DO PHYSICS ONLINE. conduction band. ~ 6 ev. Fig. 1. Energy band diagram for diamond (insulator) and silicon (semiconductor).

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "DO PHYSICS ONLINE. conduction band. ~ 6 ev. Fig. 1. Energy band diagram for diamond (insulator) and silicon (semiconductor)."

Transcription

1 DO PHYSIS ONLINE FROM IDEAS TO IMPLEMENTATION ATOMS TO TRANSISTORS SEMIONDUTORS ENERGY BANDS Diamond is a very good insulator. The electronic configuration in the ground state is 1s 2 2s 2 2. It might appear that diamond is a conductor because it has only two electrons in the energy level and that the band is only partly filled. However, there are two distinct energy bands separated from each other by an energy gap of 6 ev. The lower band is completely filled. At room temperature, energy due to thermal motion is only about 0.03 ev, much small than the energy gap, so virtually no electrons will be found in the upper energy band. Silicon has a much smaller band gap and therefore less energy is required for electrons to be free and take part in conduction, therefore, silicon is classified as a. energy bands for diamond insulator Z = 6 1s 2 2s 2 2 forbidden band exists between two bands energy bands for silicon Si Z = 14 1s 2 2s 2 6 3s 2 3p 2 forbidden band exists between two 3p bands 3p 3p 3s 2s 1s ~ 6 ev 2s ~ 1 ev 1s Fig. 1. Energy band diagram for diamond (insulator) and silicon (). When an electric field is applied to a material, only if electrons can gain sufficient energy to move into the, will they move freely to establish a current. The greater the number of charged carriers in the, the better the conduction. 1

2 electron energy insulator conductor Fig. 2. Schematic diagram of energy bands for different materials. INTRINSI SEMIONDUTORS An intrinsic is a pure crystal, for example, silicon or germanium. Germanium was the first widely used because it was easier to purify than other materials. The first transistors were made from germanium. However, there are thermal problems with using germanium in devises. The small energy band gap in germanium means that electrons can be easily excited into the and so the conducting properties of germanium devices were sensitive to fluctuations in temperature. Today, silicon is the most widely used material. In metals, the charge carriers are the free electrons. However, in s, the charge carriers are electrons and s. When an electron is freed from being bonded to a particular atom, it leaves behind a vacancy called a in the electronic structure of the crystal. An electron requires little energy to move into the, but as it does so it leaves a new in its previous location. So s move like a positive charge carrier with the mass of an electron. Therefore, in a, s drift in the direction of the externally applied electric field and the free electrons move in the opposite direction. E (vacancy) propagates to the in the direction of applied electric field electron propagates in a direction opposite to the direction of the applied electric field as the electron moves into the vacancy and creating a new vacancy in its former position Fig. 3. Movement of electrons and s through an intrinsic under the action an applied electric field. 2

3 increasing energy electron energy Fig.4. Semiconductor energy band structure showing the movement of the positive s and negative electrons as the charge carriers for an electric current. EXTRINSI SEMIONDUTORS The conductivity of s is markedly affected by slight amounts of impurities. When a pure (intrinsic) has controlled amount of impurity atoms embedded within its crystal structure, it is called an extrinsic. Suppose we add arsenic atoms to a silicon crystal. Silicon like carbon and germanium has four electrons in its outer most shell, whereas an arsenic atom has five electrons in its outer shell. Since only four of the five electrons of an arsenic atom can be shared with four neighbouring silicon atoms in a covalent bond, the remaining electron needs little energy to be detached and move about freely within the crystal. In terms of an energy band explanation, the effect of the arsenic impurity is to create an energy levels just below the empty in which electrons must be present in for conduction to take place. These levels are called donor levels, and the material is called an n-type because electric current in it is carried by the motion of electrons (negatively charged). Si bonded electron pair - electrons need little energy to move from a donor level into donor levels As : silicon E g = 1.1 ev As extra electrons can move freely through the Si crystal Fig. 5. n-type (+5 valency impurity atoms).. Donor levels due to presence of arsenic atoms in silicon crystal. onduction is by means of excess electrons. 3

