EAS Groundwater Hydrology Lecture 13: Well Hydraulics 2 Dr. Pengfei Zhang

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "EAS Groundwater Hydrology Lecture 13: Well Hydraulics 2 Dr. Pengfei Zhang"

Transcription

1 EAS Goundwate Hydology Lectue 3: Well Hydaulics D. Pengfei Zhang Detemining Aquife Paametes fom Time-Dawdown Data In the past lectue we discussed how to calculate dawdown if we know the hydologic popeties of the aquife. These hydologic popeties ae usually detemined by means of aquife test. In an aquife test, a well is pumped and the ate of decline of the wate level in neaby obsevation wells is ecoded. In the next two lectues we will discuss how to use the time-dawdown data to deive hydaulic paametes of the aquife. We will use the following assumptions in ou discussion:. The pumping well and all obsevation wells ae sceened only in the aquife being tested.. The pumping well and the obsevation wells ae sceened thoughout the entie thickness of the aquife. A B Figue 3-. Equilibium dawdown: A. confined aquife; B. unconfined aquife (Fette). 3-

2 Steady-State Conditions If a well pumps fo vey long time, the wate level may each a steady state, i.e., thee is no futhe dawdown ove time. The cone of depession will not gow unde steady-state conditions since the echage ate equates pumpage. In the case of steady adial flow in a confined aquife (Figue 3-A), the adial flow is descibed by Q = πt ( dh / d) (equation -7). Reaanging equation -7 yields: Q d dh = (3-) πt If we have two obsevation wells (hydaulic head h and distance fo the fist well, and head h and distance fo the second well), we can integate both sides of equation 3- with these bounday conditions: The esult is: h dh = (3-) h Q πt d Q h = h ln (3-3) πt Reaanging equation 3-3 gives the Thiem equation fo a confined aquife: Q T = ln (3-4) π ( h h ) whee T is the tansmissivity, Q is the pumping ate, and h and h ae the hydaulic heads at distances and fom the pumping well, espectively. Simila to the case of steady adial flow in a confined aquife (equation -7), the steady adial flow in an unconfined aquife is descibed by db Q = ( πb)k (3-5) d whee Q is the pumping ate, is the adial distance fom the cicula section to the well, b is the satuated thickness of the aquife, K is the hydaulic conductivity, and db/d is the hydaulic gadient. 3-

3 Reaanging equation 3-5 gives Q d bdb = (3-6) πk If we have two obsevation wells (hydaulic head h and distance fo the fist well, and head h and distance fo the second well), we can integate both sides of equation 3-6 with these bounday conditions: b bdb = b Q d πk (3-7) The esult is: Q b = b ln πk (3-8) Reaanging equation 3-8 gives the Thiem equation fo an unconfined aquife: Q K = ln (3-9) π ( b b ) whee K is the hydaulic conductivity, Q is the pumping ate, and b and b ae the satuated thickness at distance and fom the pumping well, espectively (Figue 3-B). Nonequilibium Flow Conditions In pevious section we discussed the methods of detemining hydologic paametes using timedawdown data unde steady-state flow conditions. In eality, howeve, many aquife tests will neve each the steady state (i.e., the cone of depession will continue to gow ove time). These conditions ae efeed to as nonequilibium o tansient flow conditions. Hee we will only discuss the methods of detemining tansmissivity and stoativity in a confined aquife unde nonequilibium adial flow conditions. Theis Method The Theis equation -0 can be eaanged as follows: T Q = W ( u) (3-0) 4 π ( h h) o whee T is the aquife tansmissivity, Q is the steady pumping ate, h o -h is the dawdown, and W(u) is the well function. Likewise, equation -9 can be eaanged as: 3-3

