I. SCOPE, APPLICABILITY AND PARAMETERS Scope


 Chastity Johns
 1 years ago
 Views:
Transcription
1 D Executve Board Annex 9 Page A/R ethodologcal Tool alculaton of the number of sample plots for measurements wthn A/R D project actvtes (Verson 0) I. SOPE, PIABIITY AD PARAETERS Scope. Ths tool s applcable f sample plots are used for montorng purposes. The tool estmates the number of permanent sample plots needed for montorng changes n carbon pools at a desred precson level. Permanent sample plots are to be used because forest nventory nvolves: easurements taken at specfc tme ntervals; Hgh covarance s expected between observatons at successve samplng events.. Permanent sample plots are statstcally effcent n estmatng changes n forest carbon stocks because typcally there s a hgh covarance between observatons at successve samplng events. However, sample plots must be treated n the same way as other lands wthn the project boundary, e.g., durng ste and sol preparaton, weedng, fertlzaton, rrgaton, thnnng, etc., and should not be destroyed over the montorng nterval. Ideally, staff nvolved n management actvtes should not be aware of the locaton of montorng plots. Where local markers are used, these should not be vsble. Applcablty 3. Ths tool s applcable under the followng condton: Varables under consderaton are normally dstrbuted or may be transformed nto a normal dstrbuton. 4. ormal dstrbuton can be assumed when: any small (ndependent) effects contrbute to each observaton n an addtve fashon. Parameters 5. Ths tool provdes procedures to determne the followng parameters: Parameter SI Unt Descrpton n Dmensonless Sample sze (total number of permanent sample plots requred) n the project area Dmensonless Sample sze for stratum n
2 D Executve Board Annex 9 Page II. PROEDURE ethod I (samples drawn wthout replacement) 6. It s assumed that the followng parameters are known from the project set up, preproject estmates (e.g., results from a plotstudy) or lterature data: A Total sze of all strata (A), e.g., the total project area; ha A Q st Index for stratum; dmensonless Total number of strata; dmensonless Sze of each stratum ; ha Sample plot sze (constant for all strata); ha Quantty beng estmated (usually the forest carbon stocks); t ha  Standard devaton of Q for each stratum ; dmenson the same as Q ost of establshment of a sample plot for each stratum ; e.g., US $ then: A = ; A = () axmum possble number of sample plots n the project area axmum possble number of sample plots n stratum 7. The number of sample plots s estmated as beng dependent on accuracy and costs. 8. In addton to the assumptons and parameters lsted under Intal calculatons ), t s further assumed that the followng parameters are known from the project set up, preproject estmates (e.g., results from a plotstudy) or lterature data: Q P then: Approxmate expected value of the estmated quantty Q, (e.g., aboveground wood volume per hectar); e.g., m 3 ha  Target precson for estmaton of Q (e.g., 0%, expressed as a fracton); dmensonless E = Q p () E Allowable error of the estmated quantty Q 9. Wth the above nformaton, the sample sze (mnmal number of sample plots to be establshed and measured) can be estmated as follows:
3 D Executve Board n = = st E z + = = st Annex 9 Page 3 (3) n Sample sze (total number of sample plots requred) n the project area z /,, 3, project strata  s probablty that the estmate of the mean s wthn the error bound E Value of the statstc z (embedded n Excel as: nverse of standard normal probablty cumulatve dstrbuton), for e.g.,  = 0.05 (mplyng a 95% confdence level) z / = The value n calculated accordng to formula () s the mnmal number of sample plots that allows the estmate of the mean to be wthn the error bound E wth probablty . Ths value s optmal n such sense that t mnmzes the sum of costs of establshment and the mantenance of sample plots. The data on costs may be approxmate, but shall reflect relatve dfferences of costs among strata. st = n = E + z = st (4) n z / Sample sze for stratum,, 3, project strata  s probablty that the estmate of the mean s wthn the error bound E Value of the statstc z (embedded n Excel as: nverse of standard normal probablty cumulatve dstrbuton), for e.g.  = 0.05 (mplyng a 95% confdence level) z / =.9599
4 D Executve Board Annex 9 Page 4. When no nformaton on costs s avalable or the costs may be assumed as constant for all strata, then: n = E z = st + = (5) n = E z h= st + = st (6) It s possble to reasonably modfy the sample sze after the frst montorng event based on the actual varaton of the carbon stocks determned from takng the n samples. ethod II (samples drawn wth replacement). It s assumed that the followng parameters are known from the project set up, preproject estmates (e.g., results from a plotstudy) or lterature data: A Total area of all strata (.e., the total project area); ha A st Index for a stratum; dmensonless Total number of strata; dmensonless Area of each stratum ; ha Standard devaton of the estmated quantty Q for each stratum ; dmenson the same as Q ost of establshment of a sample plot for each stratum ; e.g., US $ Q Approxmate expected value of the estmated quantty Q, on a per plot bass (e.g., m 3 aboveground wood volume per plot); e.g., m 3 p then: Desred level of precson (e.g., 0%, expressed as a fracton); dmensonless = A A (7)