4 increasing energy Suppose we add gallium atoms to a silicon crystal. A gallium atom has three electrons in its outer shell, and their presence leaves vacancies called s in the electronic structure of the silicon crystal. An electron requires little energy to move into a, but as it does so it leaves a new in its previous location. When an electric field is applied to the crystal in which gallium is present as an impurity, electrons move towards the positive electrode by successively filling s. The current is best described in terms of the motion of s, which behave as though they are positive charges since they move towards the negative terminal. A material of this kind is called a p-type. In the energy band diagram, the effect of gallium as an impurity is to create energy levels called acceptor levels just above the valance band. The electrons that enter these levels leave behind unoccupied levels in the formerly filled band which makes possible the conduction of current. Si bonded electron pair Ga - : silicon E g = 1.1 ev electrons need little energy to move from valance band to an acceptor level acceptor levels Fig. 6. p-type (+3 valency impurity atoms). Acceptor levels due to presence gallium atoms in silicon crystal. onduction by means of s (+) in the valance band. Ga electrons can move freely through the Si crystal by filing vacancies creating a new 4

5 valency 3: p type impurities valency 4: s valency 5: 5 type impurities valance electrons: # electrons in outer shell Fig. 7. Section of periodic table showing the elements used for doping (adding controlled amounts of impurities) to create p-type and n-type s. 5

Intrinsic and Extrinsic Semiconductors, Fermi-Dirac Distribution Function, the Fermi level and carrier concentrations

Intrinsic and Extrinsic Semiconductors, Fermi-Dirac Distribution Function, the Fermi level and carrier concentrations ENEE 33, Spr. 09 Supplement I Intrinsic and Extrinsic Semiconductors, Fermi-Dirac Distribution Function, the Fermi level and carrier concentrations Zeynep Dilli, Oct. 2008, rev. Mar 2009 This is a supplement

More information

Semiconductors, diodes, transistors

Semiconductors, diodes, transistors Semiconductors, diodes, transistors (Horst Wahl, QuarkNet presentation, June 2001) Electrical conductivity! Energy bands in solids! Band structure and conductivity Semiconductors! Intrinsic semiconductors!

More information

Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010)

Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Review

More information

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure. Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van

More information

Doped Semiconductors. Dr. Katarzyna Skorupska

Doped Semiconductors. Dr. Katarzyna Skorupska Doped Semiconductors Dr. Katarzyna Skorupska 1 Doped semiconductors Increasing the conductivity of semiconductors by incorporation of foreign atoms requires increase of the concentration of mobile charge

More information

The Physics of Energy sources Renewable sources of energy. Solar Energy

The Physics of Energy sources Renewable sources of energy. Solar Energy The Physics of Energy sources Renewable sources of energy Solar Energy B. Maffei Bruno.maffei@manchester.ac.uk Renewable sources 1 Solar power! There are basically two ways of using directly the radiative

More information

INSTITUTE FOR APPLIED PHYSICS Physical Practice for Learners of Engineering sciences Hamburg University, Jungiusstraße 11

INSTITUTE FOR APPLIED PHYSICS Physical Practice for Learners of Engineering sciences Hamburg University, Jungiusstraße 11 INSTITUTE FOR APPIED PHYSICS Physical Practice for earners of Engineering sciences Hamburg University, Jungiusstraße 11 Hall effect 1 Goal Characteristic data of a test semiconductor (Germanium) should

More information

Lecture 2 Semiconductor Physics (I)

Lecture 2 Semiconductor Physics (I) Lecture 2 Semiconductor Physics (I) Outline Intrinsic bond model : electrons and holes Generation and recombination Intrinsic semiconductor Doping: Extrinsic semiconductor Charge Neutrality Reading Assignment:

More information

Chapter No: 14 Chapter: Semiconductor Electronics: Materials, Devices And Simple Circuits (ONE MARK QUESTIONS)

