Rapid estimation of equilibrium water dew point of natural gas in TEG

Size: px
Start display at page:

Download "Rapid estimation of equilibrium water dew point of natural gas in TEG"

Transcription

1 From the SelectedWorks of ali ali 2009 Rapid estimation of equilibrium water dew point of natural gas in TEG ali ali Available at:

2 Journal of Natural Gas Science and Engineering 1 (2009) Contents lists available at ScienceDirect Journal of Natural Gas Science and Engineering journal homepage: Rapid estimation of equilibrium water dew point of natural gas in TEG dehydration systems Alireza Bahadori *, Hari B. Vuthaluru Department of Chemical Engineering, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia article info abstract Article history: Received May 2009 Received in revised form 6 August 2009 Accepted 6 August 2009 Available online 2 September 2009 Keywords: Correlation Natural gas Dew point Triethylene glycol Gas dehydration Evaluation of a triethylene glycol (TEG) system involves first establishing the minimum triethylene glycol (TEG) concentration required to meet the outlet gas water dew point specification. In the present work, simple-to-use correlation, which is simpler than currently available models involving a large number of parameters, requiring more complicated and longer computations, has been developed for the rapid estimation of the water dew point of a natural gas stream in equilibrium with a TEG solution at various temperatures and TEG concentrations. This correlation can be used to estimate the required TEG concentration for a particular application or the theoretical dew point depression for a given TEG concentration and contactor temperature. Actual outlet dewpoints depend on the TEG circulation rate and number of equilibrium stages, but typical approaches to equilibrium are 6 11 C. Equilibrium dewpoints are relatively insensitive to pressure and this correlation may be used up to 300 kpa (abs) with little error. The proposed correlation covers VLE data for TEG water system for contactor temperatures between Cand80 C and TEG concentrations ranging from to wt%. The average absolute deviation percent from the data reported in the literature is 0.5% which shows the excellent performance of proposed correlation. This simple-to-use correlation can be of immense practical value for the gas engineers to have a quick check on equilibrium water dew point of natural gas at various temperatures and TEG weight percents. In particular, personnel dealing with natural gas dehydration and processing would find the proposed approach to be user friendly involving no complex expressions with transparent calculations. Ó 2009 Elsevier B.V. All rights reserved. 1. Introduction The natural gas industry has recognized that dehydration is necessary to ensure smooth operation of gas transmission lines. Dehydration prevents the formation of gas hydrates and reduces corrosion. Natural gas is dehydrated using either a liquid desiccant (i.e. glycols) or a solid desiccant. But economics frequently favor liquid desiccant dehydration when it meets the required dehydration specification (Mokhatab et al., 2006). Glycols are typically used for applications, where dew point depressions of the order of C are required (Gas Processors and Suppliers Association Engineering Book, 2004). Triethylene glycol (TEG), the most common for natural gas dehydration, is used in a countercurrent mass transfer operation inside a contractor to establish the required water content in the outlet gas (Bahadori, 2007). Following the process flow in Fig. 1, * Corresponding author. Tel.: þ ; fax: þ address: alireza.bahadori@postgrad.curtin.edu.au (A. Bahadori). the regenerated glycol is pumped to the top tray of the contactor (absorber). The glycol absorbs water as it flows down through the contactor countercurrent to the gas flow. Water-rich glycol is removed from the bottom of the contactor, passes through the reflux condenser coil, flashes off most of the soluble gas in the flash tank, and flows through the rich-lean heat exchanger to the regenerator. In the regenerator, absorbed water is distilled from the glycol at near atmospheric pressure by application of heat. The regenerated lean glycol exits the surge drum, is partly cooled in the lean-rich exchanger and is pumped through the glycol cooler before being recirculated to the contactor (Bahadori, 2009). Evaluation of a triethylene glycol (TEG) system involves first establishing the minimum triethylene glycol (TEG) concentration required to meet the outlet gas water dew point specification (Bahadori et al., 2008). Several equilibrium correlations for predicting water dew point of natural gas in equilibrium with a TEG dehydration system have been presented since However, all methods are limited by the ability to measure accurately the equilibrium concentration of water in the vapor phase above /$ see front matter Ó 2009 Elsevier B.V. All rights reserved. doi:.16/j.jngse