5 D Executve Board Annex 9 Page 5 Share of area of stratum n the project area A and: E = Q p (8) E Allowable error of the estmated quantty Q 3. The number of permanent samplng plots for montorng of an A/R D project actvty may be estmated by means of the followng approxmate formula accordng to Wenger (984): tn, n = st st E = = (9) st n = n st h= (0) t n, Student s tdstrbuton value for a confdence level  (e.g. for =0.05 the confdence level equals 95%) and n degrees of freedom E Absolute value of allowable error per plot (e.g., m 3 ) 4. The standard devaton of each stratum (st ) can be determned through ex ante estmates of varance of carbon stock n pools consdered by the methodology. Student s tdstrbuton value for 95% confdence level s approxmately equal to when the number of sample plots s over 30. As the frst step, use as the t n, value and f the resultng n s less than 30, use the new value of n to get a new t n, value (from statstcal tables or the embedded functon n Excel  nverse of Student s tdstrbuton) and conduct a recalculaton. Ths teratve process shall be repeated untl the calculated value of n s stablzed. 5. It s good practce to reasonably modfy the sample sze after the frst montorng event based on the actual varaton of the carbon stock changes determned from takng the n samples. If modfed sample sze s smaller than the ntally estmated one, then the measurements shall be contnued on all sample plots ntally dentfed; If modfed sample sze s greater that the ntally estmated one, then the relevant number of new sample plots shall be parttoned among the project areas of land proportonally to number of already establshed sample plots. The new sample plots shall be dstrbuted n approxmately unform way over the areas of land and located n centers of cells of the exstng sample plot grd. Wenger, K.F. (ed) Forestry handbook (nd edton). ew York: John Wley and Sons.
6 D Executve Board Annex 9 Page 6 Sample plot sze (for both methods) 6. The plot area has major nfluence on the samplng ntensty and tme and resources spent n the feld measurements. The area of a plot depends on the stand densty. Therefore, ncreasng the plot area decreases the varablty between two samples. Accordng to Freese (96), the relatonshp between coeffcent of varaton and plot area can be denoted as follows: V = V () where and represent dfferent sample plot areas and ther correspondng coeffcent of varaton (V). Thus, by ncreasng the sample plot area, varaton among plots can be reduced permttng the use of small sample sze at the same precson level. Usually, the sze of plots s between 00 m for dense stands and 000 m for open stands. Determnng plot locaton (for both methods) (a) It s recommended that permanent sample plots be located usng the approach of algned systematc samplng. In ths approach a grd s lad over the entre project area, and the centre ponts of a permanent sample plots are taken as those grd ntersecton ponts that fall wthn a stratum. The grd shall have a random orgn (.e. the orgn s a randomly selected set of map coordnates), and optonally a random orentaton (a randomly selected compass orentaton); (b) To obtan the correct number of permanent sample plots n each stratum, vary the spacng of the grd (the dstance between grd ntersectons) untl the necessary number of grd ntersectons n a stratum s obtaned. It s not necessary to retan the same grd spacng for each stratum; however the same orgn and orentaton should be retaned for the grd; (c) Havng assgned the centre ponts of the permanent sample plots usng the above procedure, t s possble that, due to nherent and unavodable uncertanty n mappng and/or sample plot locaton, durng sample plot nstallaton part of a sample plot may be found to fall outsde of the area that s forested. In ths case, move the plot centre towards the centre of the parcel of land such that the outer edge of the plot concdes wth the estmated poston of the outer edge of the forest canopy at tree maturty. The drecton of movement of the plot centre shall be at rghtangles to the edge of the parcel of land; (d) Suffcent sample plots should always be allocated to a stratum so that t s possble to omt any sample plots that prove to be naccessble whle stll mantanng the mnmum number of sample plots calculated n Secton II. or II Freese, F. 96. Elementary Forest Samplng. USDA Handbook 3. GPO Washngton, D. 9 pp
7 D Executve Board Annex 9 Page 7 Hstory of the document Verson Date ature of revson(s) 0, Annex 9 5 arch 009 Further clarfcaton of practcal aspects on locaton of permanent sample plots for data collectng and mprovement n clarty of formulae 0 EB 3, Annex 5 04 ay 007 Intal adopton.
benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
More informationNPAR TESTS. OneSample ChiSquare Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6
PAR TESTS If a WEIGHT varable s specfed, t s used to replcate a case as many tmes as ndcated by the weght value rounded to the nearest nteger. If the workspace requrements are exceeded and samplng has
More informationMAPP. MERIS level 3 cloud and water vapour products. Issue: 1. Revision: 0. Date: 9.12.1998. Function Name Organisation Signature Date
Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPPATBDClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller
More informationCommunication Networks II Contents
8 / 1  Communcaton Networs II (Görg)  www.comnets.unbremen.de Communcaton Networs II Contents 1 Fundamentals of probablty theory 2 Traffc n communcaton networs 3 Stochastc & Marovan Processes (SP
More informationCHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL
More informationTime Series Analysis in Studies of AGN Variability. Bradley M. Peterson The Ohio State University
Tme Seres Analyss n Studes of AGN Varablty Bradley M. Peterson The Oho State Unversty 1 Lnear Correlaton Degree to whch two parameters are lnearly correlated can be expressed n terms of the lnear correlaton
More informationCHAPTER 14 MORE ABOUT REGRESSION
CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp
More informationPortfolio Loss Distribution
Portfolo Loss Dstrbuton Rsky assets n loan ortfolo hghly llqud assets holdtomaturty n the bank s balance sheet Outstandngs The orton of the bank asset that has already been extended to borrowers. Commtment
More informationCausal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes causeandeffect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
More informationSIMPLE LINEAR CORRELATION
SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.
More informationControl Charts for Means (Simulation)
Chapter 290 Control Charts for Means (Smulaton) Introducton Ths procedure allows you to study the run length dstrbuton of Shewhart (Xbar), Cusum, FIR Cusum, and EWMA process control charts for means usng
More informationTHE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES
The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered
More informationTHE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
More informationRealistic Image Synthesis
Realstc Image Synthess  Combned Samplng and Path Tracng  Phlpp Slusallek Karol Myszkowsk Vncent Pegoraro Overvew: Today Combned Samplng (Multple Importance Samplng) Renderng and Measurng Equaton Random
More informationAnalysis of Premium Liabilities for Australian Lines of Business
Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton
More informationx f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60
BIVARIATE DISTRIBUTIONS Let be a varable that assumes the values { 1,,..., n }. Then, a functon that epresses the relatve frequenc of these values s called a unvarate frequenc functon. It must be true
More informationCalculation of Sampling Weights
Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a twostage stratfed cluster desgn. 1 The frst stage conssted of a sample
More informationExhaustive Regression. An Exploration of RegressionBased Data Mining Techniques Using Super Computation
Exhaustve Regresson An Exploraton of RegressonBased Data Mnng Technques Usng Super Computaton Antony Daves, Ph.D. Assocate Professor of Economcs Duquesne Unversty Pttsburgh, PA 58 Research Fellow The
More informationWhat is Candidate Sampling
What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble
More informationAnalysis of Covariance
Chapter 551 Analyss of Covarance Introducton A common tas n research s to compare the averages of two or more populatons (groups). We mght want to compare the ncome level of two regons, the ntrogen content
More informationErrorPropagation.nb 1. Error Propagation
ErrorPropagaton.nb Error Propagaton Suppose that we make observatons of a quantty x that s subject to random fluctuatons or measurement errors. Our best estmate of the true value for ths quantty s then
More informationCan Auto Liability Insurance Purchases Signal Risk Attitude?
Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? ChuShu L Department of Internatonal Busness, Asa Unversty, Tawan ShengChang
More informationStudy on CET4 Marks in China s Graded English Teaching
Study on CET4 Marks n Chna s Graded Englsh Teachng CHE We College of Foregn Studes, Shandong Insttute of Busness and Technology, P.R.Chna, 264005 Abstract: Ths paper deploys Logt model, and decomposes
More informationDEFINING %COMPLETE IN MICROSOFT PROJECT
CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMISP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,
More informationThe Application of Fractional Brownian Motion in Option Pricing
Vol. 0, No. (05), pp. 738 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qngxn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn zhouqngxn98@6.com
More informationThe covariance is the two variable analog to the variance. The formula for the covariance between two variables is
Regresson Lectures So far we have talked only about statstcs that descrbe one varable. What we are gong to be dscussng for much of the remander of the course s relatonshps between two or more varables.
More informationCharacterization of Assembly. Variation Analysis Methods. A Thesis. Presented to the. Department of Mechanical Engineering. Brigham Young University
Characterzaton of Assembly Varaton Analyss Methods A Thess Presented to the Department of Mechancal Engneerng Brgham Young Unversty In Partal Fulfllment of the Requrements for the Degree Master of Scence
More informationAn Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
More informationInequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001.
Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.
More informationTo manage leave, meeting institutional requirements and treating individual staff members fairly and consistently.
Corporate Polces & Procedures Human Resources  Document CPP216 Leave Management Frst Produced: Current Verson: Past Revsons: Revew Cycle: Apples From: 09/09/09 26/10/12 09/09/09 3 years Immedately Authorsaton:
More informationThe OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
More informationDemographic and Health Surveys Methodology
samplng and household lstng manual Demographc and Health Surveys Methodology Ths document s part of the Demographc and Health Survey s DHS Toolkt of methodology for the MEASURE DHS Phase III project, mplemented
More informationQuantization Effects in Digital Filters
Quantzaton Effects n Dgtal Flters Dstrbuton of Truncaton Errors In two's complement representaton an exact number would have nfntely many bts (n general). When we lmt the number of bts to some fnte value
More informationModule 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
More informationPSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 12
14 The Chsquared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed
More informationThe Development of Web Log Mining Based on ImproveKMeans Clustering Analysis
The Development of Web Log Mnng Based on ImproveKMeans Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna wangtngzhong2@sna.cn Abstract.
More informationA machine vision approach for detecting and inspecting circular parts
A machne vson approach for detectng and nspectng crcular parts DuMng Tsa Machne Vson Lab. Department of Industral Engneerng and Management YuanZe Unversty, ChungL, Tawan, R.O.C. Emal: edmtsa@saturn.yzu.edu.tw
More informationBrigid Mullany, Ph.D University of North Carolina, Charlotte
Evaluaton And Comparson Of The Dfferent Standards Used To Defne The Postonal Accuracy And Repeatablty Of Numercally Controlled Machnng Center Axes Brgd Mullany, Ph.D Unversty of North Carolna, Charlotte
More informationPRO CRIMPER* III Hand
PRO CRIMPER* III Hand Instructon Sheet Crmpng Tool Assembly 585711 4084135 wth De Assembly 585712 06 NOV 09 PROPER USE GUIDELINES Cumulatve Trauma Dsorders can result from the prolonged use of manually