Chapter No: 14 Chapter: Semiconductor Electronics: Materials, Devices And Simple Circuits (ONE MARK QUESTIONS) Chapter No: 14 Chapter: Semiconductor Electronics: Materials, Devices And Simple Circuits (ONE MARK QUESTIONS) 1. What is an electronic device? It is a device in which controlled flow of electrons takes

More information

Lecture 2: Semiconductors: Introduction

Lecture 2: Semiconductors: Introduction Lecture 2: Semiconductors: Introduction Contents 1 Introduction 1 2 Band formation in semiconductors 2 3 Classification of semiconductors 5 4 Electron effective mass 10 1 Introduction Metals have electrical

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW

Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW The p-n junction is the fundamental building block of the electronic

More information

Lecture 2 - Semiconductor Physics (I) September 13, 2005

Lecture 2 - Semiconductor Physics (I) September 13, 2005 6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 2-1 Lecture 2 - Semiconductor Physics (I) September 13, 2005 Contents: 1. Silicon bond model: electrons and holes 2. Generation and recombination

More information

Lecture 8: Extrinsic semiconductors - mobility

Lecture 8: Extrinsic semiconductors - mobility Lecture 8: Extrinsic semiconductors - mobility Contents Carrier mobility. Lattice scattering......................... 2.2 Impurity scattering........................ 3.3 Conductivity in extrinsic semiconductors............

More information

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus? Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core

More information

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current

More information

ELECTRICAL CONDUCTION

ELECTRICAL CONDUCTION Chapter 12: Electrical Properties Learning Objectives... How are electrical conductance and resistance characterized? What are the physical phenomena that distinguish conductors, semiconductors, and insulators?

More information

Semiconductor Physics

Semiconductor Physics 10p PhD Course Semiconductor Physics 18 Lectures Nov-Dec 2011 and Jan Feb 2012 Literature Semiconductor Physics K. Seeger The Physics of Semiconductors Grundmann Basic Semiconductors Physics - Hamaguchi

More information

Electronic Structure and the Periodic Table Learning Outcomes

Electronic Structure and the Periodic Table Learning Outcomes Electronic Structure and the Periodic Table Learning Outcomes (a) Electronic structure (i) Electromagnetic spectrum and associated calculations Electromagnetic radiation may be described in terms of waves.

More information

CHAPTER 1: Semiconductor Materials & Physics

CHAPTER 1: Semiconductor Materials & Physics Chapter 1 1 CHAPTER 1: Semiconductor Materials & Physics In this chapter, the basic properties of semiconductors and microelectronic devices are discussed. 1.1 Semiconductor Materials Solid-state materials

More information

HIGHER PHYSICS. Electricity. GWC Revised Higher Physics 12/13.

HIGHER PHYSICS. Electricity. GWC Revised Higher Physics 12/13. HIGHER PHYSICS Electricity http://blog.enn.com/?p=481 1 GWC Revised Higher Physics 12/13 HIGHER PHYSICS a) MONITORING and MEASURING A.C. Can you talk about: a.c. as a current which changes direction and

More information

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution Chapter 5 5.6 Doped GaAs Consider the GaAs crystal at 300 K. a. Calculate the intrinsic conductivity and resistivity. Second Edition ( 2001 McGraw-Hill) b. In a sample containing only 10 15 cm -3 ionized

More information

Yrd. Doç. Dr. Aytaç Gören

Yrd. Doç. Dr. Aytaç Gören H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps

More information

Chapter 1. Semiconductors

Chapter 1. Semiconductors THE ELECTRON IN ELECTRIC FIELDS Semiconductors If we were to take two parallel plates and connect a voltage source across them as shown in Figure 1, an electric field would be set up between the plates.

More information

Semiconductor Detectors Calorimetry and Tracking with High Precision

Semiconductor Detectors Calorimetry and Tracking with High Precision Semiconductor Detectors Calorimetry and Tracking with High Precision Applications 1. Photon spectroscopy with high energy resolution. Vertex detection with high spatial resolution 3. Energy measurement

More information

9.2 Network Covalent, Ionic, and Metallic Solids

9.2 Network Covalent, Ionic, and Metallic Solids 9.2 Network Covalent, Ionic, and Metallic Solids YOU ARE EXPECTED TO BE ABLE TO: Classify non-molecular solids as either network covalent solids, ionic solids, or metallic solids. Relate the physical properties

More information

Physics 551: Solid State Physics F. J. Himpsel

Physics 551: Solid State Physics F. J. Himpsel Physics 551: Solid State Physics F. J. Himpsel Background Most of the objects around us are in the solid state. Today s technology relies heavily on new materials, electronics is predominantly solid state.