3 A. Bahadori, H.B. Vuthaluru / Journal of Natural Gas Science and Engineering 1 (2009) Nomenclature A B C D T T d W Temperature, K Water dewpoint temperature, K the TEG purity in water (weight percent) triethylene glycol (TEG) solutions (Twu et al., 2005). In the correlations developed by Parrish et al. (1986) and Won (1994), the equilibrium water concentrations in the vapor phase were determined at infinite dilution (essentially 0% TEG). The other correlations use extrapolations of data at lower concentrations to estimate equilibrium in the infinite dilution region (Parrish et al., 1986; Won, 1994). Herskowitz and Gottlieb (1984) measured the activity coefficients of water in TEG at two temperatures, and K. The lowest mole fraction of water for which measured activities were and at K and K, respectively. These fit the measured activity coefficients to the van Laar equation. They did not measure data in the infinite dilution region. In order to predict the equilibrium behavior in the infinite dilution region, most researchers simply extrapolated the measured data at low water concentrations to infinite dilution using an activity coefficient model such as van Laar. However, extrapolating the van Laar or any other activity coefficient model will yield erroneous results for the infinite dilution activity coefficients. The GPSA data book presented an equilibrium correlation based on the work of Worley (1967). In general, the correlations of Worley (1967), Rosman (1973) and Parrish et al. (1986) agree reasonably well and are adequate for most TEG system designs. All are limited by the ability to measure accurately the equilibrium concentration of water in the vapor phase above TEG solutions. In view of the above, there is an essential need to develop an easyto-use method for rapid and accurate prediction of equilibrium water dew point of natural gas in TEG dehydration system. 2. Methodology to develop simple correlation The required data to develop this correlation includes the reported data (Parrish et al., 1986; Herskowitz and Gottlieb, 1984) for the rapid estimation of water dew point (Td) of a natural gas stream in equilibrium with a triethylene glycol (TEG) solution at various contactor temperatures (T) and TEG concentrations (W) in percent. In this work, water dew point (Td) of a natural gas stream in equilibrium with a triethylene glycol (TEG) solution is predicted rapidly by proposing a simple correlation. The following methodology has been applied to develop this correlation: Firstly, water dewpoints (Td) of a natural gas stream in equilibrium with a triethylene glycol (TEG) solution are correlated as a function of contactor temperatures for different TEG concentrations. Then, the calculated coefficients for these polynomials are correlated as a function of TEG concentrations. The derived polynomials are applied to calculate new coefficients for equation (1) to predict the water dew point (Td) of a natural gas stream in equilibrium with a triethylene glycol (TEG) solution. Table 1 shows the tuned coefficients for equations (2) (5). In brief, the following steps are repeated to tune the correlation s coefficients. 1. Correlate the water dew point (Td) of a natural gas stream in equilibrium with a triethylene glycol (TEG) solution as a function of contactor temperature for a given TEG concentration 2. Repeat step 1 for other TEG concentrations. 3. Correlate corresponding polynomial coefficients, which are obtained in previous steps versus TEG concentrations, a ¼ f(w), b ¼ f(w), c ¼ f(w), d ¼ f(w) [see equations (2) (5)]. So, equation (1) represents the proposed governing equation in which four coefficients are used to correlate the water dew point (Td) of a natural gas stream in equilibrium with a triethylene glycol (TEG) solution as a function of contactor temperature and TEG concentration where the relevant coefficients have been reported in Table 1. T d ¼ a þ bt þ ct 2 þ dt 3 (1) Where: a ¼ A 1 þ B 1 W þ C 1 W 2 þ D 1 W 3 (2) b ¼ A 2 þ B 2 W þ C 2 W 2 þ D 2 W 3 (3) c ¼ A 3 þ B 3 W þ C 3 W 2 þ D 3 W 3 (4) d ¼ A 4 þ B 4 W þ C 4 W 2 þ D 4 W 3 (5) In the above equations, Td and T are the water dew point temperature and the contactor temperature in K, respectively and W is the triethylene glycol (TEG) purity in water (in weight percent). The tuned coefficients in equations (2) (5) are reported in Table 1. These coefficients help to cover the reported data provided by Herskowitz and Gottlieb (1984) and Parrish et al. (1986) for the contactor temperature variations of 80 C, and TEG purity of weight percent. 3. Results and discussions Fig. 1. Typical TEG-Natural Gas Dehydration System (Bahadori, 2007). Figs. 2 4 show the water dew point of a natural gas stream in equilibrium with a TEG solution at various TEG concentrations and contactor temperature between C and 80 C. As can be

4 70 A. Bahadori, H.B. Vuthaluru / Journal of Natural Gas Science and Engineering 1 (2009) Table 1 s used in Equations (2) (5). Coefficient 90% < TEG < 99% 99% < TEG < 99.9% 99.9% < TEG < % A B C D A B C D A B C D A B C D seen, there is a good agreement between predicted results and the reported values. Table 2 shows the average absolute deviation percent from the literature reported data in is 0.5% which proves the excellent accuracy of the proposed correlation. Since the TEG dehydrators usually operate at temperatures of less than 70 C, there was no practical need to include temperatures higher than 70 C in the graphs of this work. The equilibrium water dewpoints calculated by this correlation are based on this fact that the condensed water phase is considered as a metastable liquid. At low dewpoints the true condensed phase will be a hydrate. The equilibrium dew point temperature above a hydrate is higher than that above a metastable liquid. Therefore, this correlation predicts dewpoints which are colder than those which can actually be achieved. The difference is a function of temperature, pressure and gas composition but can be as much as 8 11 C. When dehydrating to very low dewpoints, such as those required upstream of a refrigeration process, the TEG concentration must be sufficient to dry the gas to the hydrate dew point. This correlation can be used to estimate the required TEG concentration for a particular application or theoretical dew point depression for a given TEG concentration and contactor temperature. Actual outlet dewpoints depend on the TEG circulation rate and the number of equilibrium stages, but typical approaches to equilibrium are 6 11 C. Table 2 shows the average absolute deviation percent from the literature reported data in is 0.5% which proves the excellent performance of this simple proposed correlation. Typical example is given below to illustrate the simplicity associated with the use of proposed correlation for rapid estimating dew point of natural gas at various temperatures and TEG weight percents Example 0.85 million Sm 3 /day of a natural gas enters a TEG contactor at 38 C and 40 kpa (abs). The target H 2 O dew point is 4 C ( K). Calculate the lean TEG concentration in mass percent at this given temperature (38 C). Assume a 6 C approach to equilibrium: Solution: a) Assume glycol concentration ¼ 98 percent a ¼ (from equation (2)) b ¼ (from equation (3)) c ¼ (from equation (4)) d ¼ (from equation (5)) Equilibrium water dew point (K) ¼ K (from equation (1)) Calculated water dew point þ 6 ¼ K Correlation, 90% TEG Correlation, 95% TEG Correlation, 97% TEG Correlation, 98% TEG Correlation, 99% TEG Correlation, TEG=99% Correlation, TEG=99.5% Correlation, TEG=99.8% Correlation, TEG=99.9% Fig. 2. Water dew point of a natural gas stream in equilibrium with a TEG solution at various contactor temperatures and TEG concentrations ranging from 90% to 99%. Fig. 3. Water dew point of a natural gas stream in equilibrium with a TEG solution at various contactor temperatures and TEG concentrations ranging from 99% to 99.9%.