4 4Tut S = (3-) whee S is the aquife stoativity, T is the tansmissivity, u is a dimensionless constant, t is the time since pumping stats, and is the adial distance fom the pumping well. Duing an aquife test, wate is pumped out at a well fo a peiod of time; the dawdown is then measued as a function of time in one o moe obsevation wells. The data ae analyzed using diffeent methods to detemine aquife tansmissivity and stoativity. The Theis method is a gaphical method that involves the following steps:. Make a plot of W(u) vesus /u on full logaithmic pape, o using a speadsheet. This gaph has the shape of the cone of depession nea the pumping well and is efeed to as the Theis type cuve, o the nonequilibium type cuve (Figue 3-).. Plot the field dawdown at the obsevation well, (h o -h), vesus t using the same logaithmic scale as the type cuve (Figue 3-3). Since time is often ecoded in minutes in the field, you need to plot time in minutes on you field-data plot and covet minutes to days (equied in the Theis equation) late. 3. Lay the type cuve ove the field-data gaph and adjust the two gaphs until the data points match the type cuve, with the axes of both gaphs paallel (Figue 3-4). Select the intesection of the line W(u) = and the line /u = as you match point. Find the values of (h o -h) and t coesponding to the match point on the field-data gaph. You may use a pin to push though the two pieces of pape to locate the exact match point. 4. Calculate tansmissivity (T) value by substituting the values of Q, (h o -h), and W(u) fom the match point into equation 3-0. Once T is known, its value along with the values of, t, and u fom the match point can be substituted into equation 3- to find aquife stoativity (S). Figue 3-. Theis type cuve fo a fully confined aquife (Fette). 3-4

5 Figue 3-3. Field-data plot on logaithmic pape fo Theis cuve-matching technique (Fette). Figue 3-4. Match of field-data plot to Theis type cuve (Fette). Coope-Jacob Staight-Line Time-Dawdown Method This method is an appoximation to Theis method and is only valid fo u < In this method a semi-log plot of the field dawdown data (linea scale) vesus time (nomal log scale) is made (Figue 3-5). A staight is then dawn though the field-data points and extended backwad to the zeo-dawdown axis (Figue 3-5). The time at the intecept of the staight line and the zeodawdown axis is designated t o. The value of the dawdown pe log cycle of time, (h o -h), is obtained fom the slope of the gaph. The values of tansmissivity and stoativity can be calculated fom the following equations: T.3Q = 4 (3-) π ( h h) o 3-5

6 S.5Tto = (3-3) whee T is the tansmissivity, Q is the pumping ate, (h o -h) is the dawdown pe log cycle of time, S is the stoativity, is the adial distance to the pumping well, and t o is the time whee the staight line intesects the zeo-dawdown axis (Figue 3-5). Figue 3-5. Coope-Jacob staight-line time-dawdown method fo a fully confined aquife (Fette). Notice that the time used in the time-dawdown plot is often in minutes and it must be conveted to days befoe it is used in equation 3-3. Jacob Staight-Line Distance-Dawdown Method If moe than thee obsevation wells ae used in an aquife test, and dawdowns ae measued at the same time in these wells, the Jacob staight-line distance-dawdown method can be used to detemine aquife tansmissivity and stoativity. In this method dawdown is plotted on aithmetic scale as a function of the distance fom the pumping well on the log scale (Figue 3-6). A staight line is then dawn though the data points and extended to the zeo-dawdown axis. The intecept is the distance at which the pumping well is not affecting the wate level and is designated o (Figue 3-6). The dawdown pe log cycle of distance is designated (h o -h) as befoe (Figue 3-6). The aquife tansmissivity (T) and stoativity (S) ae calculated as follows: T.3Q = (3-4) π ( h h) o.5tt S = (3-5) o 3-6

7 whee Q is the pumping ate, t is the time when dawdown is measued, and o is the distance at which the staight line intecepts the zeo-dawdown axis (Figue 3-6). Figue 3-6. Jacob staight-line distance-dawdown method fo a fully confined aquife (Fette). 3-7

Chapter 3 Savings, Present Value and Ricardian Equivalence

Chapter 3 Savings, Present Value and Ricardian Equivalence Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,

More information

Power and Sample Size Calculations for the 2-Sample Z-Statistic

Power and Sample Size Calculations for the 2-Sample Z-Statistic Powe and Sample Size Calculations fo the -Sample Z-Statistic James H. Steige ovembe 4, 004 Topics fo this Module. Reviewing Results fo the -Sample Z (a) Powe and Sample Size in Tems of a oncentality Paamete.

