# Evaluation and Credibility. How much should we believe in what was learned?

Save this PDF as:

Size: px
Start display at page:

Download "Evaluation and Credibility. How much should we believe in what was learned?"

## Transcription

1 Evaluation and Credibility How much should we believe in what was learned?

2 Outline Introduction Classification with Train, Test, and Validation sets Handling Unbalanced Data; Parameter Tuning Cross-validation Comparing Data Mining Schemes

3 Introduction How predictive is the model we learned? Error on the training data is not a good indicator of performance on future data Q: Why? A: Because new data will probably not be exactly the same as the training data! Overfitting fitting the training data too precisely - usually leads to poor results on new data

4 Evaluation issues Possible evaluation measures: Classification Accuracy Total cost/benefit when different errors involve different costs Lift and ROC curves Error in numeric predictions How reliable are the predicted results?

5 Classifier error rate Natural performance measure for classification problems: error rate Success: instance s class is predicted correctly Error: instance s class is predicted incorrectly Error rate: proportion of errors made over the whole set of instances Training set error rate: is way too optimistic! you can find patterns even in random data

6 Evaluation on LARGE data If many (thousands) of examples are available, including several hundred examples from each class, then a simple evaluation is sufficient Randomly split data into training and test sets (usually 2/3 for train, 1/3 for test) Build a classifier using the train set and evaluate it using the test set.

7 Classification Step 1: Split data into train and test sets THE PAST Results Known Training set Data + Testing set

8 Classification Step 2: Build a model on a training set THE PAST Results Known Training set Data + Model Builder Testing set

9 Classification Step 3: Evaluate on test set (Re-train?) Results Known Training set Data + Testing set Model Builder Y N Evaluate Predictions

10 Handling unbalanced data Sometimes, classes have very unequal frequency Attrition prediction: 97% stay, 3% attrite (in a month) medical diagnosis: 90% healthy, 10% disease ecommerce: 99% don t buy, 1% buy Security: >99.99% of Americans are not terrorists Similar situation with multiple classes

11 Balancing unbalanced data With two classes, a good approach is to build BALANCED train and test sets, and train model on a balanced set randomly select desired number of minority class instances add equal number of randomly selected majority class Generalize balancing to multiple classes Ensure that each class is represented with approximately equal proportions in train and test

12 A note on parameter tuning It is important that the test data is not used in any way to create the classifier Some learning schemes operate in two stages: Stage 1: builds the basic structure Stage 2: optimizes parameter settings The test data can t be used for parameter tuning! Proper procedure uses three sets: training data, validation data, and test data Validation data is used to optimize parameters witten & eibe

13 Making the most of the data Once evaluation is complete, all the data can be used to build the final classifier Generally, the larger the training data the better the classifier (but returns diminish) The larger the test data the more accurate the error estimate witten & eibe

14 Classification: Train, Validation, Test split Results Known Data Training set Evaluate Model Builder Predictions Model Builder Validation set Y N Final Test Set Final Model Final Evaluation

15 *Predicting performance Assume the estimated error rate is 25%. How close is this to the true error rate? Depends on the amount of test data Prediction is just like tossing a biased (!) coin Head is a success, tail is an error In statistics, a succession of independent events like this is called a Bernoulli process Statistical theory provides us with witten confidence & eibe intervals for the true underlying

16 *Confidence intervals We can say: p lies within a certain specified interval with a certain specified confidence Example: S=750 successes in N=1000 trials Estimated success rate: 75% How close is this to true success rate p? Answer: with 80% confidence p [73.2,76.7] Another example: S=75 and N=100 Estimated success rate: 75% With 80% confidence p [69.1,80.1] witten & eibe

17 *Mean and variance (also Mod 7) Mean and variance for a Bernoulli trial: p, p (1 p) Expected success rate f=s/n Mean and variance for f : p, p (1 p)/n For large enough N, f follows a Normal distribution c% confidence interval [ z X z] for random variable with 0 mean is given by: With a symmetric distribution: Pr[ z X z] = 1 witten & eibe Pr[ z X z] = 2 Pr[ X c z]

18 *Confidence limits Confidence limits for the normal distribution with 0 mean and a variance of 1: Pr[X z] z 0.1% % 2.58 Thus: Pr[ 1.65 X 1.65] = 1% % % % % % To use this we have to reduce our random variable f to have 0 mean and unit variance witten & eibe