5 A. Bahadori, H.B. Vuthaluru / Journal of Natural Gas Science and Engineering 1 (2009) Correlation, TEG=99.95% Correlation, TEG=99.98% Correlation, TEG=99.99 Correlation, TEG=99.995% Correlation, TEG=99.998% Correlation, TEG=99.999% Fig. 4. Water dew point of a natural gas stream in equilibrium with a TEG solution at various contactor temperatures and TEG concentrations ranging from 99.9% to %. b) Assume glycol concentration ¼ 99 percent a ¼ (from equation (2)) b ¼ (from equation (3)) c ¼ (from equation (4)) d ¼ (from equation (5)) Equilibrium water dew point (K) ¼ K (from equation (1)) Calculated water dew point þ 6 ¼ K. c) Assume glycol concentration ¼ percent a ¼ (from equation (2)) b ¼ (from equation (3)) c ¼ (from equation (4)) d ¼ (from equation (5)) Equilibriumwater dew point (K) ¼ K (from equation (1)) Calculated water dew point þ6 ¼ K. The calculated result ( K) has good agreement with water dew point ( K). So glycol purity meets targeted water dew point. We have suggested 6 C of approach because is a usual standard practice. The closeness of the result to the prediction could vary if we takes a different approach to equilibrium. Table 2 Prediction water dew point of a natural gas stream in equilibrium with a TEG solution at various contactor temperatures and TEG concentrations in comparison with the reported data (Parrish et al., 1986; Herskowitz and Gottlieb, 1984). TEG Temperature, weight K percent Proposed correlation results K Reported data (Gas Processors and Suppliers Association Engineering Book, 2004; Parrish et al., 1986; Herskowitz and Gottlieb, 1984) K Absolute deviation percent Average absolute deviation percent (AADP) Conclusions In the present work, simple-to-use correlation, which is much simpler than currently available models involving a large number of parameters, requiring more complicated and longer computations, has been developed for the rapid estimation of equilibrium water dew point of a natural gas stream in equilibrium with a triethylene glycol (TEG) solution at various contactor temperatures and TEG concentrations. The correlation covers VLE data for TEG water system for contactor temperatures between C and 80 C and TEG concentrations ranging from to wt%. This correlation can be used to estimate the required TEG concentration for the theoretical dew point depression for a given TEG concentration and contactor temperature. Equilibrium dewpoints are relatively insensitive to pressure and this correlation may be used up to 300 kpa (abs) with little error. The average absolute deviation percent from the data reported in the literature is 0.5% which shows the excellent performance of proposed correlation. The correlation proposed in the present work is novel and unique expression which is non-existent in the literature. Simple-to-use approach can be of immense practical value for the gas engineers to have a quick check on water dew point of natural gas at various temperatures and TEG weight percents without performing any experimental measurements. In particular, personnel dealing with natural gas dehydration and processing would find the proposed approach to be user friendly involving no complex expressions with transparent calculations. Acknowledgements The lead author acknowledges the Australian Department of Education, Science and Training for Endeavour International Postgraduate Research Scholarship (EIPRS), the Office of Research & Development at Curtin University of Technology, Perth, Western Australia for providing Curtin University Postgraduate Research Scholarship and the State Government of Western Australia for providing top up scholarship through the Western Australian Energy Research Alliance (WA:ERA). The authors also acknowledge anonymous reviewers and the editor for their useful comments to improve the original version of paper. References Bahadori, A., Hajizadeh, Y., Vuthaluru, H.B., Tade, M.O., Mokhatab, S., Novel approaches for the prediction of density of glycol solutions. Journal of Natural Gas Chemistry 17, Bahadori, A., New model predicts solubility in glycols. Oil & Gas Journal 5 (8), Bahadori, A., New model calculates solubility of light alkanes in triethylene gycol. Petroleum Chemistry 49, Gas Processors and Suppliers Association Engineering Book, 12th ed., 2004 Gas Processors & Suppliers Association (GPSA), Tulsa, OK, USA. Herskowitz, M., Gottlieb, M., Vapor liquid equilibrium in aqueous solutions of various glycols and polyethylene glycols. Journal of Chemical & Engineering 29, 173. Mokhatab, S., Poe, W.A., Speight, J.G., Handbook of Natural Gas Transmission & Processing, first ed. Gulf Professional Publishing, Burlington, MA, USA. Parrish, W.R., Won, K.W., Baltatu, M.E., Paper presented at the 65th GPA Annual Convention, San Antonio, TX, USA. Rosman, A., Water equilibrium in the dehydration of natural gas with triethylene glycol. Transactions of the AIME 255, 297. Twu, C.H., Tassoneb, V., Simb, W.D., Watansiri, S., Advanced equation of state method for modeling TEG water for glycol gas dehydration. Fluid Phase Equilibria 228, Won, K.W., Paper presented at the 73rd GPA Annual Convention, New Orleans, LA, USA. Worley, S., Proceedings Gas Conditioning Conference, University of Oklahoma, Norman, OK.

IBP 2778_10 HIGH EFFICIENCY ON CO2 REMOVAL IN NATURAL GAS WITH UCARSOL SOLVENTS Thiago V. Alonso 1. Abstract. 1. Introduction

IBP 2778_10 HIGH EFFICIENCY ON CO2 REMOVAL IN NATURAL GAS WITH UCARSOL SOLVENTS Thiago V. Alonso 1. Abstract. 1. Introduction IBP 2778_10 HIGH EFFICIENCY ON CO2 REMOVAL IN NATURAL GAS WITH UCARSOL SOLVENTS Thiago V. Alonso 1 Copyright 2010, Brazilian Petroleum, Gas and Biofuels Institute - IBP This Technical Paper was prepared

More information

SENSITIVITY ANALYSIS OF A NATURAL GAS TRIETHYLENE GLYCOL DEHYDRATION PLANT IN PERSIAN GULF REGION

SENSITIVITY ANALYSIS OF A NATURAL GAS TRIETHYLENE GLYCOL DEHYDRATION PLANT IN PERSIAN GULF REGION Petroleum & Coal ISSN 1337-7027 Available online at www.vurup.sk/pc Petroleum & Coal 53 (1) 71-77, 2011 SENSITIVITY ANALYSIS OF A NATURAL GAS TRIETHYLENE GLYCOL DEHYDRATION PLANT IN PERSIAN GULF REGION

More information

Dynamic Models Towards Operator and Engineer Training: Virtual Environment

Dynamic Models Towards Operator and Engineer Training: Virtual Environment European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 2005 Elsevier Science B.V. All rights reserved. Dynamic Models Towards Operator and Engineer Training:

More information

CHAPTER 7 THE DEHYDRATION AND SWEETENING OF NATURAL GAS

CHAPTER 7 THE DEHYDRATION AND SWEETENING OF NATURAL GAS CHAPTER 7 THE DEHYDRATION AND SWEETENING OF NATURAL GAS Natural gases either from natural production or storage reservoirs contain water, which condense and form solid gas hydrates to block pipeline flow

