A simple type system with two identity types


 Maximillian Ford
 2 years ago
 Views:
Transcription
1 A simple type system with two identity types Vladimir Voevodsky Started February 23, 201 Work in progress. 1 Introduction We call this system and its further extensions HTS for homotopy type system. It is an extension of the MartinLof type system with some additional constructs which reflect the structures which exist in the target of the canonical univalent model of the MartinLof system. 2 Core inference rules Structural rules for each i N Γ, x : T, Γ where l(γ) = i Γ, x : T, Γ x : T Γ, x : T Γ T d = T Γ T 1 d = T 2 Γ T 2 d = T 1 Γ T 1 d = T 2 Γ T 2 d = T 3 Γ T 1 d = T 3 5. (*) 6. (*) 7. (*) Γ o : T Γ o = d o : T Γ o d 1 = o 2 : T Γ o d 2 = o 1 : T Γ o d 1 = o 2 : T Γ o d 2 = o 3 : T Γ o d 1 = o 3 : T 1
2 8. 9. (*) 10. Γ o : T Γ T = d T Γ o : T Γ o = d o : T Γ T = d T Γ o = d o : T Γ T F ib Γ, x : T Dependent products Γ, x : T 1, y : T 2 Γ, y : [ ](T 1, x.t 2 ) Γ T 1 F ib Γ, x : T 1 T 2 F ib Γ [ ](T 1, x.t 2 ) F ib Γ T 1 d = T 1 Γ, x : T 1, y : T 2 Γ [ ](T 1, x.t 2 ) d = [ ](T 1, x.t 2 ) Γ, x : T 1 T 2 d = T 2 Γ [ ](T 1, x.t 2 ) d = [ ](T 1, x.t 2) Γ, x : T 1 o : T 2 Γ [λ](t 1, x.o) : [ ](T 1, x.t 2 ) Γ T 1 d = T 1 Γ, x : T 1 o : T 2 Γ [λ](t 1, x.o) d = [λ](t 1, x.o) : [ ](T 1, x.t 2 ) Γ, x : T 1 o d = o : T 2 Γ [λ](t 1, x.o) d = [λ](t 1, x.o ) : [ ](T 1, x.t 2 ) Γ f : [ ](T 1, x.t 2 ) Γ o : T 1 Γ [ev](f, o) : T 2 [o/x] 2
3 9. (*) Γ f d = f : [ ](T 1, x.t 2 ) Γ o : T 1 Γ [ev](f, o) d = [ev](f, o) : T 2 [o/x] 10. (*) 1 1 Γ f : [ ](T 1, x.t 2 ) Γ o = o : T 1 Γ [ev](f, o) = d [ev](f, o ) : T 2 [o/x] Γ o 1 : T 1 Γ, x : T 1 o 2 : T 2 Γ [ev]([λ](t 1, x.o 2 ), o 1 ) = d o 2 [o 1 /x] : T 2 [o 1 /x] Γ f : [ ](T 1, x.t 2 ) Γ [λ](t 1, x.[ev](f, x, T 2 [y/x])) = d f : [ ](T 1, x.t 2 ) Exact equality types 5. (*) 6. Γ o 1 : X Γ o 2 : X Γ, x : [Id](o 1, o 2 ) Γ o 1 d = o 1 : X Γ o 2 : X Γ [Id](o 1, o 2 ) d = [Id](o 1, o 2 ) Γ o 1 : X Γ o 2 d = o 2 : X Γ [Id](o 1, o 2 ) d = [Id](o 1, o 2) Γ o : X Γ [refl](o) : [Id](o, o) Γ o d = o : X Γ [refl](o) d = [refl](o ) : [Id](o, o) Γ, x : X Γ o 1 : X Γ, x : X, x : X, e : [Id](x, x ), y : P Γ o 2 : X Γ, x0 : X s0 : P [x0/x, x0/x, [refl](x0)/e] Γ eo : [Id](o 1, o 2 ) Γ [J](X, x.x.e.p, x0.s0, o 1, o 2, eo) : P 7. (*) Behavior of [J] for X d = X, P d = P, o d = o, o 1 d = o 1, o 2 d = o 2 and eo d = eo. 3
4 8. [J](X, x.x.e.p, x0.s0, o, o, [refl](o)) d = s0[o/x0] 9. Γ o 1 : X Γ o 2 : X Γ o : [Id](o 1, o 2 ) Γ o 1 d = o 2 : X Path equality types 5. (*) 6. Γ X F ib Γ o 1 : X Γ o 2 : X Γ [P aths](o 1, o 2 ) F ib Γ X F ib Γ o 1 = o 1 : X Γ o 2 : X Γ [P aths](o 1, o 2 ) d = [P aths](o 1, o 2 ) Γ X F ib Γ o 1 : X Γ o 2 d = o 2 : X Γ [P aths](o 1, o 2 ) d = [P aths](o 1, o 2) Γ X F ib Γ o : X Γ [idpath](o) : [P aths](o, o) Γ X F ib Γ o d = o : X Γ [idpath](o) d = [idpath](o ) : [P aths](o, o) Γ X F ib Γ o 1 : X Γ, x : X, x : X, e : [P aths](x, x ) P F ib Γ o 2 : X Γ, x0 : X s0 : P [x0/x, x0/x, [idpath](x0)/e] Γ eo : [P aths](o 1, o 2 ) Γ [J F ](X, x.x.e.p, x0.s0, o 1, o 2, eo) : P 7. (*) Behavior of [J F ] for X d = X, P d = P, o d = o, o 1 d = o 1, o 2 d = o 2 and eo d = eo. 8. [J F ](X, x.x.e.p, x0.s0, o, o, [idpath](o)) d = s0[o/x0] Universe of all types Γ Γ U F ib Γ o : U Γ, x : [El](o) 4
5 (?) Γ o d = o : U Γ [El](o) d = [El](o ) Γ o : U Γ o : U Γ [El](o) d = [El](o ) Γ o d = o : U Γ o 1 : U Γ, x : [El](o 1 ) o 2 : U Γ [forall](o 1, x.o 2 ) : U Γ o 1 : U Γ, x : [El](o 1 ) o 2 : U Γ [El][forall](o 1, x.o 2 ) d = [ ]([El](o 1 ), x.[el](o 2 )) Γ o : U Γ o 1 : [El](o) Γ o 2 : [El](o) Γ [id](o 1, o 2 ) : U Γ o : U Γ o 1 : [El](o) Γ o 2 : [El](o) Γ [El][id](o 1, o 2 ) d = [Id](o 1, o 2 ) Universe of fibrant types (?) Γ Γ U F F ib Γ o : U F Γ [El F ](o) F ib Γ o d = o : U F Γ [El F ](o) d = [El F ](o ) Γ o : U F Γ o : U F Γ [El F ](o) d = [El F ](o ) 5. Γ o 1 : U F Γ o d = o : U F Γ, x : [El F ](o 1 ) o 2 : U F Γ [forall F ](o 1, x.o 2 ) : U F 5