More information

LINES AND TANGENTS IN POLAR COORDINATES

LINES AND TANGENTS IN POLAR COORDINATES LINES AND TANGENTS IN POLAR COORDINATES ROGER ALEXANDER DEPARTMENT OF MATHEMATICS 1. Pola-coodinate equations fo lines A pola coodinate system in the plane is detemined by a point P, called the pole, and

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

1.4 Phase Line and Bifurcation Diag

1.4 Phase Line and Bifurcation Diag Dynamical Systems: Pat 2 2 Bifucation Theoy In pactical applications that involve diffeential equations it vey often happens that the diffeential equation contains paametes and the value of these paametes

More information

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360! 1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the

More information

Revision Guide for Chapter 11

Revision Guide for Chapter 11 Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams

More information

VISCOSITY OF BIO-DIESEL FUELS

VISCOSITY OF BIO-DIESEL FUELS VISCOSITY OF BIO-DIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use

More information

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M Poblems on oce Exeted by a Magnetic ields fom Ch 6 TM Poblem 6.7 A cuent-caying wie is bent into a semicicula loop of adius that lies in the xy plane. Thee is a unifom magnetic field B Bk pependicula to

More information

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities. Gaphs of Equations CHAT Pe-Calculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such

More information

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to . Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Carter-Penrose diagrams and black holes

Carter-Penrose diagrams and black holes Cate-Penose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example

More information

Algebra and Trig. I. A point is a location or position that has no size or dimension.

Algebra and Trig. I. A point is a location or position that has no size or dimension. Algeba and Tig. I 4.1 Angles and Radian Measues A Point A A B Line AB AB A point is a location o position that has no size o dimension. A line extends indefinitely in both diections and contains an infinite

More information

Skills Needed for Success in Calculus 1

Skills Needed for Success in Calculus 1 Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3 Lectue 16: Colo and Intensity and he made him a coat of many colous. Genesis 37:3 1. Intoduction To display a pictue using Compute Gaphics, we need to compute the colo and intensity of the light at each

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

Ilona V. Tregub, ScD., Professor

Ilona V. Tregub, ScD., Professor Investment Potfolio Fomation fo the Pension Fund of Russia Ilona V. egub, ScD., Pofesso Mathematical Modeling of Economic Pocesses Depatment he Financial Univesity unde the Govenment of the Russian Fedeation

More information

Mechanics 1: Motion in a Central Force Field

Mechanics 1: Motion in a Central Force Field Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.

More information

Transformations in Homogeneous Coordinates

Transformations in Homogeneous Coordinates Tansfomations in Homogeneous Coodinates (Com S 4/ Notes) Yan-Bin Jia Aug, 6 Homogeneous Tansfomations A pojective tansfomation of the pojective plane is a mapping L : P P defined as u a b c u au + bv +

More information

In the lecture on double integrals over non-rectangular domains we used to demonstrate the basic idea

In the lecture on double integrals over non-rectangular domains we used to demonstrate the basic idea Double Integals in Pola Coodinates In the lectue on double integals ove non-ectangula domains we used to demonstate the basic idea with gaphics and animations the following: Howeve this paticula example

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Financing Terms in the EOQ Model

Financing Terms in the EOQ Model Financing Tems in the EOQ Model Habone W. Stuat, J. Columbia Business School New Yok, NY 1007 hws7@columbia.edu August 6, 004 1 Intoduction This note discusses two tems that ae often omitted fom the standad

More information

CIRCUITS LABORATORY EXPERIMENT 7

CIRCUITS LABORATORY EXPERIMENT 7 CIRCUITS LABORATORY EXPERIMENT 7 Design of a Single Tansisto Amplifie 7. OBJECTIVES The objectives of this laboatoy ae to: (a) Gain expeience in the analysis and design of an elementay, single tansisto

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body

More information

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

NUCLEAR MAGNETIC RESONANCE

NUCLEAR MAGNETIC RESONANCE 19 Jul 04 NMR.1 NUCLEAR MAGNETIC RESONANCE In this expeiment the phenomenon of nuclea magnetic esonance will be used as the basis fo a method to accuately measue magnetic field stength, and to study magnetic

More information

Definitions and terminology

Definitions and terminology I love the Case & Fai textbook but it is out of date with how monetay policy woks today. Please use this handout to supplement the chapte on monetay policy. The textbook assumes that the Fedeal Reseve

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Problem Set 6: Solutions

Problem Set 6: Solutions UNIVESITY OF ALABAMA Depatment of Physics and Astonomy PH 16-4 / LeClai Fall 28 Poblem Set 6: Solutions 1. Seway 29.55 Potons having a kinetic enegy of 5. MeV ae moving in the positive x diection and ente

More information

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.

