with the kinetic energy of translations, rotation, vibration and the potential energy of vibrations. A result from classical statistical mechanics
More informationThermodynamics of Mixing
Thermodynamics of Mixing Dependence of Gibbs energy on mixture composition is G = n A µ A + n B µ B and at constant T and p, systems tend towards a lower Gibbs energy The simplest example of mixing: What
More informationThe Molar Mass of a Gas
The Molar Mass of a Gas Goals The purpose of this experiment is to determine the number of grams per mole of a gas by measuring the pressure, volume, temperature, and mass of a sample. Terms to Know Molar
More informationGas particles move in straight line paths. As they collide, they create a force, pressure.
#28 notes Unit 4: Gases Ch. Gases I. Pressure and Manometers Gas particles move in straight line paths. As they collide, they create a force, pressure. Pressure = Force / Area Standard Atmospheric Pressure
More informationChemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10 Gases
Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 Gases A Gas Has neither a definite volume nor shape. Uniformly fills any container.
More informationSOLUTION MANUAL SI UNIT PROBLEMS CHAPTER 9 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition
SOLUTION MANUAL SI UNIT PROBLEMS CHAPTER 9 SONNTAG BORGNAKKE VAN WYLEN FUNDAMENTALS of Thermodynamics Sixth Edition CONTENT SUBSECTION PROB NO. Correspondence table ConceptStudy Guide Problems 20 Steady
More information