6 Γ o 1 : U F Γ, x : [El F ](o 1 ) o 2 : U F Γ [El F ][forall F ](o 1, x.o 2 ) d = [ ]([El F ](o 1 ), x.[el F ](o 2 )) Γ o : U F Γ o 1 : [El F ](o) Γ o 2 : [El F ](o) Γ [paths](o 1, o 2 ) : U F Γ o : U F Γ o 1 : [El F ](o) Γ o 2 : [El F ](o) Γ [El F ][paths](o 1, o 2 ) d = [P aths](o 1, o 2 ) Universe inclusion Γ Γ [j] : [ ](U F, x.u) Γ o : U F Γ [El F ](o) d = [El][ev]([j], o) Resizing rules Γ T F ib Γ p : W eq(t, [El F ](t )) Γ [rr0](t, t, p) : U F Γ T F ib Γ p : W eq(t, [El F ](t )) Γ [El F ][rr0](t, t, p) d = T Γ T F ib Γ p : Ishprop(T ) Γ [rr1](t, p) : U F Γ T F ib Γ p : Ishprop(T ) Γ [El F ][rr1](t, p) d = T The system described above is the smallest system where some interesting mathematics can be developed. One can also consider the following additional constructions: The unit type and dependent sums 6
7 The inference rules are the usual ones. The ηrules saying that x = d pair (pr1 x) (pr2 x) for x in a dependent sum and x = d x for x, x in the unit type are derivable. The unit type is fibrant and the dependent sum where both arguments are fibrant is fibrant. There are unit as object of U F and dependent sum operation on families of objects of U (reps. U F ) parametrized by types given by object of U (reps. U F ). The empty type and disjoint union The inference rules are the usual ones. The ηrules are derivable. The empty type is fibrant and the disjoint union of two fibrant types is fibrant. There are empty as object of U F and obvious disjoint union operation on objects of U (reps. U F ). Recursive types As far as I understand the material of the last section of the Notes on Type systems can be made precise in this type systems. Namely, there is a way to express any strictly positive inductive definition as a combination of the constructions already discussed with parametrized Wtypes. The later correspond to the inductive definitions of Coq of the form Inductive IC(A:Type)(a:A)(B:A>Type)(D:forall x:a, ( B x > Type ))(q:forall x:a, forall y:b x, forall z: D x y, A):= c: forall b:b a, forall f : (forall d: D a b, IC A (q a b d) B D q), IC A a B D q. and introduced by the inference rule for the type and Γ a : A Γ, x : A, y : B, z : D q : A Γ, w : [IC](A, a, x.b, x.y.d, x.y.z.q) Γ a : A Γ, x : A, y : B, z : D q : A Γ b : B[a/x] Γ, z : D[a/x, b/y] f : ICqa Γ [c](a, a, x.b, x.y.d, x.y.z.q, b, z.f) : [IC](A, a, x.b, x.y.d, x.y.z.q) for the constructor. The inference rule for the eliminator can be more or less copied from the type of IC rect printed by Coq. Similarly one can write down the computation rule (definitional equality associated with the eliminator) from the general such rules used in Coq. The type IC is fibrant if all the arguments are fibrant i.e. if one has Γ A F ib Γ, x : A B F ib Γ, x : A, b : B D F ib There are obvious versions of IC on the level of the universes U and U F. 7
8 In particular, in this system the datatypes such as the types of natural numbers or binary trees can be expressed through the Wtypes obtaining types which have both the computation rules obtained in the strictly positive formalism as well as recursive ηrules which allow to prove definitional equality by induction. It will be very interesting to extend to this system the formalism of more general inductive definitions (such as inductiveinductive and inductiverecursive). Multiple universes The system of multiple universes connected by explicit inclusions as in the specification of TS0 is easy to add