More information

92.131 Calculus 1 Optimization Problems

92.131 Calculus 1 Optimization Problems 9 Calculus Optimization Poblems ) A Noman window has the outline of a semicicle on top of a ectangle as shown in the figue Suppose thee is 8 + π feet of wood tim available fo all 4 sides of the ectangle

More information

INITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS

INITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS INITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS Vesion:.0 Date: June 0 Disclaime This document is solely intended as infomation fo cleaing membes and othes who ae inteested in

More information

Experiment MF Magnetic Force

Experiment MF Magnetic Force Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuent-caying conducto is basic to evey electic moto -- tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

Performance Analysis of an Inverse Notch Filter and Its Application to F 0 Estimation

Performance Analysis of an Inverse Notch Filter and Its Application to F 0 Estimation Cicuits and Systems, 013, 4, 117-1 http://dx.doi.og/10.436/cs.013.41017 Published Online Januay 013 (http://www.scip.og/jounal/cs) Pefomance Analysis of an Invese Notch Filte and Its Application to F 0

More information

Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth

Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth Ch. 8 Univesal Gavitation Pat 1: Keple s Laws Objectives: Section 8.1 Motion in the Heavens and on Eath Objectives Relate Keple s laws of planetay motion to Newton s law of univesal gavitation. Calculate

More information

NURBS Drawing Week 5, Lecture 10

NURBS Drawing Week 5, Lecture 10 CS 43/585 Compute Gaphics I NURBS Dawing Week 5, Lectue 1 David Been, William Regli and Maim Pesakhov Geometic and Intelligent Computing Laboato Depatment of Compute Science Deel Univesit http://gicl.cs.deel.edu

More information

STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION

STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION Page 1 STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION C. Alan Blaylock, Hendeson State Univesity ABSTRACT This pape pesents an intuitive appoach to deiving annuity fomulas fo classoom use and attempts

More information

Lab #7: Energy Conservation

Lab #7: Energy Conservation Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 1-4 Intoduction: Pehaps one of the most unusual

More information

Alignment of Buckingham Parameters to Generalized Lennard-Jones Potential Functions

Alignment of Buckingham Parameters to Generalized Lennard-Jones Potential Functions Alignment of Buckingham Paametes to Genealized Lennad-Jones Potential Functions Teik-Cheng Lim School of Science and Technology SIM Univesity 535A Clementi oad S 599490 epublic of Singapoe epint equests

More information

8-1 Newton s Law of Universal Gravitation

8-1 Newton s Law of Universal Gravitation 8-1 Newton s Law of Univesal Gavitation One of the most famous stoies of all time is the stoy of Isaac Newton sitting unde an apple tee and being hit on the head by a falling apple. It was this event,

More information

Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43

Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43 Chapte 13 Gavitation Poblems: 1, 4, 5, 7, 18, 19, 5, 9, 31, 33, 43 Evey object in the univese attacts evey othe object. This is called gavitation. We e use to dealing with falling bodies nea the Eath.

More information

CHAT Pre-Calculus Section 10.7. Polar Coordinates

CHAT Pre-Calculus Section 10.7. Polar Coordinates CHAT Pe-Calculus Pola Coodinates Familia: Repesenting gaphs of equations as collections of points (, ) on the ectangula coodinate sstem, whee and epesent the diected distances fom the coodinate aes to

More information

Displacement, Velocity And Acceleration

Displacement, Velocity And Acceleration Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,

More information

Economics 326: Input Demands. Ethan Kaplan

Economics 326: Input Demands. Ethan Kaplan Economics 326: Input Demands Ethan Kaplan Octobe 24, 202 Outline. Tems 2. Input Demands Tems Labo Poductivity: Output pe unit of labo. Y (K; L) L What is the labo poductivity of the US? Output is ouhgly

More information

CHAPTER 10 Aggregate Demand I

CHAPTER 10 Aggregate Demand I CHAPTR 10 Aggegate Demand I Questions fo Review 1. The Keynesian coss tells us that fiscal policy has a multiplied effect on income. The eason is that accoding to the consumption function, highe income

More information

Lab M4: The Torsional Pendulum and Moment of Inertia

Lab M4: The Torsional Pendulum and Moment of Inertia M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disk-like mass suspended fom a thin od o wie. When the mass is twisted about the

More information

Valuation of Floating Rate Bonds 1

Valuation of Floating Rate Bonds 1 Valuation of Floating Rate onds 1 Joge uz Lopez us 316: Deivative Secuities his note explains how to value plain vanilla floating ate bonds. he pupose of this note is to link the concepts that you leaned

More information

Chapter 1: Introduction... 7 1-1. BELSORP analysis program... 7 1-2. Required computer environment... 8

Chapter 1: Introduction... 7 1-1. BELSORP analysis program... 7 1-2. Required computer environment... 8 1 [Table of contents] Chapte 1: Intoduction... 7 1-1. BELSORP analysis pogam... 7 1-. Requied compute envionment... 8 Chapte : Installation of the analysis pogam... 9-1. Installation of the WIBU-KEY pogam...