More information

SAMPLE CHAPTERS UNESCO EOLSS NATURAL GAS PROCESSING. H. K. Abdel-Aal National Research Center (NRC), Cairo, Egypt

SAMPLE CHAPTERS UNESCO EOLSS NATURAL GAS PROCESSING. H. K. Abdel-Aal National Research Center (NRC), Cairo, Egypt NATURAL GAS PROCESSING H. K. Abdel-Aal National Research Center (NRC), Cairo, Egypt Keywords: sour natural gas, gas sweetening, gas dehydration, amines, glycols, hydrates, hydrogen sulfide, NGL, cryogenic

More information

Dry-out Design Considerations and Practices for Cryogenic Gas Plants

Dry-out Design Considerations and Practices for Cryogenic Gas Plants Dry-out Design Considerations and Practices for Cryogenic Gas Plants Presented at the 93 rd Annual Convention of the Gas Processors Association April 14, 2014 Dallas, Texas Joe T. Lynch, P.E., David A.

More information

Gas Dehydration (ENGINEERING DESIGN GUIDELINE)

Gas Dehydration (ENGINEERING DESIGN GUIDELINE) Page : 1 of 70 Guidelines for Processing Plant www.klmtechgroup.com KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru (ENGINEERING DESIGN GUIDELINE) Co Author

More information

NATURAL GAS DEHYDRATION USING TRIETHYLENE GLYCOL (TEG)

NATURAL GAS DEHYDRATION USING TRIETHYLENE GLYCOL (TEG) Petroleum & Coal ISSN 1337-7027 Available online at www.vurup.sk/petroleum-coal Petroleum & Coal 56(4) 407-417, 2014 NATURAL GAS DEHYDRATION USING TRIETHYLENE GLYCOL (TEG) C.I.C. Anyadiegwu, Anthony Kerunwa,

More information

How does solar air conditioning work?

How does solar air conditioning work? How does solar air conditioning work? In a conventional air conditioning system; The working fluid arrives at the compressor as a cool, low-pressure gas. The compressor is powered by electricity to squeeze

More information

ECONOMICAL OPTIONS FOR RECOVERING NGL / LPG AT LNG RECEIVING TERMINALS

ECONOMICAL OPTIONS FOR RECOVERING NGL / LPG AT LNG RECEIVING TERMINALS ECONOMICAL OPTIONS FOR RECOVERING NGL / LPG AT RECEIVING TERMINALS Presented at the 86 th Annual Convention of the Gas Processors Association March 13, 2007 San Antonio, Texas Kyle T. Cuellar Ortloff Engineers,

More information

How To Make A High Co 2 Gas Blend

How To Make A High Co 2 Gas Blend ECONOMICAL OPTION FOR CO 2 / METHANE SEPARATION IN PRODUCED GAS CONTAINING A HIGH CO 2 FRACTION F. Patrick Ross, P.E. TPR Consulting 9907 Sagecourt Drive Houston, Texas 77089 (713) 870-9208 pat.ross@att.net

More information

A car air-conditioning system based on an absorption refrigeration cycle using energy from exhaust gas of an internal combustion engine

A car air-conditioning system based on an absorption refrigeration cycle using energy from exhaust gas of an internal combustion engine A car air-conditioning system based on an absorption refrigeration cycle using energy from exhaust gas of an internal combustion engine G Vicatos J Gryzagoridis S Wang Department of Mechanical Engineering,

More information

THE HUMIDITY/MOISTURE HANDBOOK

THE HUMIDITY/MOISTURE HANDBOOK THE HUMIDITY/MOISTURE HANDBOOK Table of Contents Introduction... 3 Relative Humidity... 3 Partial Pressure... 4 Saturation Pressure (Ps)... 5 Other Absolute Moisture Scales... 8 % Moisture by Volume (%M

More information

Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2

Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2 Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2 D. K. McDermitt, J. M. Welles, and R. D. Eckles - LI-COR, inc. Lincoln, NE 68504 USA Introduction Infrared analysis

More information

GLYCOLS IN NATURAL GAS EXPERIMENTS, MODELLING AND TRACKING

GLYCOLS IN NATURAL GAS EXPERIMENTS, MODELLING AND TRACKING GLYCOLS IN NATURAL GAS EXPERIMENTS, MODELLING AND TRACKING Andrea Carolina Machado Miguens 1, Even Solbraa 1, Anita Bersås Hansen 1, Torbjørn Vegard Løkken 1, Toril Haugum 1, Svein Solvang 2 Statoil ASA

More information

Decaffeination of Raw, Green Coffee Beans Using Supercritical CO 2

Decaffeination of Raw, Green Coffee Beans Using Supercritical CO 2 Decaffeination of Raw, Green offee Beans Using Supercritical O 2 Background The worldwide coffee market and the industry that supplies it are among the world s largest. offee as a world commodity is second

More information

NATURAL GAS DEHYDRATION IN OFFSHORE RIGS : COMPARISON BETWEEN TRADITIONAL GLYCOL PLANTS AND INNOVATIVE MEMBRANE SYSTEMS

NATURAL GAS DEHYDRATION IN OFFSHORE RIGS : COMPARISON BETWEEN TRADITIONAL GLYCOL PLANTS AND INNOVATIVE MEMBRANE SYSTEMS 1 NATURAL GAS DEHYDRATION IN OFFSHORE RIGS : COMPARISON BETWEEN TRADITIONAL GLYCOL PLANTS AND INNOVATIVE SYSTEMS F.Binci 1,a*#, F.E. Ciarapica 1,b, G.Giacchetta 1,c 1 Department of Energetics, Faculty

More information

Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim Design

Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim Design Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim Design C. Patrascioiu Abstract The paper describes the modeling and simulation of the heat pumps domain processes. The main

More information

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C 1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

More information

Everest. Leaders in Vacuum Booster Technology

Everest. Leaders in Vacuum Booster Technology This article has been compiled to understand the process of Solvent Recovery process generally carried out at low temperatures and vacuum. In many chemical processes solute is to be concentrated to high

More information

A discussion of condensate removal systems for clarifier and thickener drives for water and wastewater facilities.