to HTS. There will be two universes for each universe  one for all types and one for fibrant types. Univalence axiom Univalence axiom can be formulated in the usual way. It should use path equalities and U F. Elementary properties of the system Lemma 1 [strars] The inference rules which are marked with (*) follow from the other inference rules. Proof: Straightforward by transforming definitional equality into exact equality, using J and transforming the exact equality back to the definitional one using the reflexion rule. Lemma 2 [uip] In any type system with exact equality [Id], [ref l], [J] satisfying inference rules given above one has: Γ e 1 : [Id](o 1, o 2 ) Γ e 2 : [Id](o 1, o 2 ) Γ e 1 d = e 2 : [Id](o 1, o 2 ) Proof: It is sufficient to apply J with P defined by which is derivable since Γ, x 1 : X, x 2 : X, e : [Id](x 1, x 2 ), ϕ : [Id](e, [refl](x 1 )) Γ, x 1 : X, x 2 : X, e : [Id](x 1, x 2 ) [refl](x 1 ) : [Id](x 1, x 2 ) is derivable using the reflection rule. Lemma 3 [funext] In any type system with the dependent products and exact equality satisfying the inference rules as above the functional extensionality holds for the exact equality. Proof: Straightforward from the rule ensuring that definitional equality propagates through λ. 8
Equality and dependent type theory. Oberwolfach, March 2 (with some later corrections)
Oberwolfach, March 2 (with some later corrections) The Axiom of Univalence, a typetheoretic view point In type theory, we reduce proofchecking to typechecking Hence we want typechecking to be decidable
More informationSOLUTIONS TO ASSIGNMENT 1 MATH 576
SOLUTIONS TO ASSIGNMENT 1 MATH 576 SOLUTIONS BY OLIVIER MARTIN 13 #5. Let T be the topology generated by A on X. We want to show T = J B J where B is the set of all topologies J on X with A J. This amounts
More informationDependent Types at Work
Dependent Types at Work Ana Bove and Peter Dybjer Chalmers University of Technology, Göteborg, Sweden {bove,peterd}@chalmers.se Abstract. In these lecture notes we give an introduction to functional programming
More informationA CONSTRUCTION OF THE UNIVERSAL COVER AS A FIBER BUNDLE
A CONSTRUCTION OF THE UNIVERSAL COVER AS A FIBER BUNDLE DANIEL A. RAMRAS In these notes we present a construction of the universal cover of a path connected, locally path connected, and semilocally simply
More informationSection IV.1: Recursive Algorithms and Recursion Trees
Section IV.1: Recursive Algorithms and Recursion Trees Definition IV.1.1: A recursive algorithm is an algorithm that solves a problem by (1) reducing it to an instance of the same problem with smaller
More informationA single minimal complement for the c.e. degrees
A single minimal complement for the c.e. degrees Andrew Lewis Leeds University, April 2002 Abstract We show that there exists a single minimal (Turing) degree b < 0 s.t. for all c.e. degrees 0 < a < 0,
More informationVerifying security protocols using theorem provers
1562 2007 7986 79 Verifying security protocols using theorem provers Miki Tanaka National Institute of Information and Communications Technology Koganei, Tokyo 1848795, Japan Email: miki.tanaka@nict.go.jp
More informationFIBRATION SEQUENCES AND PULLBACK SQUARES. Contents. 2. Connectivity and fiber sequences. 3
FIRTION SEQUENES ND PULLK SQURES RY MLKIEWIH bstract. We lay out some foundational facts about fibration sequences and pullback squares of topological spaces. We pay careful attention to connectivity ranges
More informationIntroduction. and set F = F ib(f) and G = F ib(g). If the total fiber T of the square is connected, then T >
A NEW ELLULAR VERSION OF LAKERSMASSEY WOJIEH HAHÓLSKI AND JÉRÔME SHERER Abstract. onsider a pushout diaram of spaces A, construct the homotopy pushout, and then the homotopy pullback of the diaram one