More information

Electrical Properties

Electrical Properties Electrical Properties Outline of this Topic 1. Basic laws and electrical properties of metals 2. Band theory of solids: metals, semiconductors and insulators 3. Electrical properties of semiconductors

More information

Unit 12 Practice Test

Unit 12 Practice Test Name: Class: Date: ID: A Unit 12 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) A solid has a very high melting point, great hardness, and

More information

phys4.17 Page 1 - under normal conditions (pressure, temperature) graphite is the stable phase of crystalline carbon

phys4.17 Page 1 - under normal conditions (pressure, temperature) graphite is the stable phase of crystalline carbon Covalent Crystals - covalent bonding by shared electrons in common orbitals (as in molecules) - covalent bonds lead to the strongest bound crystals, e.g. diamond in the tetrahedral structure determined

More information

Spring 2008 Chemistry 2000 Midterm #1A / 50 marks

Spring 2008 Chemistry 2000 Midterm #1A / 50 marks Spring 2008 hemistry 2000 Midterm #1A / 50 marks INSTRUTINS 1) Please read over the test carefully before beginning. You should have 5 pages of questions and a periodic table. 2) If you need extra space,

More information

BASIC ELECTRONICS TRANSISTOR THEORY. December 2011

BASIC ELECTRONICS TRANSISTOR THEORY. December 2011 AM 5-204 BASIC ELECTRONICS TRANSISTOR THEORY December 2011 DISTRIBUTION RESTRICTION: Approved for Public Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT

More information

Sample Exercise 12.1 Calculating Packing Efficiency

Sample Exercise 12.1 Calculating Packing Efficiency Sample Exercise 12.1 Calculating Packing Efficiency It is not possible to pack spheres together without leaving some void spaces between the spheres. Packing efficiency is the fraction of space in a crystal

More information

Semiconductor research leading to the point contact transistor

Semiconductor research leading to the point contact transistor JO HN BA RDEEN Semiconductor research leading to the point contact transistor Nobel Lecture, December 11, 1956 In this lecture we shall attempt to describe the ideas and experiments which led to the discovery

More information

Mendeleev s s Periodic Table. Dmitri Mendeleev

Mendeleev s s Periodic Table. Dmitri Mendeleev The Periodic Table History Russian scientist Dmitri Mendeleev taught chemistry in terms of properties. Mid 1800 - molar masses of elements were known. Wrote down the elements in order of increasing mass.

More information

Chapter 18 魏 茂 國. Materials Science and Engineering

Chapter 18 魏 茂 國. Materials Science and Engineering Chapter 18 Introduction Ohm s law Electrical conductivity Electronic and ionic conduction Energy band structures in solids Conduction in terms of band and atomic bonding models Electronic mobility Electrical

More information

6. Each column of the periodic table is

6. Each column of the periodic table is 1. Atoms of elements that are in the same group have the same number of 5. Mendeleev left gaps in his periodic table because A. Protons B. Valence Electrons A. the table was too full B. no known elements

More information

Introduction to materials science and engineering. structures and properties of materials. Materials Engineering

Introduction to materials science and engineering. structures and properties of materials. Materials Engineering .Materials Science o The discipline of investigating the relationships that exist between the structures and properties of materials. Materials Engineering o The discipline of designing or engineering

More information

FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html

FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html FYS3410 - Vår 015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17, 18, 0,

More information

Unit 3.2: The Periodic Table and Periodic Trends Notes

Unit 3.2: The Periodic Table and Periodic Trends Notes Unit 3.2: The Periodic Table and Periodic Trends Notes The Organization of the Periodic Table Dmitri Mendeleev was the first to organize the elements by their periodic properties. In 1871 he arranged the