More informationFINAL REPORT. City of Toronto. Contract 47016555. Project No: B0002033
Cty of Toronto SAFETY IMPACTS AD REGULATIOS OF ELECTROIC STATIC ROADSIDE ADVERTISIG SIGS TECHICAL MEMORADUM #2C BEFORE/AFTER COLLISIO AALYSIS AT SIGALIZED ITERSECTIO FIAL REPORT 3027 Harvester Road, Sute
More informationThe Analysis of Covariance. ERSH 8310 Keppel and Wickens Chapter 15
The Analyss of Covarance ERSH 830 Keppel and Wckens Chapter 5 Today s Class Intal Consderatons Covarance and Lnear Regresson The Lnear Regresson Equaton TheAnalyss of Covarance Assumptons Underlyng the
More information1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)
6.3 /  Communcaton Networks II (Görg) SS20  www.comnets.unbremen.de Communcaton Networks II Contents. Fundamentals of probablty theory 2. Emergence of communcaton traffc 3. Stochastc & Markovan Processes
More information1 Example 1: Axisaligned rectangles
COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton
More informationProceedings of the Annual Meeting of the American Statistical Association, August 59, 2001
Proceedngs of the Annual Meetng of the Amercan Statstcal Assocaton, August 59, 2001 LISTASSISTED SAMPLING: THE EFFECT OF TELEPHONE SYSTEM CHANGES ON DESIGN 1 Clyde Tucker, Bureau of Labor Statstcs James
More informationEnhancing the Quality of Price Indexes A Sampling Perspective
Enhancng the Qualty of Prce Indexes A Samplng Perspectve Jack Lothan 1 and Zdenek Patak 2 Statstcs Canada 1 Statstcs Canada 2 Abstract Wth the release of the Boskn Report (Boskn et al., 1996) on the state
More informationSample Design in TIMSS and PIRLS
Sample Desgn n TIMSS and PIRLS Introducton Marc Joncas Perre Foy TIMSS and PIRLS are desgned to provde vald and relable measurement of trends n student achevement n countres around the world, whle keepng
More informationDaily OD Matrix Estimation using Cellular Probe Data
Zhang, Qn, Dong and Ran Daly OD Matrx Estmaton usng Cellular Probe Data 0 0 Y Zhang* Department of Cvl and Envronmental Engneerng, Unversty of WsconsnMadson, Madson, WI 0 Phone: 0 Emal: zhang@wsc.edu
More informationConversion between the vector and raster data structures using Fuzzy Geographical Entities
Converson between the vector and raster data structures usng Fuzzy Geographcal Enttes Cdála Fonte Department of Mathematcs Faculty of Scences and Technology Unversty of Combra, Apartado 38, 3 454 Combra,
More informationDI Fund Sufficiency Evaluation Methodological Recommendations and DIA Russia Practice
DI Fund Suffcency Evaluaton Methodologcal Recommendatons and DIA Russa Practce Andre G. Melnkov Deputy General Drector DIA Russa THE DEPOSIT INSURANCE CONFERENCE IN THE MENA REGION AMMANJORDAN, 18 20
More informationHow Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence
1 st Internatonal Symposum on Imprecse Probabltes and Ther Applcatons, Ghent, Belgum, 29 June 2 July 1999 How Sets of Coherent Probabltes May Serve as Models for Degrees of Incoherence Mar J. Schervsh
More informationStaff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall
SP 200502 August 2005 Staff Paper Department of Appled Economcs and Management Cornell Unversty, Ithaca, New York 148537801 USA Farm Savngs Accounts: Examnng Income Varablty, Elgblty, and Benefts Brent
More informationCHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES
CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable
More informationRisk Model of LongTerm Production Scheduling in Open Pit Gold Mining
Rsk Model of LongTerm Producton Schedulng n Open Pt Gold Mnng R Halatchev 1 and P Lever 2 ABSTRACT Open pt gold mnng s an mportant sector of the Australan mnng ndustry. It uses large amounts of nvestments,
More informationRESEARCH ON DUALSHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST) yaoqi.feng@yahoo.