A discussion of condensate removal systems for clarifier and thickener drives for water and wastewater facilities. A discussion of condensate removal systems for clarifier and thickener drives for water and wastewater facilities. Richard L. Dornfeld, BSME, P.E. Staff Engineer September 25, 2014 Moisture can be a problem

More information

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels 1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation

More information

2004 Standard For Performance Rating Of Positive Displacement Refrigerant Compressors And Compressor Units

2004 Standard For Performance Rating Of Positive Displacement Refrigerant Compressors And Compressor Units 2004 Standard For Performance Rating Of Positive Displacement Refrigerant Compressors And Compressor Units ANSI/AHRI Standard 540 (formerly ARI Standard 540) IMPORTANT SAFETY RECOMMENDATIONS ARI does not

More information

SUPERSONIC GAS CONDITIONING - COMMERCIALISATION OF TWISTER TECHNOLOGY

SUPERSONIC GAS CONDITIONING - COMMERCIALISATION OF TWISTER TECHNOLOGY 87th Annual Convention Grapevine, Texas, USA March 2-5, 2008 SUPERSONIC GAS CONDITIONING - COMMERCIALISATION OF TWISTER TECHNOLOGY Peter Schinkelshoek MSc Eng Twister BV Principal Process Engineer Peter.Schinkelshoek@TwisterBV.com

More information

COMMERCIAL HVAC CHILLER EQUIPMENT. Air-Cooled Chillers

COMMERCIAL HVAC CHILLER EQUIPMENT. Air-Cooled Chillers COMMERCIAL HVAC CHILLER EQUIPMENT Air-Cooled Chillers Technical Development Programs (TDP) are modules of technical training on HVAC theory, system design, equipment selection and application topics. They

More information

Physical Chemistry Laboratory I CHEM 445 Experiment 6 Vapor Pressure of a Pure Liquid (Revised, 01/09/06)

Physical Chemistry Laboratory I CHEM 445 Experiment 6 Vapor Pressure of a Pure Liquid (Revised, 01/09/06) 1 Physical Chemistry Laboratory I CHEM 445 Experiment 6 Vapor Pressure of a Pure Liquid (Revised, 01/09/06) The vapor pressure of a pure liquid is an intensive property of the compound. That is, the vapor

More information

Comparison of Emission Calculation Methodologies for the Oil and Gas Industry. Presented by: Leanne Sills

Comparison of Emission Calculation Methodologies for the Oil and Gas Industry. Presented by: Leanne Sills Comparison of Emission Calculation Methodologies for the Oil and Gas Industry Presented by: Leanne Sills Trinity Consultants, Inc. Founded 1974 30+ offices nationwide with over 400 employees Environmental

More information

Indirect fired heaters

Indirect fired heaters Indirect fired heaters Indirect Fired Heaters General INDIRECT BATH HEATERS have a wide variety of successful applications in the oil and gas production, processing and transmission industry. Some of the

More information

Natural Gas Dehydrator Optimization

Natural Gas Dehydrator Optimization Natural Gas Dehydrator Optimization IAPG & US EPA Technology Transfer Workshop November 5, 2008 Buenos Aires, Argentina Natural Gas Dehydration: Agenda Methane Losses Methane Recovery Is Recovery Profitable?

More information

Optimization of Natural Gas Processing Plants Including Business Aspects

Optimization of Natural Gas Processing Plants Including Business Aspects Page 1 of 12 Optimization of Natural Gas Processing Plants Including Business Aspects KEITH A. BULLIN, Bryan Research & Engineering, Inc., Bryan, Texas KENNETH R. HALL, Texas A&M University, College Station,

More information

Chapter 3. Table E-1. Equilibrium data for SO 2 at 1 atm and 20 o C. x 0.000564.000842.001403.001965.00279.00420 y 0.0112.01855.0342.0513.0775.

Chapter 3. Table E-1. Equilibrium data for SO 2 at 1 atm and 20 o C. x 0.000564.000842.001403.001965.00279.00420 y 0.0112.01855.0342.0513.0775. Chapter 3 Example 3.2-5. ---------------------------------------------------------------------------------- Sulfur dioxide produced by the combustion of sulfur in air is absorbed in water. Pure SO 2 is

More information

Production of R-134a

Production of R-134a Production of R-134a Background In the 1930 s, chlorofluorocarbons (CFC s) were developed as a supposedly safe alternative to ammonia and sulfur dioxide refrigerants. While sulfur dioxide is toxic and

More information

STEADY-STATE AND DYNAMIC SIMULATION OF CRUDE OIL DISTILLATION USING ASPEN PLUS AND ASPEN DYNAMICS

STEADY-STATE AND DYNAMIC SIMULATION OF CRUDE OIL DISTILLATION USING ASPEN PLUS AND ASPEN DYNAMICS Petroleum & Coal ISSN 1337-7027 Available online at www.vurup.sk/pc Petroleum & Coal 51 (2) 100-109, 2009 STEADY-STATE AND DYNAMIC SIMULATION OF CRUDE OIL DISTILLATION USING ASPEN PLUS AND ASPEN DYNAMICS

More information

Chapter 12 - Liquids and Solids

Chapter 12 - Liquids and Solids Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

More information

5.2. Vaporizers - Types and Usage

5.2. Vaporizers - Types and Usage 5.2. Vaporizers - Types and Usage 5.2.1. General Vaporizers are constructed in numerous designs and operated in many modes. Depending upon the service application the design, construction, inspection,

More information

Experiment 5: Phase diagram for a three-component system (Dated: April 12, 2010)

Experiment 5: Phase diagram for a three-component system (Dated: April 12, 2010) Experiment 5: Phase diagram for a three-component system (Dated: April 12, 2010) I. INTRODUCTION It is sometimes necessary to know the mutual solubilities of liquids in a two-phase system. For example,

More information

Introduction to Process Engineering Economics. based on size of major equipment items allow to decide whether to invest in a detailed study

Introduction to Process Engineering Economics. based on size of major equipment items allow to decide whether to invest in a detailed study Reliability of estimates Accuracy versus cost Cost structure for building a new plant Typical plant cost evaluation methods Lang's factors Happel's method Chauvel-Guthrie's method Examples and applications