More information

Conduction in Semiconductors

Conduction in Semiconductors Chapter 1 Conduction in Semiconductors 1.1 Introduction All solid-state devices, e.g. diodes and transistors, are fabricated from materials known as semiconductors. In order to understand the operation

More information

Theory of Transistors and Other Semiconductor Devices

Theory of Transistors and Other Semiconductor Devices Theory of Transistors and Other Semiconductor Devices 1. SEMICONDUCTORS 1.1. Metals and insulators 1.1.1. Conduction in metals Metals are filled with electrons. Many of these, typically one or two per

More information

Semiconductors-Doping to create a semiconductor: changing conductive properties through diffusion

Semiconductors-Doping to create a semiconductor: changing conductive properties through diffusion NNIN Nanotechnology Education Teacher s Preparatory Guide Semiconductors-Doping to create a semiconductor: changing conductive properties through diffusion Purpose In the semiconductor industry scientists

More information

An organic semiconductor is an organic compound that possesses similar

An organic semiconductor is an organic compound that possesses similar MSE 542 Final Term Paper Title: Organic Semiconductor for Flexible Electronics Name: Chunhung Huang Introduction: An organic semiconductor is an organic compound that possesses similar properties to inorganic

More information

Type of Chemical Bonds

Type of Chemical Bonds Type of Chemical Bonds Covalent bond Polar Covalent bond Ionic bond Hydrogen bond Metallic bond Van der Waals bonds. Covalent Bonds Covalent bond: bond in which one or more pairs of electrons are shared

More information

Key Idea questions > How did Mendeleev arrange the elements in his periodic table? > How are elements arranged in the modern periodic table?

Key Idea questions > How did Mendeleev arrange the elements in his periodic table? > How are elements arranged in the modern periodic table? CHAPTER OUTLINE Section 1 Organizing the Elements Key Idea questions > How did Mendeleev arrange the elements in his periodic table? > How are elements arranged in the modern periodic table? Recognizing

More information

Chemistry A: Periodic Table Packet Name: Hour: Page 1. Chemistry A Periodic Table

Chemistry A: Periodic Table Packet Name: Hour: Page 1. Chemistry A Periodic Table Chemistry A: Periodic Table Packet Name: Hour: Page 1 Chemistry A Periodic Table Chemistry A: Periodic Table Packet Name: Hour: Page 2 Worksheet #1: Periodic Table Inquiry Activity Directions: I know that

More information

Diodes and Transistors

Diodes and Transistors Diodes What do we use diodes for? Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double input voltage)

More information

Ch. 14 The Periodic Table p. 390-406

Ch. 14 The Periodic Table p. 390-406 Name Period PRE-AP 14-1 Development of the Periodic Table Ch. 14 The Periodic Table p. 390-406 Dmitri Mendeleev published the first periodic table in 1869. He organized the elements by atomic mass. He

More information

The Diode. Diode Operation

The Diode. Diode Operation The Diode The diode is a two terminal semiconductor device that allows current to flow in only one direction. It is constructed of a P and an N junction connected together. Diode Operation No current flows

More information

Periodic Table. inert gases. Columns: Similar Valence Structure. give up 1e - give up 2e - Oaccept 2e- accept 1e - give up 3e -

Periodic Table. inert gases. Columns: Similar Valence Structure. give up 1e - give up 2e - Oaccept 2e- accept 1e - give up 3e - Periodic Table give up 1e - give up 2e - give up 3e - H Li Be Na Mg K Ca Columns: Similar Valence Structure Sc Oaccept 2e- accept 1e - inert gases S Se F Cl Br He Ne Ar Kr Adapted from Fig. 2.6, Callister

More information

Review- The Periodic Table

Review- The Periodic Table Review- The Periodic Table Name Date Block Matching: Match the description in with the correct term in. Write the letter in the blank provided. Each term matches with only one description, so be sure to

More information

Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations.

Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations. The Periodic Table Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations. Vertical Rows are called Families or Groups.