ICSV4 Carns Australa 9 July, 007 RESEARCH ON DUALSHAKER SINE VIBRATION CONTROL Yaoq FENG, Hanpng QIU Dynamc Test Laboratory, BISEE Chna Academy of Space Technology (CAST) yaoq.feng@yahoo.com Abstract
More informationOptimal Bidding Strategies for Generation Companies in a DayAhead Electricity Market with Risk Management Taken into Account
Amercan J. of Engneerng and Appled Scences (): 86, 009 ISSN 94700 009 Scence Publcatons Optmal Bddng Strateges for Generaton Companes n a DayAhead Electrcty Market wth Rsk Management Taken nto Account
More informationSTATISTICAL DATA ANALYSIS IN EXCEL
Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 1401013 petr.nazarov@crpsante.lu Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for
More informationPROCRIMPER* III Hand Crimping Tool Assembly 908001 with Die Assembly 908002
PROCRIMPER* III Hand Crmpng Tool Assembly 908001 wth Assembly 908002 Instructon Sheet 4084007 19 APR 11 PROPER USE GUIDELINES Cumulatve Trauma Dsorders can result from the prolonged use of manually
More informationMethod for assessment of companies' credit rating (AJPES S.BON model) Short description of the methodology
Method for assessment of companes' credt ratng (AJPES S.BON model) Short descrpton of the methodology Ljubljana, May 2011 ABSTRACT Assessng Slovenan companes' credt ratng scores usng the AJPES S.BON model
More informationNonlinear data mapping by neural networks
Nonlnear data mappng by neural networks R.P.W. Dun Delft Unversty of Technology, Netherlands Abstract A revew s gven of the use of neural networks for nonlnear mappng of hgh dmensonal data on lower dmensonal
More informationCS 2750 Machine Learning. Lecture 17a. Clustering. CS 2750 Machine Learning. Clustering
Lecture 7a Clusterng Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Clusterng Groups together smlar nstances n the data sample Basc clusterng problem: dstrbute data nto k dfferent groups such that
More information2008/8. An integrated model for warehouse and inventory planning. Géraldine Strack and Yves Pochet
2008/8 An ntegrated model for warehouse and nventory plannng Géraldne Strack and Yves Pochet CORE Voe du Roman Pays 34 B1348 LouvanlaNeuve, Belgum. Tel (32 10) 47 43 04 Fax (32 10) 47 43 01 Emal: corestatlbrary@uclouvan.be
More informationForecasting the Direction and Strength of Stock Market Movement
Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye cjngwe@stanford.edu mchen5@stanford.edu nanye@stanford.edu Abstract  Stock market s one of the most complcated systems
More informationThe Magnetic Field. Concepts and Principles. Moving Charges. Permanent Magnets
. The Magnetc Feld Concepts and Prncples Movng Charges All charged partcles create electrc felds, and these felds can be detected by other charged partcles resultng n electrc force. However, a completely
More informationL10: Linear discriminants analysis
L0: Lnear dscrmnants analyss Lnear dscrmnant analyss, two classes Lnear dscrmnant analyss, C classes LDA vs. PCA Lmtatons of LDA Varants of LDA Other dmensonalty reducton methods CSCE 666 Pattern Analyss
More informationTraffic State Estimation in the Traffic Management Center of Berlin
Traffc State Estmaton n the Traffc Management Center of Berln Authors: Peter Vortsch, PTV AG, Stumpfstrasse, D763 Karlsruhe, Germany phone ++49/72/965/35, emal peter.vortsch@ptv.de Peter Möhl, PTV AG,
More informationUnderwriting Risk. Glenn Meyers. Insurance Services Office, Inc.
Underwrtng Rsk By Glenn Meyers Insurance Servces Offce, Inc. Abstract In a compettve nsurance market, nsurers have lmted nfluence on the premum charged for an nsurance contract. hey must decde whether
More informationFeature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College
Feature selecton for ntruson detecton Slobodan Petrovć NISlab, Gjøvk Unversty College Contents The feature selecton problem Intruson detecton Traffc features relevant for IDS The CFS measure The mrmr measure
More informationLatent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006
Latent Class Regresson Statstcs for Psychosocal Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson (LCR) What s t and when do we use t? Recall the standard latent class model
More informationThe Analysis of Outliers in Statistical Data
THALES Project No. xxxx The Analyss of Outlers n Statstcal Data Research Team Chrysses Caron, Assocate Professor (P.I.) Vaslk Karot, Doctoral canddate Polychrons Economou, Chrstna Perrakou, Postgraduate
More informationTHE USE OF STATISTICAL QUALITY CONTROL CHARTS IN MONITORING INTERVIEWERS
THE USE OF STATISTICAL QUALITY CONTROL CHARTS IN MONITORING INTERVIEWERS Stephane J. Reed, Unversty of North Carolna and John H. Reed, Claron Unversty Stephane J. Reed, Survey Research Unt, Unversty of
More informationA DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATIONBASED OPTIMIZATION. Michael E. Kuhl Radhamés A. TolentinoPeña
Proceedngs of the 2008 Wnter Smulaton Conference S. J. Mason, R. R. Hll, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATIONBASED OPTIMIZATION
More informationInterIng 2007. INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 1516 November 2007.
