MCQ TESTING OF HYPOTHESIS


 Shon Flowers
 2 years ago
 Views:
Transcription
1 MCQ TESTING OF HYPOTHESIS MCQ 13.1 A statement about a population developed for the purpose of testing is called: (a) Hypothesis (b) Hypothesis testing (c) Level of significance (d) Teststatistic MCQ 13.2 Any hypothesis which is tested for the purpose of rejection under the assumption that it is true is called: (a) Null hypothesis (b) Alternative hypothesis (c) Statistical hypothesis (d) Composite hypothesis MCQ 13.3 A statement about the value of a population parameter is called: (a) Null hypothesis (b) Alternative hypothesis (c) Simple hypothesis (d) Composite hypothesis MCQ 13.4 Any statement whose validity is tested on the basis of a sample is called: (a) Null hypothesis (b) Alternative hypothesis (c) Statistical hypothesis (b) Simple hypothesis MCQ 13.5 A quantitative statement about a population is called: (a) Research hypothesis (b) Composite hypothesis (c) Simple hypothesis (d) Statistical hypothesis MCQ 13.6 A statement that is accepted if the sample data provide sufficient evidence that the null hypothesis is false is called: (a) Simple hypothesis (b) Composite hypothesis (c) Statistical hypothesis (d) Alternative hypothesis MCQ 13.7 The alternative hypothesis is also called: (a) Null hypothesis (b) Statistical hypothesis (c) Research hypothesis (d) Simple hypothesis MCQ 13.8 A hypothesis that specifies all the values of parameter is called: (a) Simple hypothesis (b) Composite hypothesis (c) Statistical hypothesis (d) None of the above MCQ 13.9 The hypothesis µ 10 is a: (a) Simple hypothesis (b) Composite hypothesis (c) Alternative hypothesis (d) Difficult to tell. MCQ If a hypothesis specifies the population distribution is called: (a) Simple hypothesis (b) Composite hypothesis (c) Alternative hypothesis (d) None of the above MCQ A hypothesis may be classified as: (a) Simple (b) Composite (c) Null (d) All of the above MCQ The probability of rejecting the null hypothesis when it is true is called: (a) Level of confidence (b) Level of significance (c) Power of the test (d) Difficult to tell
2 MCQ The dividing point between the region where the null hypothesis is rejected and the region where it is not rejected is said to be: (a) Critical region (b) Critical value (c) Acceptance region (d) Significant region MCQ If the critical region is located equally in both sides of the sampling distribution of teststatistic, the test is called: (a) One tailed (b) Two tailed (c) Right tailed (d) Left tailed MCQ The choice of onetailed test and twotailed test depends upon: (a) Null hypothesis (b) Alternative hypothesis (c) None of these (d) Composite hypotheses MCQ Test of hypothesis Ho: µ = 50 against H 1 : µ > 50 leads to: (a) Lefttailed test (b) Righttailed test (c) Twotailed test (d) Difficult to tell MCQ Test of hypothesis Ho: µ = 20 against H 1 : µ < 20 leads to: (a) Right onesided test (b) Left onesided test (c) Twosided test (d) All of the above MCQ Testing Ho: µ = 25 against H 1 : µ 20 leads to: (a) Twotailed test (b) Lefttailed test (c) Righttailed test (d) Neither (a), (b) and (c) MCQ A rule or formula that provides a basis for testing a null hypothesis is called: (a) Teststatistic (b) Population statistic (c) Both of these (d) None of the above MCQ The range of test statisticz is: (a) 0 to 1 (b) 1 to +1 (c) 0 to (d)  to + MCQ The range of test statistict is: (a) 0 to (b) 0 to 1 (c)  to + (d) 1 to +1 MCQ If H o is true and we reject it is called: (a) TypeI error (b) TypeII error (c) Standard error (d) Sampling error MCQ The probability associated with committing typei error is: (a) β (b) α (c) 1 β (d) 1 α MCQ A failing student is passed by an examiner, it is an example of: (a) TypeI error (b) TypeII error (c) Unbiased decision (d) Difficult to tell