19 *Transforming f Transformed value for f : (i.e. subtract the mean and divide by the standard deviation) Resulting equation: Solving for p : N p p p f ) / 1 ( c z N p p p f z = ) / (1 Pr + + ± + = N z N z N f N f z N z f p witten & eibe

20 *Examples f = 75%, N = 1000, c = 80% (so that z = 1.28): p [0.732,0.767] f = 75%, N = 100, c = 80% (so that z = 1.28): p [0.691,0.801] Note that normal distribution assumption is only valid for large N (i.e. N > 100) f = 75%, N = 10, c = 80% (so that z = 1.28): p [0.549,0.881] (should be taken with a grain of salt) witten & eibe

21 Evaluation on small data The holdout method reserves a certain amount for testing and uses the remainder for training Usually: one third for testing, the rest for training For small or unbalanced datasets, samples might not be representative Few or none instances of some classes Stratified sample: advanced version of balancing the data Make sure that each class is represented with

22 Repeated holdout method Holdout estimate can be made more reliable by repeating the process with different subsamples In each iteration, a certain proportion is randomly selected for training (possibly with stratification) The error rates on the different iterations are averaged to yield an overall error rate This is called the repeated holdout method witten & eibe

23 Cross-validation Cross-validation avoids overlapping test sets First step: data is split into k subsets of equal size Second step: each subset in turn is used for testing and the remainder for training This is called k-fold cross-validation Often the subsets are stratified before the cross-validation is performed The error estimates are averaged to yield an witten overall & eibe error estimate

24 Cross-validation example: Break up data into groups of the same size Hold aside one group for testing and use the rest to build model Repeat Test 24

25 More on cross-validation Standard method for evaluation: stratified ten-fold cross-validation Why ten? Extensive experiments have shown that this is the best choice to get an accurate estimate Stratification reduces the estimate s variance Even better: repeated stratified crossvalidation witten & E.g. eibe ten-fold cross-validation is repeated ten

26 Leave-One-Out cross-validation Leave-One-Out: a particular form of cross-validation: Set number of folds to number of training instances I.e., for n training instances, build classifier n times Makes best use of the data Involves no random subsampling Very computationally expensive (exception: NN)

27 Leave-One-Out-CV and stratification Disadvantage of Leave-One-Out-CV: stratification is not possible It guarantees a non-stratified sample because there is only one instance in the test set! Extreme example: random dataset split equally into two classes Best inducer predicts majority class 50% accuracy on fresh data Leave-One-Out-CV estimate is 100% error!

28 *The bootstrap CV uses sampling without replacement The same instance, once selected, can not be selected again for a particular training/test set The bootstrap uses sampling with replacement to form the training set Sample a dataset of n instances n times with replacement to form a new dataset of n instances Use this data as the training set Use the instances from the original dataset that don t occur in the new training set for testing

29 *The bootstrap Also called the bootstrap A particular instance has a probability of 1 1/n of not being picked Thus its probability of n ending up in the test data is: 1 1 n 1 = This means the training data will contain approximately 63.2% of the instances e

30 *Estimating error with the bootstrap The error estimate on the test data will be very pessimistic Trained on just ~63% of the instances Therefore, err = combine e it with the resubstitution test instances etraining instances error: The resubstitution error gets less weight than the error on the test data Repeat process several times with different replacement samples; average the results

31 *More on the bootstrap Probably the best way of estimating performance for very small datasets However, it has some problems Consider the random dataset from above A perfect memorizer will achieve 0% resubstitution error and ~50% error on test data Bootstrap estimate for this classifier: err = % % = 31.6% True expected error: 50%

32 Comparing data mining schemes Frequent situation: we want to know which one of two learning schemes performs better Note: this is domain dependent! Obvious way: compare 10-fold CV estimates Problem: variance in estimate Variance can be reduced using repeated CV However, we still don t know whether the results are reliable witten & eibe

33 Direct Marketing Paradigm Find most likely prospects to contact Not everybody needs to be contacted Number of targets is usually much smaller than number of prospects Typical Applications retailers, catalogues, direct mail (and ) customer acquisition, cross-sell, attrition prediction...

34 Direct Marketing Evaluation Accuracy on the entire dataset is not the right measure Approach develop a target model score all prospects and rank them by decreasing score select top P% of prospects for action How to decide what is the best selection?