More information

Comparing Air Cooler Ratings Part 1: Not All Rating Methods are Created Equal

Comparing Air Cooler Ratings Part 1: Not All Rating Methods are Created Equal Technical Bulletin By Bruce I. Nelson, P.E., President, Colmac Coil Manufacturing, Inc. Comparing Air Cooler Ratings Part 1: Not All Rating Methods are Created Equal SUMMARY Refrigeration air coolers (evaporators)

More information

Chemistry 13: States of Matter

Chemistry 13: States of Matter Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

More information

A Comparison of an R22 and an R410A Air Conditioner Operating at High Ambient Temperatures

A Comparison of an R22 and an R410A Air Conditioner Operating at High Ambient Temperatures R2-1 A Comparison of an R22 and an R410A Air Conditioner Operating at High Ambient Temperatures W. Vance Payne and Piotr A. Domanski National Institute of Standards and Technology Building Environment

More information

Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES

Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES The learning objectives of this experiment are to explore the relationship between the temperature and vapor pressure of water. determine the molar

More information

INVESTIGATION ON DIESEL COLD FLOW PROPERTIES

INVESTIGATION ON DIESEL COLD FLOW PROPERTIES INVESTIGATION ON DIESEL COLD FLOW PROPERTIES R.Dinkov*, D. Stratiev, D. Penev, G. Cholakov Chief Process Engineer Department., Lukoil Neftochim Bourgas JLC, Bulgaria, *e-mail:dinkov.rosen.k@neftochim.bg

More information

POSSIBILITY FOR MECHANICAL VAPOR RE-COMPRESSRION FOR STEAM BASED DRYING PROCESSES

POSSIBILITY FOR MECHANICAL VAPOR RE-COMPRESSRION FOR STEAM BASED DRYING PROCESSES POSSIBILITY FOR MECHANICAL VAPOR RE-COMPRESSRION FOR STEAM BASED DRYING PROCESSES M. Bantle 1, I. Tolstorebrov, T. M. Eikevik 2 1 Department of Energy Efficiency, SINTEF Energy Research, Trondheim, Norway,

More information

HYDROCARBON REMOVAL FROM AMINES DEMONSTRATED EXPERIENCE ABSTRACT

HYDROCARBON REMOVAL FROM AMINES DEMONSTRATED EXPERIENCE ABSTRACT HYDROCARBON REMOVAL FROM AMINES DEMONSTRATED EXPERIENCE Technical Article Presented at Gas Processors Association Annual Convention San Antonio, Texas, USA, March 16, 2005 By Gary L. Lawson, PE (Presenter)

More information

Thermochemical Storage for Air-Conditioning using Open Cycle Liquid Desiccant Technology

Thermochemical Storage for Air-Conditioning using Open Cycle Liquid Desiccant Technology Thermochemical Storage for Air-Conditioning using Open Cycle Liquid Desiccant Technology E. Laevemann, M. Peltzer, A. Hublitz, A. Kroenauer, U. Raab, A. Hauer Bavarian Center for Applied Energy Research

More information

Liquid-Liquid Extraction (LLX)

Liquid-Liquid Extraction (LLX) Liquid-Liquid Extraction (LLX) Extraction is a liquid-liquid operation. It is a process of transferring a solute from one liquid phase to another immiscible or partially miscible liquid in contact with

More information

Design Guidelines for Using Distillation Simulation Software in the Field

Design Guidelines for Using Distillation Simulation Software in the Field Design Guidelines for Using Distillation Simulation Software in the Field Karl Kolmetz KLM Technology Group Asit Mardikar Harpreet Gulati Invensys Process Systems (SimSci-Esscor) Dr Wai Kiong Ng Tau Yee

More information

Thermal Mass Availability for Cooling Data Centers during Power Shutdown

Thermal Mass Availability for Cooling Data Centers during Power Shutdown 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). Published in ASHRAE Transactions (2010, vol 116, part 2). For personal use only. Additional reproduction,

More information

Phase Equilibrium: Fugacity and Equilibrium Calculations. Fugacity

Phase Equilibrium: Fugacity and Equilibrium Calculations. Fugacity Phase Equilibrium: Fugacity and Equilibrium Calculations (FEC) Phase Equilibrium: Fugacity and Equilibrium Calculations Relate the fugacity and the chemical potential (or the partial molar Gibbs free energy)

More information

2A.1 Features of Chiller Control Components... 104. 2A.3 Chilled-Water Supply Temperature Control... 107. 2A.4 Cooling-Water Supply Control...

2A.1 Features of Chiller Control Components... 104. 2A.3 Chilled-Water Supply Temperature Control... 107. 2A.4 Cooling-Water Supply Control... Appendix 2A: Chiller Control Principles... 104 2A.1 Features of Chiller Control Components... 104 2A.2 Start-up and Shutdown... 105 2A.2.1 Start-up...105 2A.2.2 Shutdown...106 2A.3 Chilled-Water Supply

More information

Design Procedure. Step 2: The simulation is performed next. Usually the column is not difficult to converge, as the liquid reflux ratio is large.

Design Procedure. Step 2: The simulation is performed next. Usually the column is not difficult to converge, as the liquid reflux ratio is large. Design Procedure We now summarize the technique for designing a multipurpose energy efficient atmospheric column. First, the Watkins design method is used to obtain an initial scheme without pump-around

More information

Performing Multi - Phase Mass and Energy Balances

Performing Multi - Phase Mass and Energy Balances Performing Multi-Phase Mass and Energy Balances (Separations) Performing Multi - Phase Mass and Energy Balances Using thermodynamics in mass / energy balance problems means that additional equations are

More information

Lecture 35: Atmosphere in Furnaces

Lecture 35: Atmosphere in Furnaces Lecture 35: Atmosphere in Furnaces Contents: Selection of atmosphere: Gases and their behavior: Prepared atmospheres Protective atmospheres applications Atmosphere volume requirements Atmosphere sensors

More information

Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India

Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India Experimental Thermal and Fluid Science 32 (2007) 92 97 www.elsevier.com/locate/etfs Studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with right

More information

Acetaldehyde Production by Ethanol Dehydrogenation

Acetaldehyde Production by Ethanol Dehydrogenation Acetaldehyde Production by Ethanol Dehydrogenation Background Acetaldehyde is a colorless liquid with a pungent, fruity odor. It is primarily used as a chemical intermediate, principally for the production