3 MCQ A passing student is failed by an examiner, it is an example of: (a) TypeI error (b) TypeII error (c) Best decision (d) All of the above MCQ α is also called: (a) Confidence coefficient (b) Power of the test (c) Size of the test (d) Level of significance MCQ α is the probability associated with: (a) TypeI error (b) TypeII error (c) Level of confidence (d) Level of significance MCQ Area of the rejection region depends on: (a) Size of α (b) Size of β (c) Teststatistic (d) Number of values MCQ Size of critical region is known as: (a) β (b) 1  β (c) Critical value (d) Size of the test MCQ A null hypothesis is rejected if the value of a test statistic lies in the: (a) Rejection region (b) Acceptance region (c) Both (a) and (b) (d) Neither (a) nor (b) MCQ The test statistic is equal to: MCQ Level of significance is also called: (a) Power of the test (b) Size of the test (c) Level of confidence (d) Confidence coefficient MCQ Level of significance α lies between: (a) 1 and +1 (b) 0 and 1 (c) 0 and n (d)  to + MCQ Critical region is also called: (a) Acceptance region (b) Rejection region (c) Confidence region (d) Statistical region MCQ The probability of rejecting H o when it is false is called: (a) Power of the test (b) Size of the test (c) Level of confidence (d) Confidence coefficient MCQ Power of a test is related to: (a) TypeI error (b) TypeII error (c) Both (a) and (b) (d) Neither (a) and (b)
4 MCQ In testing hypothesis α + β is always equal to: (a) One (b) Zero (c) Two (d) Difficult to tell MCQ The significance level is the risk of: (a) Rejecting H o when H o is correct (c) Rejecting H 1 when H 1 is correct (b) Rejecting H o when H 1 is correct (d) Accepting H o when H o is correct. MCQ An example in a twosided alternative hypothesis is: (a) H 1 : µ < 0 (b) H 1 : µ > 0 (c) H 1 : µ 0 (d) H 1 : µ 0 MCQ If the magnitude of calculated value of t is less than the tabulated value of t and H 1 is twosided, we should: (a) Reject H o (b) Accept H 1 (c) Not reject H o (d) Difficult to tell MCQ Accepting a null hypothesis H o : (a) Proves that H o is true (b) Proves that H o is false (c) Implies that H o is likely to be true (d) Proves that µ 0 MCQ The chance of rejecting a true hypothesis decreases when sample size is: (a) Decreased (b) Increased (c) Constant (d) Both (a) and (b) MCQ The equality condition always appears in: (a) Null hypothesis (b) Simple hypothesis (c) Alternative hypothesis (d) Both (a) and (b) MCQ Which hypothesis is always in an inequality form? (a) Null hypothesis (b) Alternative hypothesis (c) Simple hypothesis (d) Composite hypothesis MCQ Which of the following is composite hypothesis? (a) µ µ o (b) µ µ o (c) µ = µ o (d) µ µ o MCQ P (Type I error) is equal to: (a) 1 α (b) 1 β (c) α (d) β MCQ P (Type II error) is equal to: (a) α (b) β (c) 1 α (d) 1 β MCQ The power of the test is equal to: (a) α (b) β (c) 1 α (d) 1 β
5 MCQ The degree of confidence is equal to: (a) α (b) β (c) 1 α (d) 1 β MCQ α / 2 is called: (a) One tailed significance level (c) Left tailed significance level (b) Two tailed significance level (d) Right tailed significance level MCQ Student s ttest is applicable only when: (a) n 30 and σ is known (b) n>30 and σ is unknown (c) n=30 and σ is known (d) All of the above MCQ Student s tstatistic is applicable in case of: (a) Equal number of samples (b) Unequal number of samples (c) Small samples (d) All of the above MCQ Paired ttest is applicable when the observations in the two samples are: (a) Equal in number (b) Paired (c) Correlation (d) All of the above MCQ The degree of freedom for paired ttest based on n pairs of observations is: (a) 2n  1 (b) n  2 (c) 2(n  1) (d) n  1 MCQ The teststatistic has d.f = : (a) n (b) n  1 (c) n  2 (d) n 1 + n 22 MCQ In an unpaired samples ttest with sample sizes n 1 = 11 and n 2 = 11, the value of tabulated t should be obtained for: (a) 10 degrees of freedom (b) 21 degrees of freedom (c) 22 degrees of freedom (d) 20 degrees of freedom MCQ In analyzing the results of an experiment involving seven paired samples, tabulated t should be obtained for: (a) 13 degrees of freedom (b) 6 degrees of freedom (c) 12 degrees of freedom (d) 14 degrees of freedom MCQ The mean difference between 16 paired observations is 25 and the standard deviation of differences is 10. The value of statistict is: (a) 4 (b) 10 (c) 16 (d) 25 MCQ Statistict is defined as deviation of sample mean from population mean µ expressed in terms of: (a) Standard deviation (b) Standard error (c) Coefficient of standard deviation (d) Coefficient of variation