35 Model-Sorted List Use a model to assign score to each customer Sort customers by decreasing score Expect more targets (hits) near the top of the list No Scor Targe CustI Ag 1 e0.97 ty D1746 e N Y Y N N N hits in top 5% of the list If there 15 targets overall, then top 5 has 3/15=20% of targets

36 CPH (Cumulative Pct Hits) Definition: CPH(P,M) = % of all targets in the first P% of the list scored by model M CPH frequently called Gains Cumulative % Hits % of random list have 5% of targets Random Pct list Q: What is expected value for CPH(P,Random)? A: Expected value for CPH(P,Random) = P

37 CPH: Random List vs Model-ranked list Cumulative % Hits % of random list have 5% of targets, but 5% of model ranked list have 21% of targets CPH(5%,model)=21% Random Model Pct list

38 Lift(P,M) = CPH(P,M) / P Lift Lift (at 5%) = 21% / 5% = 4.2 better than random 4,5 4 3,5 3 2,5 2 Lift 1,5 1 Note: Some (including Witten & Eibe) use Lift for what we call CPH. 0, P -- percent of the list 85 95

39 Lift Properties Q: Lift(P,Random) = A: 1 (expected value, can vary) Q: Lift(100%, M) = A: 1 (for any model M) Q: Can lift be less than 1? A: yes, if the model is inverted (all the nontargets precede targets in the list) Generally, a better model has higher lift

40 *ROC curves ROC curves are similar to gains charts Stands for receiver operating characteristic Used in signal detection to show tradeoff between hit rate and false alarm rate over noisy channel Differences from gains chart: y axis shows percentage of true positives in sample rather than absolute number x axis shows percentage of false positives in sample rather than sample size witten & eibe

41 *A sample ROC curve witten & eibe Jagged curve one set of test data Smooth curve use cross-validation

42 *Cross-validation and ROC curves Simple method of getting a ROC curve using cross-validation: Collect probabilities for instances in test folds Sort instances according to probabilities This method is implemented in WEKA However, this is just one possibility The method described in the book generates an ROC curve for each fold and averages them witten & eibe

43 *ROC curves for two schemes For a small, focused sample, use method A For a larger one, use method B In between, choose between A and B with appropriate probabilities witten & eibe

44 *The convex hull Given two learning schemes we can achieve any point on the convex hull! TP and FP rates for scheme 1: t 1 and f 1 TP and FP rates for scheme 2: t 2 and f 2 If scheme 1 is used to predict 100 q % of the cases and scheme 2 for the rest, then TP rate for combined scheme: q t 1 +(1-q) t 2 FP rate for combined scheme: q f 2 +(1-q) f 2 witten & eibe

45 Cost Sensitive Learning There are two types of errors Predicted class Yes No Actual class Yes TP: True positive FN: False negative No FP: False TN: True positive negative Machine Learning methods usually minimize FP+FN Direct marketing maximizes TP

46 Different Costs In practice, true positive and false negative errors often incur different costs Examples: Medical diagnostic tests: does X have leukemia? Loan decisions: approve mortgage for X? Web mining: will X click on this link? Promotional mailing: will X buy the product?

47 Cost-sensitive learning Most learning schemes do not perform costsensitive learning They generate the same classifier no matter what costs are assigned to the different classes Example: standard decision tree learner Simple methods for cost-sensitive learning: Re-sampling of instances according to costs Weighting of instances according to costs Some schemes are inherently cost-sensitive, e.g. naïve Bayes

48 KDD Cup 98 a Case Study Cost-sensitive learning/data mining widely used, but rarely published Well known and public case study: KDD Cup 1998 Data from Paralyzed Veterans of America (charity) Goal: select mailing with the highest profit Evaluation: Maximum actual profit from selected list (with mailing cost = \$0.68) Sum of (actual donation-\$0.68) for all records with predicted/ expected donation > \$0.68 More in a later lesson

49 *Measures in information retrieval Percentage of retrieved documents that are relevant: precision=tp/(tp+fp) Percentage of relevant documents that are returned: recall =TP/(TP+FN) Precision/recall curves have hyperbolic shape Summary measures: average precision at 20%, 50% and 80% recall (three-point average recall) F-measure=(2 recall precision)/(recall+precision) witten & eibe

50 *Summary of measures Domain Plot Explanation Lift chart Marketing TP Subset size ROC curve Communications TP rate FP rate Recallprecision curve Information retrieval Recall Precision TP (TP+FP)/(TP+FP+TN+FN) TP/(TP+FN) FP/(FP+TN) TP/(TP+FN) TP/(TP+FP) witten & eibe