More informationSome Definitions about Sets
Some Definitions about Sets Definition: Two sets are equal if they contain the same elements. I.e., sets A and B are equal if x[x A x B]. Notation: A = B. Recall: Sets are unordered and we do not distinguish
More informationWeek 5 Integral Polyhedra
Week 5 Integral Polyhedra We have seen some examples 1 of linear programming formulation that are integral, meaning that every basic feasible solution is an integral vector. This week we develop a theory
More informationGraphs without proper subgraphs of minimum degree 3 and short cycles
Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract
More information136 CHAPTER 4. INDUCTION, GRAPHS AND TREES
136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics
More informationORIENTATIONS. Contents
ORIENTATIONS Contents 1. Generators for H n R n, R n p 1 1. Generators for H n R n, R n p We ended last time by constructing explicit generators for H n D n, S n 1 by using an explicit nsimplex which
More informationPrinciple of (Weak) Mathematical Induction. P(1) ( n 1)(P(n) P(n + 1)) ( n 1)(P(n))
Outline We will cover (over the next few weeks) Mathematical Induction (or Weak Induction) Strong (Mathematical) Induction Constructive Induction Structural Induction Principle of (Weak) Mathematical Induction
More information(LMCS, p. 317) V.1. First Order Logic. This is the most powerful, most expressive logic that we will examine.
(LMCS, p. 317) V.1 First Order Logic This is the most powerful, most expressive logic that we will examine. Our version of firstorder logic will use the following symbols: variables connectives (,,,,
More informationMODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.
MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on
More informationCoq tutorial Program verification using Coq
Coq tutorial Program verification using Coq CNRS Université Paris Sud TYPES summer school August 23th, 2005 Introduction This lecture: how to use Coq to verify purely functional programs Thursday s lecture:
More informationChapter 1. Logic and Proof
Chapter 1. Logic and Proof 1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs contained paradoxes, and these paradoxes could be used to prove statements that were known
More informationGROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
More informationSets of Fibre Homotopy Classes and Twisted Order Parameter Spaces
Communications in Mathematical Physics ManuscriptNr. (will be inserted by hand later) Sets of Fibre Homotopy Classes and Twisted Order Parameter Spaces Stefan BechtluftSachs, Marco Hien Naturwissenschaftliche
More information1.3 Induction and Other Proof Techniques
4CHAPTER 1. INTRODUCTORY MATERIAL: SETS, FUNCTIONS AND MATHEMATICAL INDU 1.3 Induction and Other Proof Techniques The purpose of this section is to study the proof technique known as mathematical induction.
More information= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
More informationThis asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements.
3. Axioms of Set theory Before presenting the axioms of set theory, we first make a few basic comments about the relevant first order logic. We will give a somewhat more detailed discussion later, but
More informationLecture 10 UnionFind The unionnd data structure is motivated by Kruskal's minimum spanning tree algorithm (Algorithm 2.6), in which we needed two operations on disjoint sets of vertices: determine whether
More informationDEFINITIONS: 1. FACTORIAL: n! = n (n 1) (n 2) ! = 1. n! = n (n 1)! = n (n 1) (n 2)! (n + 1)! = (n + 1) n! = (n + 1) n (n 1)!