6 MCQ Student s tdistribution has (n1) d.f. when all the n observations in the sample are: (a) Dependent (b) Independent (c) Maximum (d) Minimum MCQ The number of independent values in a set of values is called: (a) Teststatistic (b) Degree of freedom (c) Level of significance (d) Level of confidence MCQ The purpose of statistical inference is: (a) To collect sample data and use them to formulate hypotheses about a population (b) To draw conclusion about populations and then collect sample data to support the conclusions (c) To draw conclusions about populations from sample data (d) To draw conclusions about the known value of population parameter MCQ Suppose that the null hypothesis is true and it is rejected, is known as: (a) A typei error, and its probability is β (b) A typei error, and its probability is α (c) A typeii error, and its probability is α (d) A typeil error, and its probability is β MCQ An advertising agency wants to test the hypothesis that the proportion of adults in Pakistan who read a Sunday Magazine is 25 percent. The null hypothesis is that the proportion reading the Sunday Magazine is: (a) Different from 25% (b) Equal to 25% (c) Less than 25 % (d) More than 25 % MCQ If the mean of a particular population is µo, is distributed: (a) As a standard normal variable, if the population is nonnormal (b) As a standard normal variable, if the sample is large (c) As a standard normal variable, if the population is normal (d) As the tdistribution with v = n  1 degrees of freedom MCQ If µ 1 and µ 2 are means of two populations, is distributed: (a) As a standard normal variable, if both samples are independent and less than 30 (b) As a standard normal variable, if both populations are normal (c) As both (a) and (b) state (d) As the tdistribution with n 1 + n 22 degrees of freedom MCQ If the population proportion equals p o, then is distributed: (a) As a standard normal variable, if n > 30 (b) As a Poisson variable (c) As the tdistribution with v= n 1 degrees of freedom (d) As a distribution with v degrees of freedom
7 MCQ When σ is known, the hypothesis about population mean is tested by: (a) ttest (b) Ztest (c) χ 2 test (d) Ftest MCQ Given µ o = 130, = 150, σ = 25 and n = 4; what test statistics is appropriate? (a) t (b) Z (c) χ 2 (d) F MCQ Given H o : µ = µ o, H 1 : µ µ o, α = 0.05 and we reject H o ; the absolute value of the Zstatistic must have equalled or been beyond what value? (a) 1.96 (b) 1.65 (c) 2.58 (d) 2.33 MCQ If p 1 and p 2 are not identical, then standard error of the difference of proportions (p 1 p 2 ) is: MCQ Under the hypothesis Ho: p 1 = p 2, the formula for the standard error of the difference between proportions (p 1 p 2 ) is:
Hypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam
Hypothesis Testing 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 3 2. Hypothesis Testing... 3 3. Hypothesis Tests Concerning the Mean... 10 4. Hypothesis Tests
More informationChapter 7. Section Introduction to Hypothesis Testing
Section 7.1  Introduction to Hypothesis Testing Chapter 7 Objectives: State a null hypothesis and an alternative hypothesis Identify type I and type II errors and interpret the level of significance Determine
More informationStatistiek I. ttests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. John Nerbonne 1/35
Statistiek I ttests John Nerbonne CLCG, Rijksuniversiteit Groningen http://wwwletrugnl/nerbonne/teach/statistieki/ John Nerbonne 1/35 ttests To test an average or pair of averages when σ is known, we
More informationSection 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)
Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis
More informationLAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
More informationHypothesis testing  Steps
Hypothesis testing  Steps Steps to do a twotailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =
More informationHypothesis Testing (unknown σ)
Hypothesis Testing (unknown σ) Business Statistics Recall: Plan for Today Null and Alternative Hypotheses Types of errors: type I, type II Types of correct decisions: type A, type B Level of Significance
More informationHypothesis Testing. Bluman Chapter 8