### Evaluation & Validation: Credibility: Evaluating what has been learned

Evaluation & Validation: Credibility: Evaluating what has been learned How predictive is a learned model? How can we evaluate a model Test the model Statistical tests Considerations in evaluating a Model

### Data Mining Practical Machine Learning Tools and Techniques

Counting the cost Data Mining Practical Machine Learning Tools and Techniques Slides for Section 5.7 In practice, different types of classification errors often incur different costs Examples: Loan decisions

### Data Mining Practical Machine Learning Tools and Techniques

Credibility: Evaluating what s been learned Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 5 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Issues: training, testing,

### OCENA KLASYFIKATORÓW

OCENA KLASYFIKATORÓW Metody oceniania klasyfikatorów n 2 Znane metody oceniania: Skuteczność predykcji Łączny koszt (gdy różne typy błędów powoduje różne koszty) Krzywy Lift i ROC Błędy przy predykcji

### Data Mining - Evaluation of Classifiers

Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010

### Overview. Evaluation Connectionist and Statistical Language Processing. Test and Validation Set. Training and Test Set

Overview Evaluation Connectionist and Statistical Language Processing Frank Keller keller@coli.uni-sb.de Computerlinguistik Universität des Saarlandes training set, validation set, test set holdout, stratification

### Lecture 13: Validation

Lecture 3: Validation g Motivation g The Holdout g Re-sampling techniques g Three-way data splits Motivation g Validation techniques are motivated by two fundamental problems in pattern recognition: model

### Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Unit # 10 Sajjad Haider Fall 2012 1 Supervised Learning Process Data Collection/Preparation Data Cleaning Discretization Supervised/Unuspervised Identification of right

### Targeted Marketing, KDD Cup and Customer Modeling

Targeted Marketing, KDD Cup and Customer Modeling Outline Direct Marketing Review: Evaluation: Lift, Gains KDD Cup 1997 Lift and Benefit estimation Privacy and Data Mining 2 Direct Marketing Paradigm Find

### W6.B.1. FAQs CS535 BIG DATA W6.B.3. 4. If the distance of the point is additionally less than the tight distance T 2, remove it from the original set

http://wwwcscolostateedu/~cs535 W6B W6B2 CS535 BIG DAA FAQs Please prepare for the last minute rush Store your output files safely Partial score will be given for the output from less than 50GB input Computer

### Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 2. Tid Refund Marital Status

Data Mining Classification: Basic Concepts, Decision Trees, and Evaluation Lecture tes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar Classification: Definition Given a collection of

### Chapter 6. The stacking ensemble approach

82 This chapter proposes the stacking ensemble approach for combining different data mining classifiers to get better performance. Other combination techniques like voting, bagging etc are also described

### Data Mining. Nonlinear Classification

Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Nonlinear Classification Classes may not be separable by a linear boundary Suppose we randomly generate a data set as follows: X has range between 0 to 15

### L13: cross-validation

Resampling methods Cross validation Bootstrap L13: cross-validation Bias and variance estimation with the Bootstrap Three-way data partitioning CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU

### Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Unit # 11 Sajjad Haider Fall 2013 1 Supervised Learning Process Data Collection/Preparation Data Cleaning Discretization Supervised/Unuspervised Identification of right

### Performance Measures in Data Mining

Performance Measures in Data Mining Common Performance Measures used in Data Mining and Machine Learning Approaches L. Richter J.M. Cejuela Department of Computer Science Technische Universität München

### Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation. Lecture Notes for Chapter 4. Introduction to Data Mining

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data

### Data Mining Application in Direct Marketing: Identifying Hot Prospects for Banking Product

Data Mining Application in Direct Marketing: Identifying Hot Prospects for Banking Product Sagarika Prusty Web Data Mining (ECT 584),Spring 2013 DePaul University,Chicago sagarikaprusty@gmail.com Keywords:

### On Cross-Validation and Stacking: Building seemingly predictive models on random data

On Cross-Validation and Stacking: Building seemingly predictive models on random data ABSTRACT Claudia Perlich Media6 New York, NY 10012 claudia@media6degrees.com A number of times when using cross-validation

### Data Mining Practical Machine Learning Tools and Techniques

Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea

### Performance Measures for Machine Learning

Performance Measures for Machine Learning 1 Performance Measures Accuracy Weighted (Cost-Sensitive) Accuracy Lift Precision/Recall F Break Even Point ROC ROC Area 2 Accuracy Target: 0/1, -1/+1, True/False,