MATH 2000 NOTES ON INDUCTION DEFINITIONS: 1. FACTORIAL: n! = n (n 1) (n 2)... 3 2 1 0! = 1 n! = n (n 1)! = n (n 1) (n 2)! (n + 1)! = (n + 1) n! = (n + 1) n (n 1)! 2. SUMMATION NOTATION: f(i) = f(1) + f(2)
More informationChapter 6 Finite sets and infinite sets. Copyright 2013, 2005, 2001 Pearson Education, Inc. Section 3.1, Slide 1
Chapter 6 Finite sets and infinite sets Copyright 013, 005, 001 Pearson Education, Inc. Section 3.1, Slide 1 Section 6. PROPERTIES OF THE NATURE NUMBERS 013 Pearson Education, Inc.1 Slide Recall that denotes
More informationSEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION
CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Alessandro Artale UniBZ  http://www.inf.unibz.it/ artale/ SECTION 5.2 Mathematical Induction I Copyright Cengage Learning. All rights reserved.
More informationThe Consistency of the Continuum Hypothesis Annals of Mathematical Studies, No. 3 Princeton University Press Princeton, N.J., 1940.
TWO COMPUTATIONAL IDEAS Computations with Sets Union, intersection: computable Powerset: not computable Basic operations Absoluteness of Formulas A formula in the language of set theory is absolute if
More information(Refer Slide Time: 1:41)
Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 10 Sets Today we shall learn about sets. You must
More informationProofs by induction, Alphabet, Strings [1] Proofs by Induction
Proofs by induction, Alphabet, Strings [1] Proofs by Induction Proposition: If f(0) = 0 and f(n + 1) = f(n) + n + 1 then, for all n N, we have f(n) = n(n + 1)/2 Let S(n) be f(n) = n(n + 1)/2 We prove S(0)
More informationOutline BST Operations Worst case Average case Balancing AVL Redblack Btrees. Binary Search Trees. Lecturer: Georgy Gimel farb
Binary Search Trees Lecturer: Georgy Gimel farb COMPSCI 220 Algorithms and Data Structures 1 / 27 1 Properties of Binary Search Trees 2 Basic BST operations The worstcase time complexity of BST operations
More informationFormal Borel sets a prooftheoretic approach
1/29 Formal Borel sets a prooftheoretic approach Alex Simpson LFCS, School of Informatics University of Edinburgh, UK Formal Borel sets a prooftheoretic approach 2/29 Context of talk Domain theory Topological
More informationChapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
More informationA set is a Many that allows itself to be thought of as a One. (Georg Cantor)
Chapter 4 Set Theory A set is a Many that allows itself to be thought of as a One. (Georg Cantor) In the previous chapters, we have often encountered sets, for example, prime numbers form a set, domains
More informationPOLYTYPIC PROGRAMMING OR: Programming Language Theory is Helpful
POLYTYPIC PROGRAMMING OR: Programming Language Theory is Helpful RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: ralf@cs.uu.nl Homepage: http://www.cs.uu.nl/~ralf/
More informationDefining Functions on Equivalence Classes. Lawrence C. Paulson, Computer Laboratory, University of Cambridge
Defining Functions on Equivalence Classes Lawrence C. Paulson, Computer Laboratory, University of Cambridge Outline of Talk 1. Review of equivalence relations and quotients 2. General lemmas for defining
More information(2) the identity map id : S 1 S 1 to the symmetry S 1 S 1 : x x (here x is considered a complex number because the circle S 1 is {x C : x = 1}),
Chapter VI Fundamental Group 29. Homotopy 29 1. Continuous Deformations of Maps 29.A. Is it possible to deform continuously: (1) the identity map id : R 2 R 2 to the constant map R 2 R 2 : x 0, (2) the
More informationScalable Automated Symbolic Analysis of Administrative RoleBased Access Control Policies by SMT solving
Scalable Automated Symbolic Analysis of Administrative RoleBased Access Control Policies by SMT solving Alessandro Armando 1,2 and Silvio Ranise 2, 1 DIST, Università degli Studi di Genova, Italia 2 Security
More informationMath 421, Homework #5 Solutions
Math 421, Homework #5 Solutions (1) (8.3.6) Suppose that E R n and C is a subset of E. (a) Prove that if E is closed, then C is relatively closed in E if and only if C is a closed set (as defined in Definition
More informationÁlvaro Pelayo 1, Michael A. Warren 2
95 Homotopy type theory Álvaro Pelayo 1, Michael A. Warren 2 To Vladimir Voevodsky, whose Univalence Axiom has opened many mathematical doors We give a glimpse of an emerging field at the intersection
More informationGroups, Rings, and Fields. I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S, S S = {(x, y) x, y S}.