CHAPTER 8 Learning Objectives C H A P T E R E I G H T Hypothesis Testing 1 Outline 81 Steps in Traditional Method 82 z Test for a Mean 83 t Test for a Mean 84 z Test for a Proportion 85 2 Test for
More informationDevelop hypothesis and then research to find out if it is true. Derived from theory or primary question/research questions
Chapter 12 Hypothesis Testing Learning Objectives Examine the process of hypothesis testing Evaluate research and null hypothesis Determine one or twotailed tests Understand obtained values, significance,
More informationIntroduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses
Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the
More informationGeneral Procedure for Hypothesis Test. Five types of statistical analysis. 1. Formulate H 1 and H 0. General Procedure for Hypothesis Test
Five types of statistical analysis General Procedure for Hypothesis Test Descriptive Inferential Differences Associative Predictive What are the characteristics of the respondents? What are the characteristics
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question
Stats: Test Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question Provide an appropriate response. ) Given H0: p 0% and Ha: p < 0%, determine
More informationChapter 8 Introduction to Hypothesis Testing
Chapter 8 Student Lecture Notes 81 Chapter 8 Introduction to Hypothesis Testing Fall 26 Fundamentals of Business Statistics 1 Chapter Goals After completing this chapter, you should be able to: Formulate
More informationChapter 9. Section Correlation
Chapter 9 Section 9.1  Correlation Objectives: Introduce linear correlation, independent and dependent variables, and the types of correlation Find a correlation coefficient Test a population correlation
More informationConfidence level. Most common choices are 90%, 95%, or 99%. (α = 10%), (α = 5%), (α = 1%)
Confidence Interval A confidence interval (or interval estimate) is a range (or an interval) of values used to estimate the true value of a population parameter. A confidence interval is sometimes abbreviated
More informationChapter Additional: Standard Deviation and Chi Square
Chapter Additional: Standard Deviation and Chi Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret
More informationPASS Sample Size Software
Chapter 250 Introduction The Chisquare test is often used to test whether sets of frequencies or proportions follow certain patterns. The two most common instances are tests of goodness of fit using multinomial
More informationHypothesis Testing  One Mean
Hypothesis Testing  One Mean A hypothesis is simply a statement that something is true. Typically, there are two hypotheses in a hypothesis test: the null, and the alternative. Null Hypothesis The hypothesis
More informationPractice Exam. 1. What is the median of this data? A) 64 B) 63.5 C) 67.5 D) 59 E) 35
Practice Exam Use the following to answer questions 12: A census is done in a given region. Following are the populations of the towns in that particular region (in thousands): 35, 46, 52, 63, 64, 71,
More informationStat 411/511 THE RANDOMIZATION TEST. Charlotte Wickham. stat511.cwick.co.nz. Oct 16 2015
Stat 411/511 THE RANDOMIZATION TEST Oct 16 2015 Charlotte Wickham stat511.cwick.co.nz Today Review randomization model Conduct randomization test What about CIs? Using a tdistribution as an approximation
More informationPearson's Correlation Tests
Chapter 800 Pearson's Correlation Tests Introduction The correlation coefficient, ρ (rho), is a popular statistic for describing the strength of the relationship between two variables. The correlation
More informationHYPOTHESIS TESTING: POWER OF THE TEST
HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,
More informationt Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon
ttests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com
More informationTwoSample TTests Assuming Equal Variance (Enter Means)
Chapter 4 TwoSample TTests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one or twosided twosample ttests when the variances of
More informationTHE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.
THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM
More informationModule 5 Hypotheses Tests: Comparing Two Groups
Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this
More informationFactorial Analysis of Variance
Chapter 560 Factorial Analysis of Variance Introduction A common task in research is to compare the average response across levels of one or more factor variables. Examples of factor variables are income
More informationHypothesis Testing I
ypothesis Testing I The testing process:. Assumption about population(s) parameter(s) is made, called null hypothesis, denoted. 2. Then the alternative is chosen (often just a negation of the null hypothesis),
More informationMultiple Hypothesis Testing: The Ftest
Multiple Hypothesis Testing: The Ftest Matt Blackwell December 3, 2008 1 A bit of review When moving into the matrix version of linear regression, it is easy to lose sight of the big picture and get lost
More informationStructure of the Data. Paired Samples. Overview. The data from a paired design can be tabulated in this form. Individual Y 1 Y 2 d i = Y 1 Y
Structure of the Data Paired Samples Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison Statistics 371 11th November 2005 The data from a paired design can be tabulated
More information3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
More informationChapter 1112 1 Review
Chapter 1112 Review Name 1. In formulating hypotheses for a statistical test of significance, the null hypothesis is often a statement of no effect or no difference. the probability of observing the data
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationChapter III. Testing Hypotheses
Chapter III Testing Hypotheses R (Introduction) A statistical hypothesis is an assumption about a population parameter This assumption may or may not be true The best way to determine whether a statistical
More informationChapter 8. Hypothesis Testing
Chapter 8 Hypothesis Testing Hypothesis In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing
More information93.4 Likelihood ratio test. NeymanPearson lemma
93.4 Likelihood ratio test NeymanPearson lemma 91 Hypothesis Testing 91.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental
More information7 Hypothesis testing  one sample tests
7 Hypothesis testing  one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X
More informationChapter 9, Part A Hypothesis Tests. Learning objectives
Chapter 9, Part A Hypothesis Tests Slide 1 Learning objectives 1. Understand how to develop Null and Alternative Hypotheses 2. Understand Type I and Type II Errors 3. Able to do hypothesis test about population
More informationTesting a claim about a population mean
Introductory Statistics Lectures Testing a claim about a population mean One sample hypothesis test of the mean Department of Mathematics Pima Community College Redistribution of this material is prohibited
More informationStatistical Inference and ttests
1 Statistical Inference and ttests Objectives Evaluate the difference between a sample mean and a target value using a onesample ttest. Evaluate the difference between a sample mean and a target value
More informationA POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
CHAPTER 5. A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 5.1 Concepts When a number of animals or plots are exposed to a certain treatment, we usually estimate the effect of the treatment
More informationTwoSample TTests Allowing Unequal Variance (Enter Difference)
Chapter 45 TwoSample TTests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one or twosided twosample ttests when no assumption
More informationChapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing 83 Testing a Claim About a Proportion 85 Testing a Claim About a Mean: s Not Known 86 Testing
More informationPoint Biserial Correlation Tests
Chapter 807 Point Biserial Correlation Tests Introduction The point biserial correlation coefficient (ρ in this chapter) is the productmoment correlation calculated between a continuous random variable
More informationMeasuring the Power of a Test
Textbook Reference: Chapter 9.5 Measuring the Power of a Test An economic problem motivates the statement of a null and alternative hypothesis. For a numeric data set, a decision rule can lead to the rejection
More informationExample Hypotheses. Chapter 82: Basics of Hypothesis Testing. A newspaper headline makes the claim: Most workers get their jobs through networking
Chapter 82: Basics of Hypothesis Testing Two main activities in statistical inference are using sample data to: 1. estimate a population parameter forming confidence intervals 2. test a hypothesis or
More informationChapter 14: 16, 9, 12; Chapter 15: 8 Solutions When is it appropriate to use the normal approximation to the binomial distribution?
Chapter 14: 16, 9, 1; Chapter 15: 8 Solutions 141 When is it appropriate to use the normal approximation to the binomial distribution? The usual recommendation is that the approximation is good if np
More information82 Basics of Hypothesis Testing. Definitions. Rare Event Rule for Inferential Statistics. Null Hypothesis
82 Basics of Hypothesis Testing Definitions This section presents individual components of a hypothesis test. We should know and understand the following: How to identify the null hypothesis and alternative
More informationNCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, twosample ttests, the ztest, the
More informationNull Hypothesis H 0. The null hypothesis (denoted by H 0
Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property
More informationNonInferiority Tests for One Mean
Chapter 45 NonInferiority ests for One Mean Introduction his module computes power and sample size for noninferiority tests in onesample designs in which the outcome is distributed as a normal random
More informationPower and Sample Size Determination
Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 Power 1 / 31 Experimental Design To this point in the semester,
More informationOutline of Topics. Statistical Methods I. Types of Data. Descriptive Statistics
Statistical Methods I Tamekia L. Jones, Ph.D. (tjones@cog.ufl.edu) Research Assistant Professor Children s Oncology Group Statistics & Data Center Department of Biostatistics Colleges of Medicine and Public
More informationInferences About Differences Between Means Edpsy 580
Inferences About Differences Between Means Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at UrbanaChampaign Inferences About Differences Between Means Slide
More informationNull Hypothesis Significance Testing Signifcance Level, Power, ttests Spring 2014 Jeremy Orloff and Jonathan Bloom
Null Hypothesis Significance Testing Signifcance Level, Power, ttests 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom Simple and composite hypotheses Simple hypothesis: the sampling distribution is
More informationMULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS
MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance
More informationLesson 1: Comparison of Population Means Part c: Comparison of Two Means
Lesson : Comparison of Population Means Part c: Comparison of Two Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
More informationSimple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
More informationHypothesis Test for Mean Using Given Data (Standard Deviation Knownztest)
Hypothesis Test for Mean Using Given Data (Standard Deviation Knownztest) A hypothesis test is conducted when trying to find out if a claim is true or not. And if the claim is true, is it significant.