### Classifiers & Classification

Classifiers & Classification Forsyth & Ponce Computer Vision A Modern Approach chapter 22 Pattern Classification Duda, Hart and Stork School of Computer Science & Statistics Trinity College Dublin Dublin

### Random Forest Based Imbalanced Data Cleaning and Classification

Random Forest Based Imbalanced Data Cleaning and Classification Jie Gu Software School of Tsinghua University, China Abstract. The given task of PAKDD 2007 data mining competition is a typical problem

### Supervised Learning (Big Data Analytics)

Supervised Learning (Big Data Analytics) Vibhav Gogate Department of Computer Science The University of Texas at Dallas Practical advice Goal of Big Data Analytics Uncover patterns in Data. Can be used

### Cross-Validation. Synonyms Rotation estimation

Comp. by: BVijayalakshmiGalleys0000875816 Date:6/11/08 Time:19:52:53 Stage:First Proof C PAYAM REFAEILZADEH, LEI TANG, HUAN LIU Arizona State University Synonyms Rotation estimation Definition is a statistical

### Lecture Notes for Chapter 4. Introduction to Data Mining

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data

### Classification: Basic Concepts, Decision Trees, and Model Evaluation. General Approach for Building Classification Model

10 10 Classification: Basic Concepts, Decision Trees, and Model Evaluation Dr. Hui Xiong Rutgers University Introduction to Data Mining 1//009 1 General Approach for Building Classification Model Tid Attrib1

### Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation. Lecture Notes for Chapter 4. Introduction to Data Mining

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data

### Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification

Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification Tina R. Patil, Mrs. S. S. Sherekar Sant Gadgebaba Amravati University, Amravati tnpatil2@gmail.com, ss_sherekar@rediffmail.com

### CLASSIFICATION AND CLUSTERING. Anveshi Charuvaka

CLASSIFICATION AND CLUSTERING Anveshi Charuvaka Learning from Data Classification Regression Clustering Anomaly Detection Contrast Set Mining Classification: Definition Given a collection of records (training

### Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Lecture 15 - ROC, AUC & Lift Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey ID5059-17-AUC

### Using Random Forest to Learn Imbalanced Data

Using Random Forest to Learn Imbalanced Data Chao Chen, chenchao@stat.berkeley.edu Department of Statistics,UC Berkeley Andy Liaw, andy liaw@merck.com Biometrics Research,Merck Research Labs Leo Breiman,

### Measuring the propensity to purchase Creating and interpreting the gain chart. Ricco RAKOTOMALALA

Measuring the propensity to purchase Creating and interpreting the gain chart Ricco RAKOTOMALALA Tutoriels Tanagra - http://tutoriels-data-mining.blogspot.fr/ 1 Customer targeting process Promoting a new

### ROC Curve, Lift Chart and Calibration Plot

Metodološki zvezki, Vol. 3, No. 1, 26, 89-18 ROC Curve, Lift Chart and Calibration Plot Miha Vuk 1, Tomaž Curk 2 Abstract This paper presents ROC curve, lift chart and calibration plot, three well known

### Experiments in Web Page Classification for Semantic Web

Experiments in Web Page Classification for Semantic Web Asad Satti, Nick Cercone, Vlado Kešelj Faculty of Computer Science, Dalhousie University E-mail: {rashid,nick,vlado}@cs.dal.ca Abstract We address

### Guido Sciavicco. 11 Novembre 2015

classical and new techniques Università degli Studi di Ferrara 11 Novembre 2015 in collaboration with dr. Enrico Marzano, CIO Gap srl Active Contact System Project 1/27 Contents What is? Embedded Wrapper

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According

### Data Mining Algorithms Part 1. Dejan Sarka

Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka (dsarka@solidq.com) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses

### Cross Validation. Dr. Thomas Jensen Expedia.com

Cross Validation Dr. Thomas Jensen Expedia.com About Me PhD from ETH Used to be a statistician at Link, now Senior Business Analyst at Expedia Manage a database with 720,000 Hotels that are not on contract

### Performance Metrics for Graph Mining Tasks

Performance Metrics for Graph Mining Tasks 1 Outline Introduction to Performance Metrics Supervised Learning Performance Metrics Unsupervised Learning Performance Metrics Optimizing Metrics Statistical