More information

Gamma and X-Ray Detection

Gamma and X-Ray Detection Gamma and X-Ray Detection DETECTOR OVERVIEW The kinds of detectors commonly used can be categorized as: a. Gas-filled Detectors b. Scintillation Detectors c. Semiconductor Detectors The choice of a particular

More information

SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel)

SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel) SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel) Introduction Based on known band structures of Si, Ge, and GaAs, we will begin to focus on specific properties of semiconductors,

More information

The MOSFET Transistor

The MOSFET Transistor The MOSFET Transistor The basic active component on all silicon chips is the MOSFET Metal Oxide Semiconductor Field Effect Transistor Schematic symbol G Gate S Source D Drain The voltage on the gate controls

More information

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard Matter, Materials, Crystal Structure and Bonding Chris J. Pickard Why should a theorist care? Where the atoms are determines what they do Where the atoms can be determines what we can do Overview of Structure

More information

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds? CHAPTER 1 2 Ionic Bonds SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is ionic bonding? What happens to atoms that gain or lose

More information

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 India

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 India Material Science Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 India Chapter 14. Electrical properties Engineering materials

More information

Chapter 5 TEST: The Periodic Table name

Chapter 5 TEST: The Periodic Table name Chapter 5 TEST: The Periodic Table name HPS # date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The order of elements in the periodic table is based

More information

VIII.4. Field Effect Transistors

VIII.4. Field Effect Transistors Field Effect Transistors (FETs) utilize a conductive channel whose resistance is controlled by an applied potential. 1. Junction Field Effect Transistor (JFET) In JFETs a conducting channel is formed of

More information

CHAPTER - 45 SEMICONDUCTOR AND SEMICONDUCTOR DEVICES

CHAPTER - 45 SEMICONDUCTOR AND SEMICONDUCTOR DEVICES 1. f = 101 kg/m, V = 1 m CHAPTER - 45 SEMCONDUCTOR AND SEMCONDUCTOR DEVCES m = fv = 101 1 = 101 kg No.of atoms = 101 10 6 10 = 64.6 10 6. a) Total no.of states = N = 64.6 10 6 = 58.5 = 5. 10 8 10 6 b)

More information

Chapter Outline. Diffusion - how do atoms move through solids?

Chapter Outline. Diffusion - how do atoms move through solids? Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)

More information

Objectives 200 CHAPTER 4 RESISTANCE

Objectives 200 CHAPTER 4 RESISTANCE Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys

More information

Measuring Silicon and Germanium Band Gaps using Diode Thermometers

Measuring Silicon and Germanium Band Gaps using Diode Thermometers Measuring Silicon and Germanium Band Gaps using Diode Thermometers Haris Amin Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated: April 11, 2007) This paper reports the band gaps of

More information

Periodic Table of the Elements

Periodic Table of the Elements Periodic Table of the Elements Where did it come from? 1869 Demitri Mendeleev Russian chemist who discovered a pattern to the elements Wrote properties on cards Arranged cards according to properties

More information

Fall 2004 Ali Shakouri

Fall 2004 Ali Shakouri University of California at Santa Cruz Jack Baskin School of Engineering Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 5b: Temperature Dependence of Semiconductor Conductivity

More information

A Course Material on. Engineering Physics - II

A Course Material on. Engineering Physics - II A Course Material on Engineering Physics - II By Ms. I.JEENA RAJATHY Mrs.V.HEMALATHA Mr.K.PRAVEEN KUMAR Mr.P.PRAKASH Mr.M.SARAVANAN ASSISTANT PROFESSOR DEPARTMENT OF SCIENCE AND HUMANITIES PHYSICS SASURIE

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

Characteristic curves of a solar cell

Characteristic curves of a solar cell Related Topics Semi-conductor, p-n junction, energy-band diagram, Fermi characteristic energy level, diffusion potential, internal resistance, efficiency, photo-conductive effect, acceptors, donors, valence

More information

Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds.

Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds. Problem 1 Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds. Ionic Bonds Two neutral atoms close to each can undergo an ionization process in order

More information

HIGH TRANSMISSION SILICON (HiTran TM ) FOR INFRARED OPTICAL APPLICATIONS

HIGH TRANSMISSION SILICON (HiTran TM ) FOR INFRARED OPTICAL APPLICATIONS APPLICATION NOTE HIGH TRANSMISSION SILICON (HiTran TM ) FOR INFRARED OPTICAL APPLICATIONS Infrared optical systems require materials that have very good transmission characteristics for infrared wavelengths

More information

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each. Basic Chemistry Why do we study chemistry in a biology course? All living organisms are composed of chemicals. To understand life, we must understand the structure, function, and properties of the chemicals

More information

Supplementary Course Topic 3:

Supplementary Course Topic 3: Supplementary Course Topic 3: Quantum Theory of Bonding Molecular Orbital Theory of H 2 Bonding in H 2 and some other simple diatomics Multiple Bonds and Bond Order Bond polarity in diatomic and polyatomic

More information

ANSWER KEY Representing Bonding using Lewis Dot Structures

ANSWER KEY Representing Bonding using Lewis Dot Structures ANSWER KEY Representing Bonding using Lewis Dot Structures The diagram below shows the electrons for the first 20 elements as Bohr Models which show the electrons that are in each energy level of the elements.

More information

19.1 Bonding and Molecules

19.1 Bonding and Molecules Most of the matter around you and inside of you is in the form of compounds. For example, your body is about 80 percent water. You learned in the last unit that water, H 2 O, is made up of hydrogen and

More information

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions 7.4 Using the Bohr Theory LEARNING TIP Models such as Figures 1 to 4, on pages 218 and 219, help you visualize scientific explanations. As you examine Figures 1 to 4, look back and forth between the diagrams

More information

CHAPTER5. Multiple Choice Questions NCERT

CHAPTER5. Multiple Choice Questions NCERT Multiple Choice Questions 1. Upto which element, the Law of Octaves was found to be applicable (a) Oxygen (b) Calcium (c) Cobalt (d) Potassium 2. According to Mendeleev's Periodic Law, the elements were

More information

CHEM 10113, Quiz 7 December 7, 2011

CHEM 10113, Quiz 7 December 7, 2011 CHEM 10113, Quiz 7 December 7, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!

More information

Key: Periodic Table Blocks. s block p block d block f block

Key: Periodic Table Blocks. s block p block d block f block Name Chemistry / / Periodic Table Today you will learn about the organization of the elements of the periodic table into groups (or families) and periods and the properties of these groups. Groups (or

More information

Ch 3 Atomic Structure and the Periodic Table. Figure 3.1 size relationship is not to scale, ratio of average diameters atom/nucleus = 10 5

Ch 3 Atomic Structure and the Periodic Table. Figure 3.1 size relationship is not to scale, ratio of average diameters atom/nucleus = 10 5 1 Ch 3 Atomic Structure and the Periodic Table Figure 3.1 size relationship is not to scale, ratio of average diameters atom/nucleus = 10 5 2 Atoms are very small and spherical. Radii Range 0.9 x 10-10

More information

Introduction to Semiconductor Physics in Secondary Education: Evaluation of a Teaching Sequence

Introduction to Semiconductor Physics in Secondary Education: Evaluation of a Teaching Sequence Introduction to Semiconductor Physics in Secondary Education: Evaluation of a Teaching Sequence Antonio García-Carmona, Ana M a Criado To cite this version: Antonio García-Carmona, Ana M a Criado. Introduction

More information

Section 3: Crystal Binding

Section 3: Crystal Binding Physics 97 Interatomic forces Section 3: rystal Binding Solids are stable structures, and therefore there exist interactions holding atoms in a crystal together. For example a crystal of sodium chloride

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm First H/W#1 is due Sept. 10 Course Info The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model)

More information

Atoms. Chemistry 100. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 2

Atoms. Chemistry 100. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 2 Chemistry 100 Bettelheim, Brown, Campbell & Farrell Ninth Edition Introduction to General, Organic and Biochemistry Chapter 2 Atoms Classifications of Matter: Elements An Element is a substance (for example,