More informationClass 19: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
More informationNCSS Statistical Software. OneSample TTest
Chapter 205 Introduction This procedure provides several reports for making inference about a population mean based on a single sample. These reports include confidence intervals of the mean or median,
More informationUsing Excel for inferential statistics
FACT SHEET Using Excel for inferential statistics Introduction When you collect data, you expect a certain amount of variation, just caused by chance. A wide variety of statistical tests can be applied
More informationGuide to Microsoft Excel for calculations, statistics, and plotting data
Page 1/47 Guide to Microsoft Excel for calculations, statistics, and plotting data Topic Page A. Writing equations and text 2 1. Writing equations with mathematical operations 2 2. Writing equations with
More informationStatistics Review PSY379
Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses
More informationHypothesis Testing Summary
Hypothesis Testing Summary Hypothesis testing begins with the drawing of a sample and calculating its characteristics (aka, statistics ). A statistical test (a specific form of a hypothesis test) is an
More informationChapter 5: Basic Statistics and Hypothesis Testing
Chapter 5: Basic Statistics and Hypothesis Testing In this chapter: 1. Viewing the tvalue from an OLS regression (UE 5.2.1) 2. Calculating critical tvalues and applying the decision rule (UE 5.2.2) 3.
More informationHypothesis Testing. Hypothesis Testing
Hypothesis Testing Daniel A. Menascé Department of Computer Science George Mason University 1 Hypothesis Testing Purpose: make inferences about a population parameter by analyzing differences between observed
More informationUnit 26 Estimation with Confidence Intervals
Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference
More informationAn Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10 TWOSAMPLE TESTS
The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10 TWOSAMPLE TESTS Practice
More informationNonparametric Statistics
1 14.1 Using the Binomial Table Nonparametric Statistics In this chapter, we will survey several methods of inference from Nonparametric Statistics. These methods will introduce us to several new tables
More informationChapter Study Guide. Chapter 11 Confidence Intervals and Hypothesis Testing for Means
OPRE504 Chapter Study Guide Chapter 11 Confidence Intervals and Hypothesis Testing for Means I. Calculate Probability for A Sample Mean When Population σ Is Known 1. First of all, we need to find out the
More informationHYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
More informationStatistical Inference
Statistical Inference Idea: Estimate parameters of the population distribution using data. How: Use the sampling distribution of sample statistics and methods based on what would happen if we used this
More informationQuantitative Biology Lecture 5 (Hypothesis Testing)
15 th Oct 2015 Quantitative Biology Lecture 5 (Hypothesis Testing) Gurinder Singh Mickey Atwal Center for Quantitative Biology Summary Classification Errors Statistical significance Ttests Qvalues (Traditional)
More informationSampling and Hypothesis Testing
Population and sample Sampling and Hypothesis Testing Allin Cottrell Population : an entire set of objects or units of observation of one sort or another. Sample : subset of a population. Parameter versus
More informationHYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
More informationIntroduction. Hypothesis Testing. Hypothesis Testing. Significance Testing
Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters
More informationHow to Conduct a Hypothesis Test
How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some
More informationAP STATISTICS 2009 SCORING GUIDELINES (Form B)
AP STATISTICS 2009 SCORING GUIDELINES (Form B) Question 5 Intent of Question The primary goals of this question were to assess students ability to (1) state the appropriate hypotheses, (2) identify and
More information3. Nonparametric methods
3. Nonparametric methods If the probability distributions of the statistical variables are unknown or are not as required (e.g. normality assumption violated), then we may still apply nonparametric tests
More informationPrinciples of Hypothesis Testing for Public Health
Principles of Hypothesis Testing for Public Health Laura Lee Johnson, Ph.D. Statistician National Center for Complementary and Alternative Medicine johnslau@mail.nih.gov Fall 2011 Answers to Questions
More informationHypoTesting. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Class: Date: HypoTesting Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A Type II error is committed if we make: a. a correct decision when the
More informationPower and Sample Size. In epigenetic epidemiology studies
Power and Sample Size In epigenetic epidemiology studies Overview Pros and cons Working examples Concerns for epigenetic epidemiology Definition Power is the probability of detecting an effect, given that
More informationCHAPTER 9 HYPOTHESIS TESTING
CHAPTER 9 HYPOTHESIS TESTING The TI83 Plus and TI84 Plus fully support hypothesis testing. Use the key, then highlight TESTS. The options used in Chapter 9 are given on the two screens. TESTING A SINGLE
More informationHypothesis Testing or How to Decide to Decide Edpsy 580
Hypothesis Testing or How to Decide to Decide Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at UrbanaChampaign Hypothesis Testing or How to Decide to Decide
More information22. HYPOTHESIS TESTING
22. HYPOTHESIS TESTING Often, we need to make decisions based on incomplete information. Do the data support some belief ( hypothesis ) about the value of a population parameter? Is OJ Simpson guilty?