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

MODAL TESTING OF A PARABOLIC DISH ANTENNA STRUCTURE

MODAL TESTING OF A PARABOLIC DISH ANTENNA STRUCTURE MODAL TESTING OF A PARABOLIC DISH ANTENNA STRUCTURE Titus Gh. Cioaa, Ph.D. Pofesso, Head of Vibation Testing and Reseach Labaatoy Univesity "Politehnica" Timisoaa St. Soin Titel N. 12 1900 Timisoaa ROMANIA

More information

Questions for Review. By buying bonds This period you save s, next period you get s(1+r)

Questions for Review. By buying bonds This period you save s, next period you get s(1+r) MACROECONOMICS 2006 Week 5 Semina Questions Questions fo Review 1. How do consumes save in the two-peiod model? By buying bonds This peiod you save s, next peiod you get s() 2. What is the slope of a consume

More information

An Introduction to Omega

An Introduction to Omega An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei isk-ewad chaacteistics? The Finance Development Cente 2002 1 Fom

More information

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013 PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0

More information

Effect of Contention Window on the Performance of IEEE 802.11 WLANs

Effect of Contention Window on the Performance of IEEE 802.11 WLANs Effect of Contention Window on the Pefomance of IEEE 82.11 WLANs Yunli Chen and Dhama P. Agawal Cente fo Distibuted and Mobile Computing, Depatment of ECECS Univesity of Cincinnati, OH 45221-3 {ychen,

More information

Soil Moisture Measurement in Heterogeneous Terrain

Soil Moisture Measurement in Heterogeneous Terrain Soil Moistue Measuement in Heteogeneous Teain Melin, O. 1, J.P. Walke 1, R. Panciea 1, R. Young 1, J.D. Kalma 2 and E.J. Kim 3 1 Depatment of Civil and Envionmental Engineeing, The Univesity of Melboune,

More information

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing M13914 Questions & Answes Chapte 10 Softwae Reliability Pediction, Allocation and Demonstation Testing 1. Homewok: How to deive the fomula of failue ate estimate. λ = χ α,+ t When the failue times follow

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distibution A. It would be vey tedious if, evey time we had a slightly diffeent poblem, we had to detemine the pobability distibutions fom scatch. Luckily, thee ae enough similaities between

More information

est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years.

est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years. 9.2 Inteest Objectives 1. Undestand the simple inteest fomula. 2. Use the compound inteest fomula to find futue value. 3. Solve the compound inteest fomula fo diffeent unknowns, such as the pesent value,

More information

Seshadri constants and surfaces of minimal degree

Seshadri constants and surfaces of minimal degree Seshadi constants and sufaces of minimal degee Wioletta Syzdek and Tomasz Szembeg Septembe 29, 2007 Abstact In [] we showed that if the multiple point Seshadi constants of an ample line bundle on a smooth

More information

INVESTIGATION OF FLOW INSIDE AN AXIAL-FLOW PUMP OF GV IMP TYPE

INVESTIGATION OF FLOW INSIDE AN AXIAL-FLOW PUMP OF GV IMP TYPE 1 INVESTIGATION OF FLOW INSIDE AN AXIAL-FLOW PUMP OF GV IMP TYPE ANATOLIY A. YEVTUSHENKO 1, ALEXEY N. KOCHEVSKY 1, NATALYA A. FEDOTOVA 1, ALEXANDER Y. SCHELYAEV 2, VLADIMIR N. KONSHIN 2 1 Depatment of

More information

Integrating Net2 with an intruder alarm system

Integrating Net2 with an intruder alarm system Net AN035 Integating Net with an intude alam system Oveview Net can monito whethe the intude alam is set o uet If the alam is set, Net will limit access to valid uses who ae also authoised to uet the alam

More information

Basic Financial Mathematics

Basic Financial Mathematics Financial Engineeing and Computations Basic Financial Mathematics Dai, Tian-Shy Outline Time Value of Money Annuities Amotization Yields Bonds Time Value of Money PV + n = FV (1 + FV: futue value = PV

More information

Cloud Service Reliability: Modeling and Analysis

Cloud Service Reliability: Modeling and Analysis Cloud Sevice eliability: Modeling and Analysis Yuan-Shun Dai * a c, Bo Yang b, Jack Dongaa a, Gewei Zhang c a Innovative Computing Laboatoy, Depatment of Electical Engineeing & Compute Science, Univesity

More information

On Correlation Coefficient. The correlation coefficient indicates the degree of linear dependence of two random variables.