More information

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4 Wafer Manufacturing Reading Assignments: Plummer, Chap 3.1~3.4 1 Periodic Table Roman letters give valence of the Elements 2 Why Silicon? First transistor, Shockley, Bardeen, Brattain1947 Made by Germanium

More information

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the

More information

Test 7: Periodic Table Review Questions

Test 7: Periodic Table Review Questions Name: Wednesday, January 16, 2008 Test 7: Periodic Table Review Questions 1. Which halogen is a solid at STP? 1. fluorine 3. bromine 2. chlorine 4. iodine 2. Element M is a metal and its chloride has the

More information

Special-Purpose Diodes

Special-Purpose Diodes 7 Special-Purpose Diodes 7.1 Zener Diode 7.2 Light-Emitting Diode (LED) 7.3 LED Voltage and Current 7.4 Advantages of LED 7.5 Multicolour LEDs 7.6 Applications of LEDs 7.7 Photo-diode 7.8 Photo-diode operation

More information

Chapter 8 Basic Concepts of the Chemical Bonding

Chapter 8 Basic Concepts of the Chemical Bonding Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question

More information

Designing of Amorphous Silicon Solar Cells for Optimal Photovoltaic Performance

Designing of Amorphous Silicon Solar Cells for Optimal Photovoltaic Performance Designing of Amorphous Silicon Solar Cells for Optimal Photovoltaic Performance Latchiraju Pericherla A Thesis submitted in part fulfilment of the requirements for the degree of Master of Engineering School

More information

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain

More information

Semiconductor Fundamentals

Semiconductor Fundamentals Student Workbook 91564-00 Edition 4 Ê>{XHèRÆ3UË 3091564000503 FOURTH EDITION Second Printing, March 2005 Copyright March, 2003 Lab-Volt Systems, Inc. All rights reserved. No part of this publication may

More information

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st WEEKLY PROGRAMMING WEE K SESSI ON DESCRIPTION GROUPS GROUPS Special room for LECTU PRAC session RES TICAL (computer classroom, audiovisual

More information

Class Notes of. BET102 Basic Electronics Engineering. Diploma in Engineering. Under SCTE&VT, Odisha. Rajendra Kumar Prusty. Sarat Kumar Muduli

Class Notes of. BET102 Basic Electronics Engineering. Diploma in Engineering. Under SCTE&VT, Odisha. Rajendra Kumar Prusty. Sarat Kumar Muduli Class Notes of BET102 Basic Electronics Engineering Common to 1 st /2 nd Semester of Diploma in Engineering. Under SCTE&VT, Odisha. Prepared By: Rajendra Kumar Prusty Asima Rout Sarat Kumar Muduli BET-102

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek

More information

Crystal Chemistry. This document last updated on 22-Sep-2014

Crystal Chemistry. This document last updated on 22-Sep-2014 Page 1 of 14 EENS 2110 Tulane University Crystal Chemistry Mineralogy Prof. Stephen A. Nelson This document last updated on 22-Sep-2014 As we have been discussing for the last several weeks, crystals,

More information

Bonding Web Practice. Trupia

Bonding Web Practice. Trupia 1. If the electronegativity difference between the elements in compound NaX is 2.1, what is element X? bromine fluorine chlorine oxygen 2. Which bond has the greatest degree of ionic character? H Cl Cl

More information

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice. CMOS Processing Technology Silicon: a semiconductor with resistance between that of conductor and an insulator. Conductivity of silicon can be changed several orders of magnitude by introducing impurity

More information

The Electrical Conductivity and Hall Effect of Silicon. Royal Radar Establishment, Malvern, Worcs.

The Electrical Conductivity and Hall Effect of Silicon. Royal Radar Establishment, Malvern, Worcs. 193. The Electrical Conductivity and Hall Effect of Silicon BY E. H. PUTLEY AND W. H. MITCHELL Royal Radar Establishment, Malvern, Worcs. MS. received 27th February 1958, and in final form 18th April 1958

More information