### Evaluating Data Mining Models: A Pattern Language

Evaluating Data Mining Models: A Pattern Language Jerffeson Souza Stan Matwin Nathalie Japkowicz School of Information Technology and Engineering University of Ottawa K1N 6N5, Canada {jsouza,stan,nat}@site.uottawa.ca

### 1. Classification problems

Neural and Evolutionary Computing. Lab 1: Classification problems Machine Learning test data repository Weka data mining platform Introduction Scilab 1. Classification problems The main aim of a classification

### Statistical Inference and t-tests

1 Statistical Inference and t-tests Objectives Evaluate the difference between a sample mean and a target value using a one-sample t-test. Evaluate the difference between a sample mean and a target value

### Chapter 4. Probability and Probability Distributions

Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the

### Chapter 7 Part 2. Hypothesis testing Power

Chapter 7 Part 2 Hypothesis testing Power November 6, 2008 All of the normal curves in this handout are sampling distributions Goal: To understand the process of hypothesis testing and the relationship

### More Data Mining with Weka

More Data Mining with Weka Class 1 Lesson 1 Introduction Ian H. Witten Department of Computer Science University of Waikato New Zealand weka.waikato.ac.nz More Data Mining with Weka a practical course

### Pricing Based Framework for Benefit Scoring

Pricing Based Framework for Benefit Scoring Nitesh Chawla University of Notre Dame Notre Dame, IN 46556 nchawla@nd.edu Xiangning Li University of Notre Dame Notre Dame, IN 46556 xli3@nd.edu ABSTRACT Data

### MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

### L25: Ensemble learning

L25: Ensemble learning Introduction Methods for constructing ensembles Combination strategies Stacked generalization Mixtures of experts Bagging Boosting CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna

### Evaluation of selected data mining algorithms implemented in Medical Decision Support Systems Kamila Aftarczuk

Master Thesis Software Engineering Thesis no: MSE-2007-21 September 2007 Evaluation of selected data mining algorithms implemented in Medical Decision Support Systems Kamila Aftarczuk This thesis is submitted

### Data Mining Methods: Applications for Institutional Research

Data Mining Methods: Applications for Institutional Research Nora Galambos, PhD Office of Institutional Research, Planning & Effectiveness Stony Brook University NEAIR Annual Conference Philadelphia 2014

### Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

### Getting Even More Out of Ensemble Selection

Getting Even More Out of Ensemble Selection Quan Sun Department of Computer Science The University of Waikato Hamilton, New Zealand qs12@cs.waikato.ac.nz ABSTRACT Ensemble Selection uses forward stepwise

### More Data Mining with Weka

More Data Mining with Weka Class 5 Lesson 1 Simple neural networks Ian H. Witten Department of Computer Science University of Waikato New Zealand weka.waikato.ac.nz Lesson 5.1: Simple neural networks Class

### Improving Generalization

Improving Generalization Introduction to Neural Networks : Lecture 10 John A. Bullinaria, 2004 1. Improving Generalization 2. Training, Validation and Testing Data Sets 3. Cross-Validation 4. Weight Restriction

### Nonparametric statistics and model selection

Chapter 5 Nonparametric statistics and model selection In Chapter, we learned about the t-test and its variations. These were designed to compare sample means, and relied heavily on assumptions of normality.

### 2 Decision tree + Cross-validation with R (package rpart)

1 Subject Using cross-validation for the performance evaluation of decision trees with R, KNIME and RAPIDMINER. This paper takes one of our old study on the implementation of cross-validation for assessing

### Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Evaluating the Accuracy of a Classifier Holdout, random subsampling, crossvalidation, and the bootstrap are common techniques for

### Choosing the Best Classification Performance Metric for Wrapper-based Software Metric Selection for Defect Prediction

Choosing the Best Classification Performance Metric for Wrapper-based Software Metric Selection for Defect Prediction Huanjing Wang Western Kentucky University huanjing.wang@wku.edu Taghi M. Khoshgoftaar

### Three types of messages: A, B, C. Assume A is the oldest type, and C is the most recent type.

Chronological Sampling for Email Filtering Ching-Lung Fu 2, Daniel Silver 1, and James Blustein 2 1 Acadia University, Wolfville, Nova Scotia, Canada 2 Dalhousie University, Halifax, Nova Scotia, Canada