More information

Lecture 9 Solving Material Balances Problems Involving Non-Reactive Processes

Lecture 9 Solving Material Balances Problems Involving Non-Reactive Processes CHE 31. INTRODUCTION TO CHEMICAL ENGINEERING CALCULATIONS Lecture 9 Solving Material Balances Problems Involving Non-Reactive Processes Component and Overall Material Balances Consider a steady-state distillation

More information

Boiler efficiency measurement. Department of Energy Engineering

Boiler efficiency measurement. Department of Energy Engineering Boiler efficiency measurement Department of Energy Engineering Contents Heat balance on boilers Efficiency determination Loss categories Fluegas condensation principals Seasonal efficiency Emission evaluation

More information

AIR CONDITIONING TECHNOLOGY

AIR CONDITIONING TECHNOLOGY AIR CONDITIONING TECHNOLOGY PART 9 Water Cooled Condensers & Cooling Towers IN LAST month s article we looked at how Air Cooled Condensers are used to transfer the total heat of rejection from the air

More information

DESIGNING MOLECULAR SIEVE DEHYDRATION UNITS TO PREVENT UPSETS IN DOWNSTREAM NGL/LPG RECOVERY PLANTS

DESIGNING MOLECULAR SIEVE DEHYDRATION UNITS TO PREVENT UPSETS IN DOWNSTREAM NGL/LPG RECOVERY PLANTS DESIGNING MOLECULAR SIEVE DEHYDRATION UNITS TO PREVENT UPSETS IN DOWNSTREAM NGL/LPG RECOVERY PLANTS Daryl R. Jensen Ortloff Engineers, Ltd. 415 W. Wall St. Ste. 2000 Midland, Texas 79701 +1(432)685-0277

More information

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

UNIT 6a TEST REVIEW. 1. A weather instrument is shown below.

UNIT 6a TEST REVIEW. 1. A weather instrument is shown below. UNIT 6a TEST REVIEW 1. A weather instrument is shown below. Which weather variable is measured by this instrument? 1) wind speed 3) cloud cover 2) precipitation 4) air pressure 2. Which weather station

More information

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

More information

Solar Hot Water. What systems are available?

Solar Hot Water. What systems are available? Solar Hot Water Using the sun s energy to heat water will save you energy, lower your hot water bills, and reduce greenhouse pollution. Solar hot water systems work effectively in Victoria using mature

More information

Data Reconciliation and Energy Audits for PTT Gas Separation Plant No.5 (GSP5)

Data Reconciliation and Energy Audits for PTT Gas Separation Plant No.5 (GSP5) A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 29, 2012 Guest Editors: Petar Sabev Varbanov, Hon Loong Lam, Jiří Jaromír Klemeš Copyright 2012, AIDIC Servizi S.r.l., ISBN 978-88-95608-20-4; ISSN

More information

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

More information

How Ground/Water Source Heat Pumps Work

How Ground/Water Source Heat Pumps Work How Ground/Water Source s Work Steve Kavanaugh, Professor Emeritus of Mechanical Engineering, University of Alabama Ground Source s (a.k.a. Geothermal s) are becoming more common as the costs of energy

More information

Minimum Reflux in Liquid Liquid Extraction

Minimum Reflux in Liquid Liquid Extraction 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Minimum Reflux in Liquid Liquid Extraction Santanu Bandyopadhyay

More information

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K Thermodynamics: Examples for chapter 6. 1. The boiling point of hexane at 1 atm is 68.7 C. What is the boiling point at 1 bar? The vapor pressure of hexane at 49.6 C is 53.32 kpa. Assume that the vapor

More information

BASIC UNDERSTANDING OF FLOW CALCULATIONS AND ESTIMATES MAKES SIZING VALVES SIMPLER

BASIC UNDERSTANDING OF FLOW CALCULATIONS AND ESTIMATES MAKES SIZING VALVES SIMPLER BASIC UNDERSTANDING OF FLOW CALCULATIONS AND ESTIMATES MAKES SIZING VALVES SIMPLER Valve size often is described by the nominal size of the end connections but a more important measure is the flow that

More information

Rating Water-Source Heat Pumps Using ARI Standard 320 and ISO Standard 13256-1

Rating Water-Source Heat Pumps Using ARI Standard 320 and ISO Standard 13256-1 Rating Water-Source Heat Pumps Using ARI Standard 320 and ISO Standard 13256-1 W. Vance Payne and Piotr A. Domanski National Institute of Standards and Technology Building and Fire Research Laboratory

More information

We will try to get familiar with a heat pump, and try to determine its performance coefficient under different circumstances.

We will try to get familiar with a heat pump, and try to determine its performance coefficient under different circumstances. C4. Heat Pump I. OBJECTIVE OF THE EXPERIMENT We will try to get familiar with a heat pump, and try to determine its performance coefficient under different circumstances. II. INTRODUCTION II.1. Thermodynamic

More information

GEOTHERMAL POWER GENERATION A PRIMER ON LOW-TEMPERATURE, SMALL-SCALE APPLICATIONS

GEOTHERMAL POWER GENERATION A PRIMER ON LOW-TEMPERATURE, SMALL-SCALE APPLICATIONS GEOTHERMAL POWER GENERATION A PRIMER ON LOW-TEMPERATURE, SMALL-SCALE APPLICATIONS by Kevin Rafferty Geo-Heat Center January 2000 REALITY CHECK Owners of low-temperature geothermal resources are often interested

More information

Increasing the evaporation temperature with the help of an internal heat exchanger

Increasing the evaporation temperature with the help of an internal heat exchanger Increasing the evaporation temperature with the help of an internal heat exchanger A. TAMBOVTSEV (a), H. QUACK (b) (a,b) Technische Universität Dresden, D-01062, Dresden, Germany (a) Fax: (+49351) 463-37247,

More information

PRACTICAL HYDROCARBON DEW POINT SPECIFICATION FOR NATURAL GAS TRANSMISSION LINES

PRACTICAL HYDROCARBON DEW POINT SPECIFICATION FOR NATURAL GAS TRANSMISSION LINES PRACTICAL HYDROCARBON DEW POINT SPECIFICATION FOR NATURAL GAS TRANSMISSION LINES Jerry A. Bullin and Carl Fitz Bryan Research & Engineering, Inc. Bryan, Texas, U.S.A. Todd Dustman Questar Pipeline Company

More information

Heat Recovery In Retail Refrigeration

Heat Recovery In Retail Refrigeration This article was published in ASHRAE Journal, February 2010. Copyright 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Posted at www.ashrae.org. This article may not

More information

Waste Heat Recovery through Air Conditioning System

Waste Heat Recovery through Air Conditioning System International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn : 2278-800X, www.ijerd.com Volume 5, Issue 3 (December 2012), PP. 87-92 Waste Heat Recovery through Air Conditioning

More information

We will study the temperature-pressure diagram of nitrogen, in particular the triple point.