Groups, Rings, and Fields I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S, A binary operation φ is a function, S S = {(x, y) x, y S}. φ : S S S. A binary
More informationMath 3000 Running Glossary
Math 3000 Running Glossary Last Updated on: July 15, 2014 The definition of items marked with a must be known precisely. Chapter 1: 1. A set: A collection of objects called elements. 2. The empty set (
More informationTermination Checking: Comparing Structural Recursion and Sized Types by Examples
Termination Checking: Comparing Structural Recursion and Sized Types by Examples David Thibodeau Decemer 3, 2011 Abstract Termination is an important property for programs and is necessary for formal proofs
More informationProbability Using Dice
Using Dice One Page Overview By Robert B. Brown, The Ohio State University Topics: Levels:, Statistics Grades 5 8 Problem: What are the probabilities of rolling various sums with two dice? How can you
More informationInduction and Recursion
Induction and Recursion Jan van Eijck June 3, 2003 Abstract A very important proof method that is not covered by the recipes from Chapter 3 is the method of proof by Mathematical Induction. Roughly speaking,
More informationThe EpsilonDelta Limit Definition:
The EpsilonDelta Limit Definition: A Few Examples Nick Rauh 1. Prove that lim x a x 2 = a 2. (Since we leave a arbitrary, this is the same as showing x 2 is continuous.) Proof: Let > 0. We wish to find
More information1. What s wrong with the following proofs by induction?
ArsDigita University Month : Discrete Mathematics  Professor Shai Simonson Problem Set 4 Induction and Recurrence Equations Thanks to Jeffrey Radcliffe and Joe Rizzo for many of the solutions. Pasted
More informationSubsets of Euclidean domains possessing a unique division algorithm
Subsets of Euclidean domains possessing a unique division algorithm Andrew D. Lewis 2009/03/16 Abstract Subsets of a Euclidean domain are characterised with the following objectives: (1) ensuring uniqueness
More informationMinimum Spanning Trees
Minimum Spanning Trees Algorithms and 18.304 Presentation Outline 1 Graph Terminology Minimum Spanning Trees 2 3 Outline Graph Terminology Minimum Spanning Trees 1 Graph Terminology Minimum Spanning Trees
More information4. PRINCIPLE OF MATHEMATICAL INDUCTION
4 PRINCIPLE OF MATHEMATICAL INDUCTION Ex Prove the following by principle of mathematical induction 1 1 + 2 + 3 + + n 2 1 2 + 2 2 + 3 2 + + n 2 3 1 3 + 2 3 + 3 3 + + n 3 + 4 (1) + (1 + 3) + (1 + 3 + 5)
More informationElementary Number Theory We begin with a bit of elementary number theory, which is concerned
CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,
More informationThe Basics of Graphical Models
The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures
More informationChapter 1. SigmaAlgebras. 1.1 Definition
Chapter 1 SigmaAlgebras 1.1 Definition Consider a set X. A σ algebra F of subsets of X is a collection F of subsets of X satisfying the following conditions: (a) F (b) if B F then its complement B c is
More informationCS 2336 Discrete Mathematics
CS 2336 Discrete Mathematics Lecture 5 Proofs: Mathematical Induction 1 Outline What is a Mathematical Induction? Strong Induction Common Mistakes 2 Introduction What is the formula of the sum of the first
More informationMerge Sort and Recurrences. COSC 581, Algorithms January 14, 2014
Merge Sort and Recurrences COSC 581, Algorithms January 14, 2014 Reading Assignments Today s class: Chapter 2, 4.0, 4.4 Reading assignment for next class: Chapter 4.2, 4.5 3 Common Algorithmic Techniques
More informationMetric Spaces. Chapter 1
Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence
More informationEffective homotopy of the fiber of a Kan fibration
Effective homotopy of the fiber of a Kan fibration Ana Romero and Francis Sergeraert 1 Introduction Inspired by the fundamental ideas of the effective homology method (see [5] and [4]), which makes it
More informationA Note on Context Logic
A Note on Context Logic Philippa Gardner Imperial College London This note describes joint work with Cristiano Calcagno and Uri Zarfaty. It introduces the general theory of Context Logic, and has been
More informationLemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.
Definition 51 Let S be a set bijection f : S S 5 Permutation groups A permutation of S is simply a Lemma 52 Let S be a set (1) Let f and g be two permutations of S Then the composition of f and g is a
More informationDefinition of Random Variable A random variable is a function from a sample space S into the real numbers.