InterIng 2007 INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 1516 November 2007. UNCERTAINTY REGION SIMULATION FOR A SERIAL ROBOT STRUCTURE MARIUS SEBASTIAN
More informationThe Current Employment Statistics (CES) survey,
Busness Brths and Deaths Impact of busness brths and deaths n the payroll survey The CES probabltybased sample redesgn accounts for most busness brth employment through the mputaton of busness deaths,
More informationEfficient Striping Techniques for Variable Bit Rate Continuous Media File Servers æ
Effcent Strpng Technques for Varable Bt Rate Contnuous Meda Fle Servers æ Prashant J. Shenoy Harrck M. Vn Department of Computer Scence, Department of Computer Scences, Unversty of Massachusetts at Amherst
More informationA DATA MINING APPLICATION IN A STUDENT DATABASE
JOURNAL OF AERONAUTICS AND SPACE TECHNOLOGIES JULY 005 VOLUME NUMBER (5357) A DATA MINING APPLICATION IN A STUDENT DATABASE Şenol Zafer ERDOĞAN Maltepe Ünversty Faculty of Engneerng BüyükbakkalköyIstanbul
More informationStatistical algorithms in Review Manager 5
Statstcal algorthms n Reve Manager 5 Jonathan J Deeks and Julan PT Hggns on behalf of the Statstcal Methods Group of The Cochrane Collaboraton August 00 Data structure Consder a metaanalyss of k studes
More information1. Measuring association using correlation and regression
How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a
More informationPROCRIMPER* III Hand. with Die Assembly OCT 11 Rev C. Pivot Pin. Die Assembly Moving Jaw CONTACT FAMILY SIZE (AWG)
PROCRIMPER* III Hand Instructon Sheet Crmpng Tool Assembly 585141 4089973 wth De Assembly 585142 12 OCT 11 PROPER USE GUIDELINES Cumulatve Trauma Dsorders can result from the prolonged use of manually
More informationRELIABILITY, RISK AND AVAILABILITY ANLYSIS OF A CONTAINER GANTRY CRANE ABSTRACT
Kolowrock Krzysztof Joanna oszynska MODELLING ENVIRONMENT AND INFRATRUCTURE INFLUENCE ON RELIABILITY AND OPERATION RT&A # () (Vol.) March RELIABILITY RIK AND AVAILABILITY ANLYI OF A CONTAINER GANTRY CRANE
More informationFace Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching)
Face Recognton Problem Face Verfcaton Problem Face Verfcaton (1:1 matchng) Querymage face query Face Recognton (1:N matchng) database Applcaton: Access Control www.vsage.com www.vsoncs.com Bometrc Authentcaton
More information4088858 05 AUG 10 Rev L
SL Jack Tool Kt 1725150 [ ] Instructon Sheet 4088858 05 AUG 10 PROPER USE GUIDELINES Cumulatve Trauma Dsorders can result from the prolonged use of manually powered hand tools. Hand tools are ntended
More informationEfficient Project Portfolio as a tool for Enterprise Risk Management
Effcent Proect Portfolo as a tool for Enterprse Rsk Management Valentn O. Nkonov Ural State Techncal Unversty Growth Traectory Consultng Company January 5, 27 Effcent Proect Portfolo as a tool for Enterprse
More informationVerification by Equipment or EndUse Metering Protocol
Verfcaton by Equpment or EndUse Meterng Protocol May 2012 Verfcaton by Equpment or EndUse Meterng Protocol Verson 1.0 May 2012 Prepared for Bonnevlle Power Admnstraton Prepared by Research Into Acton,
More informationTrafficlight a stress test for life insurance provisions
MEMORANDUM Date 006097 Authors Bengt von Bahr, Göran Ronge Traffclght a stress test for lfe nsurance provsons Fnansnspetonen P.O. Box 6750 SE113 85 Stocholm [Sveavägen 167] Tel +46 8 787 80 00 Fax
More informationAbstract. 260 Business Intelligence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING
260 Busness Intellgence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING Murphy Choy Mchelle L.F. Cheong School of Informaton Systems, Sngapore
More informationStatistical Methods to Develop Rating Models
Statstcal Methods to Develop Ratng Models [Evelyn Hayden and Danel Porath, Österrechsche Natonalbank and Unversty of Appled Scences at Manz] Source: The Basel II Rsk Parameters Estmaton, Valdaton, and