### Model Combination. 24 Novembre 2009

Model Combination 24 Novembre 2009 Datamining 1 2009-2010 Plan 1 Principles of model combination 2 Resampling methods Bagging Random Forests Boosting 3 Hybrid methods Stacking Generic algorithm for mulistrategy

Predictive Modeling using SAS Purpose of Predictive Modeling To Predict the Future x To identify statistically significant attributes or risk factors x To publish findings in Science, Nature, or the New

### Social Media Mining. Data Mining Essentials

Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers

### The normal approximation to the binomial

The normal approximation to the binomial In order for a continuous distribution (like the normal) to be used to approximate a discrete one (like the binomial), a continuity correction should be used. There

### Expected values, standard errors, Central Limit Theorem. Statistical inference

Expected values, standard errors, Central Limit Theorem FPP 16-18 Statistical inference Up to this point we have focused primarily on exploratory statistical analysis We know dive into the realm of statistical

### Financial Statement Fraud Detection: An Analysis of Statistical and Machine Learning Algorithms

Financial Statement Fraud Detection: An Analysis of Statistical and Machine Learning Algorithms Johan Perols Assistant Professor University of San Diego, San Diego, CA 92110 jperols@sandiego.edu April

### Characteristics of Binomial Distributions

Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

### Ensemble Methods. Knowledge Discovery and Data Mining 2 (VU) (707.004) Roman Kern. KTI, TU Graz 2015-03-05

Ensemble Methods Knowledge Discovery and Data Mining 2 (VU) (707004) Roman Kern KTI, TU Graz 2015-03-05 Roman Kern (KTI, TU Graz) Ensemble Methods 2015-03-05 1 / 38 Outline 1 Introduction 2 Classification

### Data Mining Classification: Alternative Techniques. Instance-Based Classifiers. Lecture Notes for Chapter 5. Introduction to Data Mining

Data Mining Classification: Alternative Techniques Instance-Based Classifiers Lecture Notes for Chapter 5 Introduction to Data Mining by Tan, Steinbach, Kumar Set of Stored Cases Atr1... AtrN Class A B

### Azure Machine Learning, SQL Data Mining and R

Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:

### Introduction to Machine Learning Connectionist and Statistical Language Processing

Introduction to Machine Learning Connectionist and Statistical Language Processing Frank Keller keller@coli.uni-sb.de Computerlinguistik Universität des Saarlandes Introduction to Machine Learning p.1/22

### ROC Graphs: Notes and Practical Considerations for Data Mining Researchers

ROC Graphs: Notes and Practical Considerations for Data Mining Researchers Tom Fawcett Intelligent Enterprise Technologies Laboratory HP Laboratories Palo Alto HPL-23-4 January 7 th, 23* E-mail: tom_fawcett@hp.com

### Why Ensembles Win Data Mining Competitions

Why Ensembles Win Data Mining Competitions A Predictive Analytics Center of Excellence (PACE) Tech Talk November 14, 2012 Dean Abbott Abbott Analytics, Inc. Blog: http://abbottanalytics.blogspot.com URL:

### S03-2008 The Difference Between Predictive Modeling and Regression Patricia B. Cerrito, University of Louisville, Louisville, KY

S03-2008 The Difference Between Predictive Modeling and Regression Patricia B. Cerrito, University of Louisville, Louisville, KY ABSTRACT Predictive modeling includes regression, both logistic and linear,

### The normal approximation to the binomial

The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very

### Model Validation Techniques

Model Validation Techniques Kevin Mahoney, FCAS kmahoney@ travelers.com CAS RPM Seminar March 17, 2010 Uses of Statistical Models in P/C Insurance Examples of Applications Determine expected loss cost

### STATISTICA. Financial Institutions. Case Study: Credit Scoring. and

Financial Institutions and STATISTICA Case Study: Credit Scoring STATISTICA Solutions for Business Intelligence, Data Mining, Quality Control, and Web-based Analytics Table of Contents INTRODUCTION: WHAT

### !"!!"#\$\$%&'()*+\$(,%!"#\$%\$&'()*""%(+,'-*&./#-\$&'(-&(0*".\$#-\$1"(2&."3\$'45"

!"!!"#\$\$%&'()*+\$(,%!"#\$%\$&'()*""%(+,'-*&./#-\$&'(-&(0*".\$#-\$1"(2&."3\$'45"!"#"\$%&#'()*+',\$\$-.&#',/"-0%.12'32./4'5,5'6/%&)\$).2&'7./&)8'5,5'9/2%.%3%&8':")08';:

### Consolidated Tree Classifier Learning in a Car Insurance Fraud Detection Domain with Class Imbalance

Consolidated Tree Classifier Learning in a Car Insurance Fraud Detection Domain with Class Imbalance Jesús M. Pérez, Javier Muguerza, Olatz Arbelaitz, Ibai Gurrutxaga, and José I. Martín Dept. of Computer

### T-61.3050 : Email Classification as Spam or Ham using Naive Bayes Classifier. Santosh Tirunagari : 245577

T-61.3050 : Email Classification as Spam or Ham using Naive Bayes Classifier Santosh Tirunagari : 245577 January 20, 2011 Abstract This term project gives a solution how to classify an email as spam or

### Normal distribution. ) 2 /2σ. 2π σ

Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

### Health Care and Life Sciences

Sensitivity, Specificity, Accuracy, Associated Confidence Interval and ROC Analysis with Practical SAS Implementations Wen Zhu 1, Nancy Zeng 2, Ning Wang 2 1 K&L consulting services, Inc, Fort Washington,

### A semi-supervised Spam mail detector

A semi-supervised Spam mail detector Bernhard Pfahringer Department of Computer Science, University of Waikato, Hamilton, New Zealand Abstract. This document describes a novel semi-supervised approach

### Nonparametric Statistics

1 14.1 Using the Binomial Table Nonparametric Statistics In this chapter, we will survey several methods of inference from Nonparametric Statistics. These methods will introduce us to several new tables

### 1 Maximum likelihood estimation

COS 424: Interacting with Data Lecturer: David Blei Lecture #4 Scribes: Wei Ho, Michael Ye February 14, 2008 1 Maximum likelihood estimation 1.1 MLE of a Bernoulli random variable (coin flips) Given N

### We discuss 2 resampling methods in this chapter - cross-validation - the bootstrap

Statistical Learning: Chapter 5 Resampling methods (Cross-validation and bootstrap) (Note: prior to these notes, we'll discuss a modification of an earlier train/test experiment from Ch 2) We discuss 2

### Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk

Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk Ensembles 2 Learning Ensembles Learn multiple alternative definitions of a concept using different training

### PCA, Clustering and Classification. By H. Bjørn Nielsen strongly inspired by Agnieszka S. Juncker

PCA, Clustering and Classification By H. Bjørn Nielsen strongly inspired by Agnieszka S. Juncker Motivation: Multidimensional data Pat1 Pat2 Pat3 Pat4 Pat5 Pat6 Pat7 Pat8 Pat9 209619_at 7758 4705 5342

### FOUNDATIONS OF IMBALANCED LEARNING

CHAPTER 2 FOUNDATIONS OF IMBALANCED LEARNING Gary M. Weiss Fordham University Abstract Many important learning problems, from a wide variety of domains, involve learning from imbalanced data. Because this

### Introduction to Data Mining

Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association

### Statistical Inference

Statistical Inference Idea: Estimate parameters of the population distribution using data. How: Use the sampling distribution of sample statistics and methods based on what would happen if we used this

### E-discovery Taking Predictive Coding Out of the Black Box

E-discovery Taking Predictive Coding Out of the Black Box Joseph H. Looby Senior Managing Director FTI TECHNOLOGY IN CASES OF COMMERCIAL LITIGATION, the process of discovery can place a huge burden on

### Mining Marketing Data

1:1 Marketing or CRM Mining Marketing Data The basis of 1:1 marketing is share of customer not just market share. So Instead of selling as many products as possible to who ever will buy them. We try to

### Why do statisticians "hate" us?

Why do statisticians "hate" us? David Hand, Heikki Mannila, Padhraic Smyth "Data mining is the analysis of (often large) observational data sets to find unsuspected relationships and to summarize the data

### Maschinelles Lernen mit MATLAB

Maschinelles Lernen mit MATLAB Jérémy Huard Applikationsingenieur The MathWorks GmbH 2015 The MathWorks, Inc. 1 Machine Learning is Everywhere Image Recognition Speech Recognition Stock Prediction Medical

### How to Conduct a Hypothesis Test

How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some

### Module 5 Hypotheses Tests: Comparing Two Groups

Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this

### IBM SPSS Direct Marketing 23

IBM SPSS Direct Marketing 23 Note Before using this information and the product it supports, read the information in Notices on page 25. Product Information This edition applies to version 23, release