On Correlation Coefficient. The correlation coefficient indicates the degree of linear dependence of two random variables. C.Candan EE3/53-METU On Coelation Coefficient The coelation coefficient indicates the degee of linea dependence of two andom vaiables. It is defined as ( )( )} σ σ Popeties: 1. 1. (See appendi fo the poof

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] 1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

A Capacitated Commodity Trading Model with Market Power

A Capacitated Commodity Trading Model with Market Power A Capacitated Commodity Tading Model with Maket Powe Victo Matínez-de-Albéniz Josep Maia Vendell Simón IESE Business School, Univesity of Navaa, Av. Peason 1, 08034 Bacelona, Spain VAlbeniz@iese.edu JMVendell@iese.edu

More information

Promised Lead-Time Contracts Under Asymmetric Information

Promised Lead-Time Contracts Under Asymmetric Information OPERATIONS RESEARCH Vol. 56, No. 4, July August 28, pp. 898 915 issn 3-364X eissn 1526-5463 8 564 898 infoms doi 1.1287/ope.18.514 28 INFORMS Pomised Lead-Time Contacts Unde Asymmetic Infomation Holly

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

Capital Asset Pricing Model (CAPM) at Work

Capital Asset Pricing Model (CAPM) at Work Capital Asset Picing Model (CAPM) at Wok Some o the Intuition behind CAPM Applications o CAPM Estimation and Testing o CAPM Intuition behind Equilibium Suppose you obseved the ollowing chaacteistics o

More information

Solutions for Physics 1301 Course Review (Problems 10 through 18)

Solutions for Physics 1301 Course Review (Problems 10 through 18) Solutions fo Physics 1301 Couse Review (Poblems 10 though 18) 10) a) When the bicycle wheel comes into contact with the step, thee ae fou foces acting on it at that moment: its own weight, Mg ; the nomal

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

Notes on Electric Fields of Continuous Charge Distributions

Notes on Electric Fields of Continuous Charge Distributions Notes on Electic Fields of Continuous Chage Distibutions Fo discete point-like electic chages, the net electic field is a vecto sum of the fields due to individual chages. Fo a continuous chage distibution

More information

Problem Set # 9 Solutions

Problem Set # 9 Solutions Poblem Set # 9 Solutions Chapte 12 #2 a. The invention of the new high-speed chip inceases investment demand, which shifts the cuve out. That is, at evey inteest ate, fims want to invest moe. The incease

More information

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe

More information

TECHNICAL DATA. JIS (Japanese Industrial Standard) Screw Thread. Specifications

TECHNICAL DATA. JIS (Japanese Industrial Standard) Screw Thread. Specifications JIS (Japanese Industial Standad) Scew Thead Specifications TECNICAL DATA Note: Although these specifications ae based on JIS they also apply to and DIN s. Some comments added by Mayland Metics Coutesy

More information

Newton s Shell Theorem

Newton s Shell Theorem Newton Shell Theoem Abtact One of the pincipal eaon Iaac Newton wa motivated to invent the Calculu wa to how that in applying hi Law of Univeal Gavitation to pheically-ymmetic maive bodie (like planet,

More information

Evidence for the exponential distribution of income in the USA

Evidence for the exponential distribution of income in the USA Eu. Phys. J. B 2, 585 589 (21) THE EUROPEAN PHYSICAL JOURNAL B c EDP Sciences Società Italiana di Fisica Spinge-Velag 21 Evidence fo the exponential distibution of income in the USA A. Dăgulescu and V.M.

More information

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary 7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o

More information

An Immunological Approach to Change Detection: Algorithms, Analysis and Implications

An Immunological Approach to Change Detection: Algorithms, Analysis and Implications An Immunological Appoach to Change Detection: Algoithms, Analysis and Implications Patik D haeselee Dept. of Compute Science Univesity of New Mexico Albuqueque, NM, 87131 patik@cs.unm.edu Stephanie Foest

More information

F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.