.4 Random Variable Motivation example In an opinion poll, we might decide to ask 50 people whether they agree or disagree with a certain issue. If we record a for agree and 0 for disagree, the sample space
More informationCS 4310 HOMEWORK SET 1
CS 4310 HOMEWORK SET 1 PAUL MILLER Section 2.1 Exercises Exercise 2.11. Using Figure 2.2 as a model, illustrate the operation of INSERTIONSORT on the array A = 31, 41, 59, 26, 41, 58. Solution: Assume
More informationParametric Domaintheoretic models of Linear Abadi & Plotkin Logic
Parametric Domaintheoretic models of Linear Abadi & Plotkin Logic Lars Birkedal Rasmus Ejlers Møgelberg Rasmus Lerchedahl Petersen IT University Technical Report Series TR007 ISSN 600 600 February 00
More informationFundamentals of Mathematics Lecture 6: Propositional Logic
Fundamentals of Mathematics Lecture 6: Propositional Logic GuanShieng Huang National Chi Nan University, Taiwan Spring, 2008 1 / 39 Connectives Propositional Connectives I 1 Negation: (not A) A A T F
More informationTreerepresentation of set families and applications to combinatorial decompositions
Treerepresentation of set families and applications to combinatorial decompositions BinhMinh BuiXuan a, Michel Habib b Michaël Rao c a Department of Informatics, University of Bergen, Norway. buixuan@ii.uib.no
More information(a) (b) (c) Figure 1 : Graphs, multigraphs and digraphs. If the vertices of the leftmost figure are labelled {1, 2, 3, 4} in clockwise order from
4 Graph Theory Throughout these notes, a graph G is a pair (V, E) where V is a set and E is a set of unordered pairs of elements of V. The elements of V are called vertices and the elements of E are called
More informationPartitioning edgecoloured complete graphs into monochromatic cycles and paths
arxiv:1205.5492v1 [math.co] 24 May 2012 Partitioning edgecoloured complete graphs into monochromatic cycles and paths Alexey Pokrovskiy Departement of Mathematics, London School of Economics and Political
More informationOPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem")
OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem") BY Y. S. CHOW, S. MORIGUTI, H. ROBBINS AND S. M. SAMUELS ABSTRACT n rankable persons appear sequentially in random order. At the ith
More informationBinary Multiplication
Binary Multiplication Q: How do we multiply two numbers? eg. 12, 345 6, 789 111105 987600 8641500 + 74070000 83, 810, 205 10111 10101 10111 00000 1011100 0000000 + 101110000 111100011 Pad, multiply and
More informationThere is no degree invariant halfjump
There is no degree invariant halfjump Rod Downey Mathematics Department Victoria University of Wellington P O Box 600 Wellington New Zealand Richard A. Shore Mathematics Department Cornell University
More information6 Commutators and the derived series. [x,y] = xyx 1 y 1.
6 Commutators and the derived series Definition. Let G be a group, and let x,y G. The commutator of x and y is [x,y] = xyx 1 y 1. Note that [x,y] = e if and only if xy = yx (since x 1 y 1 = (yx) 1 ). Proposition
More informationSets and Cardinality Notes for C. F. Miller
Sets and Cardinality Notes for 620111 C. F. Miller Semester 1, 2000 Abstract These lecture notes were compiled in the Department of Mathematics and Statistics in the University of Melbourne for the use
More information~ EQUIVALENT FORMS ~
~ EQUIVALENT FORMS ~ Critical to understanding mathematics is the concept of equivalent forms. Equivalent forms are used throughout this course. Throughout mathematics one encounters equivalent forms of
More informationA Mathematical Toolkit
A Mathematical Toolkit Philosophy 389 1 Naive Set Theory Cantor, in his 1895 work Contributions to the Founding of the Theory of Transfinite Numbers, gives the following definition of a set: By a set [Menge]
More informationSome Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.
Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,
More informationJUSTINTIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004
Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUSTINTIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February
More informationDiscrete Mathematics, Chapter 5: Induction and Recursion
Discrete Mathematics, Chapter 5: Induction and Recursion Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 5 1 / 20 Outline 1 Wellfounded
More informationAutomated Theorem Proving  summary of lecture 1
Automated Theorem Proving  summary of lecture 1 1 Introduction Automated Theorem Proving (ATP) deals with the development of computer programs that show that some statement is a logical consequence of
More informationMA651 Topology. Lecture 6. Separation Axioms.
MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples
More informationSets and Logic. Chapter Sets
Chapter 2 Sets and Logic This chapter introduces sets. In it we study the structure on subsets of a set, operations on subsets, the relations of inclusion and equality on sets, and the close connection
More informationMeasuring Rationality with the Minimum Cost of Revealed Preference Violations. Mark Dean and Daniel Martin. Online Appendices  Not for Publication
Measuring Rationality with the Minimum Cost of Revealed Preference Violations Mark Dean and Daniel Martin Online Appendices  Not for Publication 1 1 Algorithm for Solving the MASP In this online appendix
More informationSUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by
SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples
More informationInteger roots of quadratic and cubic polynomials with integer coefficients
Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street
More informationTopology and Convergence by: Daniel Glasscock, May 2012
Topology and Convergence by: Daniel Glasscock, May 2012 These notes grew out of a talk I gave at The Ohio State University. The primary reference is [1]. A possible error in the proof of Theorem 1 in [1]
More informationPART I. THE REAL NUMBERS
PART I. THE REAL NUMBERS This material assumes that you are already familiar with the real number system and the representation of the real numbers as points on the real line. I.1. THE NATURAL NUMBERS
More informationINCIDENCEBETWEENNESS GEOMETRY
INCIDENCEBETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full
More informationSet theory as a foundation for mathematics
V I I I : Set theory as a foundation for mathematics This material is basically supplementary, and it was not covered in the course. In the first section we discuss the basic axioms of set theory and the
More informationA Propositional Dynamic Logic for CCS Programs
A Propositional Dynamic Logic for CCS Programs Mario R. F. Benevides and L. Menasché Schechter {mario,luis}@cos.ufrj.br Abstract This work presents a Propositional Dynamic Logic in which the programs are
More informationPROBLEM SET 6: POLYNOMIALS
PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other
More informationFull and Complete Binary Trees
Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full
More informationCatalan Numbers. Thomas A. Dowling, Department of Mathematics, Ohio State Uni versity.
7 Catalan Numbers Thomas A. Dowling, Department of Mathematics, Ohio State Uni Author: versity. Prerequisites: The prerequisites for this chapter are recursive definitions, basic counting principles,
More informationCourse 421: Algebraic Topology Section 1: Topological Spaces
Course 421: Algebraic Topology Section 1: Topological Spaces David R. Wilkins Copyright c David R. Wilkins 1988 2008 Contents 1 Topological Spaces 1 1.1 Continuity and Topological Spaces...............
More informationSYNTACTIC THEORY FOR BIGRAPHS
SYNTACTIC THEORY FOR BIGRAPHS Troels C. Damgaard (tcd@itu.dk) Joint work with Lars Birkedal, Arne John Glenstrup, and Robin Milner Bigraphical Programming Languages (BPL) Group IT University of Copenhagen
More informationCOMP 250 Fall Mathematical induction Sept. 26, (n 1) + n = n + (n 1)
COMP 50 Fall 016 9  Mathematical induction Sept 6, 016 You will see many examples in this course and upcoming courses of algorithms for solving various problems It many cases, it will be obvious that
More informationMath 443/543 Graph Theory Notes 4: Connector Problems
Math 443/543 Graph Theory Notes 4: Connector Problems David Glickenstein September 19, 2012 1 Trees and the Minimal Connector Problem Here is the problem: Suppose we have a collection of cities which we
More informationTree sums and maximal connected Ispaces
Tree sums and maximal connected Ispaces Adam Bartoš drekin@gmail.com Faculty of Mathematics and Physics Charles University in Prague Twelfth Symposium on General Topology Prague, July 2016 Maximal and
More informationHomotopy Type Theory. Univalent Foundations of Mathematics THE UNIVALENT FOUNDATIONS PROGRAM INSTITUTE FOR ADVANCED STUDY
Homotopy Type Theory Univalent Foundations of Mathematics THE UNIVALENT FOUNDATIONS PROGRAM INSTITUTE FOR ADVANCED STUDY Homotopy Type Theory Univalent Foundations of Mathematics The Univalent Foundations
More informationNondeterministic Semantics and the Undecidability of Boolean BI
1 Nondeterministic Semantics and the Undecidability of Boolean BI DOMINIQUE LARCHEYWENDLING, LORIA CNRS, Nancy, France DIDIER GALMICHE, LORIA Université Henri Poincaré, Nancy, France We solve the open
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us
More informationNotes from Week 1: Algorithms for sequential prediction
CS 683 Learning, Games, and Electronic Markets Spring 2007 Notes from Week 1: Algorithms for sequential prediction Instructor: Robert Kleinberg 2226 Jan 2007 1 Introduction In this course we will be looking
More information