More information6: Introduction to Hypothesis Testing
6: Introduction to Hypothesis Testing Significance testing is used to help make a judgment about a claim by addressing the question, Can the observed difference be attributed to chance? We break up significance
More informationHYPOTHESIS TESTING AND TYPE I AND TYPE II ERROR
HYPOTHESIS TESTING AND TYPE I AND TYPE II ERROR Hypothesis is a conjecture (an inferring) about one or more population parameters. Null Hypothesis (H 0 ) is a statement of no difference or no relationship
More informationStudy Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
More informationUnit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
More informationNonparametric Methods for Two Samples. Nonparametric Methods for Two Samples
Nonparametric Methods for Two Samples An overview In the independent twosample ttest, we assume normality, independence, and equal variances. This ttest is robust against nonnormality, but is sensitive
More informationPaired 2 Sample ttest
Variations of the ttest: Paired 2 Sample 1 Paired 2 Sample ttest Suppose we are interested in the effect of different sampling strategies on the quality of data we recover from archaeological field surveys.
More informationRegression Analysis: A Complete Example
Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty
More informationStatistical Functions in Excel
Statistical Functions in Excel There are many statistical functions in Excel. Moreover, there are other functions that are not specified as statistical functions that are helpful in some statistical analyses.
More informationHypothesis Testing and Confidence Interval Estimation
Biostatistics for Health Care Researchers: A Short Course Hypothesis Testing and Confidence Interval Estimation Presented ed by: Susan M. Perkins, Ph.D. Division of Biostatistics Indiana University School
More informationProbability of rejecting the null hypothesis when
Sample Size The first question faced by a statistical consultant, and frequently the last, is, How many subjects (animals, units) do I need? This usually results in exploring the size of the treatment
More informationProbability and Statistics Lecture 9: 1 and 2Sample Estimation
Probability and Statistics Lecture 9: 1 and Sample Estimation to accompany Probability and Statistics for Engineers and Scientists Fatih Cavdur Introduction A statistic θ is said to be an unbiased estimator
More informationHypothesis Testing COMP 245 STATISTICS. Dr N A Heard. 1 Hypothesis Testing 2 1.1 Introduction... 2 1.2 Error Rates and Power of a Test...
Hypothesis Testing COMP 45 STATISTICS Dr N A Heard Contents 1 Hypothesis Testing 1.1 Introduction........................................ 1. Error Rates and Power of a Test.............................
More information5/31/2013. Chapter 8 Hypothesis Testing. Hypothesis Testing. Hypothesis Testing. Outline. Objectives. Objectives
C H 8A P T E R Outline 8 1 Steps in Traditional Method 8 2 z Test for a Mean 8 3 t Test for a Mean 8 4 z Test for a Proportion 8 6 Confidence Intervals and Copyright 2013 The McGraw Hill Companies, Inc.
More informationData Analysis. Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) SS Analysis of Experiments  Introduction
Data Analysis Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) Prof. Dr. Dr. h.c. Dieter Rombach Dr. Andreas Jedlitschka SS 2014 Analysis of Experiments  Introduction
More information