F G r. Don't confuse G with g: Big G and little g are totally different things. G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just

More information

EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH S MAGNETIC FIELD

EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH S MAGNETIC FIELD 260 16-1. THEORY EXPERMENT 16 THE MAGNETC MOMENT OF A BAR MAGNET AND THE HORZONTAL COMPONENT OF THE EARTH S MAGNETC FELD The uose of this exeiment is to measue the magnetic moment μ of a ba magnet and

More information

14. Gravitation Universal Law of Gravitation (Newton):

14. Gravitation Universal Law of Gravitation (Newton): 14. Gavitation 1 Univesal Law of Gavitation (ewton): The attactive foce between two paticles: F = G m 1m 2 2 whee G = 6.67 10 11 m 2 / kg 2 is the univesal gavitational constant. F m 2 m 1 F Paticle #1

More information

Hour Exam No.1. p 1 v. p = e 0 + v^b. Note that the probe is moving in the direction of the unit vector ^b so the velocity vector is just ~v = v^b and

Hour Exam No.1. p 1 v. p = e 0 + v^b. Note that the probe is moving in the direction of the unit vector ^b so the velocity vector is just ~v = v^b and Hou Exam No. Please attempt all of the following poblems befoe the due date. All poblems count the same even though some ae moe complex than othes. Assume that c units ae used thoughout. Poblem A photon

More information

YARN PROPERTIES MEASUREMENT: AN OPTICAL APPROACH

YARN PROPERTIES MEASUREMENT: AN OPTICAL APPROACH nd INTERNATIONAL TEXTILE, CLOTHING & ESIGN CONFERENCE Magic Wold of Textiles Octobe 03 d to 06 th 004, UBROVNIK, CROATIA YARN PROPERTIES MEASUREMENT: AN OPTICAL APPROACH Jana VOBOROVA; Ashish GARG; Bohuslav

More information

Saturated and weakly saturated hypergraphs

Saturated and weakly saturated hypergraphs Satuated and weakly satuated hypegaphs Algebaic Methods in Combinatoics, Lectues 6-7 Satuated hypegaphs Recall the following Definition. A family A P([n]) is said to be an antichain if we neve have A B

More information

Problems of the 2 nd International Physics Olympiads (Budapest, Hungary, 1968)

Problems of the 2 nd International Physics Olympiads (Budapest, Hungary, 1968) Poblems of the nd ntenational Physics Olympiads (Budapest Hungay 968) Péte Vankó nstitute of Physics Budapest Univesity of Technical Engineeing Budapest Hungay Abstact Afte a shot intoduction the poblems

More information

The Role of Gravity in Orbital Motion

The Role of Gravity in Orbital Motion ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State

More information

Tracking/Fusion and Deghosting with Doppler Frequency from Two Passive Acoustic Sensors

Tracking/Fusion and Deghosting with Doppler Frequency from Two Passive Acoustic Sensors Tacking/Fusion and Deghosting with Dopple Fequency fom Two Passive Acoustic Sensos Rong Yang, Gee Wah Ng DSO National Laboatoies 2 Science Pak Dive Singapoe 11823 Emails: yong@dso.og.sg, ngeewah@dso.og.sg

More information

Agenda. Exchange Rates, Business Cycles, and Macroeconomic Policy in the Open Economy, Part 2. The supply of and demand for the dollar

Agenda. Exchange Rates, Business Cycles, and Macroeconomic Policy in the Open Economy, Part 2. The supply of and demand for the dollar Agenda Exchange Rates, Business Cycles, and Macoeconomic Policy in the Open Economy, Pat 2 How Exchange Rates ae Detemined (again) The IS-LM Model fo an Open Economy Macoeconomic Policy in an Open Economy

More information

Semipartial (Part) and Partial Correlation

Semipartial (Part) and Partial Correlation Semipatial (Pat) and Patial Coelation his discussion boows heavily fom Applied Multiple egession/coelation Analysis fo the Behavioal Sciences, by Jacob and Paticia Cohen (975 edition; thee is also an updated

More information

UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Approximate time two 100-minute sessions

UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Approximate time two 100-minute sessions Name St.No. - Date(YY/MM/DD) / / Section Goup# UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Appoximate time two 100-minute sessions OBJECTIVES I began to think of gavity extending to the ob of the moon,

More information