More informationHollinger Canadian Publishing Holdings Co. ( HCPH ) proceeding under the Companies Creditors Arrangement Act ( CCAA )
February 17, 2011 Andrew J. Hatnay ahatnay@kmlaw.ca Dear Sr/Madam: Re: Re: Hollnger Canadan Publshng Holdngs Co. ( HCPH ) proceedng under the Companes Credtors Arrangement Act ( CCAA ) Update on CCAA Proceedngs
More informationLecture 3: Force of Interest, Real Interest Rate, Annuity
Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annutymmedate, and ts present value Study annutydue, and
More informationMeasuring Ad Effectiveness Using Geo Experiments
Measurng Ad Effectveness Usng Geo Experments Jon Vaver, Jm Koehler Google Inc Abstract Advertsers have a fundamental need to quantfy the effectveness of ther advertsng For search ad spend, ths nformaton
More informationConstruction Rules for Morningstar Canada Target Dividend Index SM
Constructon Rules for Mornngstar Canada Target Dvdend Index SM Mornngstar Methodology Paper October 2014 Verson 1.2 2014 Mornngstar, Inc. All rghts reserved. The nformaton n ths document s the property
More informationA 'Virtual Population' Approach To Small Area Estimation
A 'Vrtual Populaton' Approach To Small Area Estmaton Mchael P. Battagla 1, Martn R. Frankel 2, Machell Town 3 and Lna S. Balluz 3 1 Abt Assocates Inc., Cambrdge MA 02138 2 Baruch College, CUNY, New York
More informationCalibration and Linear Regression Analysis: A SelfGuided Tutorial
Calbraton and Lnear Regresson Analyss: A SelfGuded Tutoral Part The Calbraton Curve, Correlaton Coeffcent and Confdence Lmts CHM314 Instrumental Analyss Department of Chemstry, Unversty of Toronto Dr.
More informationSUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW.
SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW. Lucía Isabel García Cebrán Departamento de Economía y Dreccón de Empresas Unversdad de Zaragoza Gran Vía, 2 50.005 Zaragoza (Span) Phone: 976761000
More informationRichard W. Andrews and William C. Birdsall, University of Michigan Richard W. Andrews, Michigan Business School, Ann Arbor, MI 481091234.
SIMULTANEOUS CONFIDENCE INTERVALS: A COMPARISON UNDER COMPLEX SAMPLING Rchard W. Andrews and Wllam C. Brdsall, Unversty of Mchgan Rchard W. Andrews, Mchgan Busness School, Ann Arbor, MI 481091234 EY WORDS:
More informationDiscount Rate for Workout Recoveries: An Empirical Study*
Dscount Rate for Workout Recoveres: An Emprcal Study* Brooks Brady Amercan Express Peter Chang Standard & Poor s Peter Mu** McMaster Unversty Boge Ozdemr Standard & Poor s Davd Schwartz Federal Reserve
More informationRiskbased Fatigue Estimate of Deep Water Risers  Course Project for EM388F: Fracture Mechanics, Spring 2008
Rskbased Fatgue Estmate of Deep Water Rsers  Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn
More information1 Approximation Algorithms
CME 305: Dscrete Mathematcs and Algorthms 1 Approxmaton Algorthms In lght of the apparent ntractablty of the problems we beleve not to le n P, t makes sense to pursue deas other than complete solutons
More informationDetecting Leaks from Waste Storage Ponds using Electrical Tomographic Methods
Detectng Leas from Waste Storage Ponds usng Electrcal Tomographc Methods Andrew Bnley #, Wllam Daly ## & Abelardo Ramrez ## # Lancaster Unversty, Lancaster, LA1 4YQ, UK ## Lawrence Lvermore Natonal Laboratory,
More informationProperties of Indoor Received Signal Strength for WLAN Location Fingerprinting
Propertes of Indoor Receved Sgnal Strength for WLAN Locaton Fngerprntng Kamol Kaemarungs and Prashant Krshnamurthy Telecommuncatons Program, School of Informaton Scences, Unversty of Pttsburgh Emal: kakst2,prashk@ptt.edu
More informationAn MILP model for planning of batch plants operating in a campaignmode
An MILP model for plannng of batch plants operatng n a campagnmode Yanna Fumero Insttuto de Desarrollo y Dseño CONICET UTN yfumero@santafeconcet.gov.ar Gabrela Corsano Insttuto de Desarrollo y Dseño
More information