We will study the temperature-pressure diagram of nitrogen, in particular the triple point. K4. Triple Point of Nitrogen I. OBJECTIVE OF THE EXPERIMENT We will study the temperature-pressure diagram of nitrogen, in particular the triple point. II. BAKGROUND THOERY States of matter Matter is made

More information

Chem 420/523 Chemical Thermodynamics Homework Assignment # 6

Chem 420/523 Chemical Thermodynamics Homework Assignment # 6 Chem 420/523 Chemical hermodynamics Homework Assignment # 6 1. * Solid monoclinic sulfur (S α ) spontaneously converts to solid rhombic sulfur (S β ) at 298.15 K and 0.101 MPa pressure. For the conversion

More information

SERVICE GUIDELINES HCFC R22 TO HFC REFRIGERANT BLENDS

SERVICE GUIDELINES HCFC R22 TO HFC REFRIGERANT BLENDS SERVICE GUIDELINES HCFC R22 TO HFC REFRIGERANT BLENDS 2009 Tecumseh Products Company. All rights reserved. Page 1 of 8 Refrigerant R22 is widely used for residential and commercial air conditioning, as

More information

μ α =μ β = μ γ = =μ ω μ α =μ β =μ γ = =μ ω Thus for c components, the number of additional constraints is c(p 1) ( ) ( )

μ α =μ β = μ γ = =μ ω μ α =μ β =μ γ = =μ ω Thus for c components, the number of additional constraints is c(p 1) ( ) ( ) Phase Diagrams 1 Gibbs Phase Rule The Gibbs phase rule describes the degrees of freedom available to describe a particular system with various phases and substances. To derive the phase rule, let us begin

More information

Molar Mass of Polyvinyl Alcohol by Viscosity

Molar Mass of Polyvinyl Alcohol by Viscosity Molar Mass of Polyvinyl Alcohol by Viscosity Introduction Polyvinyl Alcohol (PVOH) is a linear polymer (i. e., it has little branching) of Ethanol monomer units: -CH 2 -CHOH- Unlike most high molar mass

More information

13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory

13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction

More information

Open Cycle Refrigeration System

Open Cycle Refrigeration System Chapter 9 Open Cycle Refrigeration System Copy Right By: Thomas T.S. Wan 温 到 祥 著 Sept. 3, 2008 All rights reserved An open cycle refrigeration system is that the system is without a traditional evaporator.

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics Objectives MAE 320 - Chapter 6 The Second Law of Thermodynamics The content and the pictures are from the text book: Çengel, Y. A. and Boles, M. A., Thermodynamics: An Engineering Approach, McGraw-Hill,

More information

Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide

Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide 2.1 Introduction In order to appreciate the impact of the properties of liquid sulphur dioxide and liquid sulphur trioxide

More information

Liquefied Natural Gas (LNG)

Liquefied Natural Gas (LNG) Graduate Diploma in Petroleum Studies Major in Liquefied Natural Gas (LNG) INDUCTION Launching ceremony Week 39, 2012 Administration / Plant visit / Fundamentals of LNG and LNG main risks awareness Module

More information

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS Blank SONNTAG/BORGNAKKE STUDY PROBLEM 7-1 7.1 A car engine and its fuel consumption A car engine produces 136 hp on the output shaft with a thermal efficiency

More information

ThermoSorb Desiccant Dryers

ThermoSorb Desiccant Dryers ThermoSorb Desiccant Dryers Sierra Why dry compressed air? Contamination reduces efficiency The air we breathe contains contamination in the form of water vapour and airborne particles. During the compression

More information

!"#$ Reservoir Fluid Properties. State of the Art and Outlook for Future Development. Dr. Muhammad Al-Marhoun

!#$ Reservoir Fluid Properties. State of the Art and Outlook for Future Development. Dr. Muhammad Al-Marhoun Society of Petroleum Engineers SPE 2001 2002 Distinguished Lecturer Program 4 July 2002 Reservoir Fluid Properties State of the Art and Outlook for Future Development Dr. Muhammad Al-Marhoun King Fahd

More information

Simulation to Analyze Two Models of Agitation System in Quench Process

Simulation to Analyze Two Models of Agitation System in Quench Process 20 th European Symposium on Computer Aided Process Engineering ESCAPE20 S. Pierucci and G. Buzzi Ferraris (Editors) 2010 Elsevier B.V. All rights reserved. Simulation to Analyze Two Models of Agitation

More information

Melting Point, Boiling Point, and Index of Refraction

Melting Point, Boiling Point, and Index of Refraction Melting Point, Boiling Point, and Index of Refraction Melting points, boiling points, and index of refractions are easily measured physical properties of organic compounds useful in product characterization

More information

Distillation vaporization sublimation. vapor pressure normal boiling point.

Distillation vaporization sublimation. vapor pressure normal boiling point. Distillation Distillation is an important commercial process that is used in the purification of a large variety of materials. However, before we begin a discussion of distillation, it would probably be

More information

COMPARISON INVESTIGATION ON THE HEAT TRANSFER CHARACTERISTICS FOR SUPERCRITICAL CO 2 FLUID AND CONVENTIONAL REFRIGERANTS ABSTRACT 1.

COMPARISON INVESTIGATION ON THE HEAT TRANSFER CHARACTERISTICS FOR SUPERCRITICAL CO 2 FLUID AND CONVENTIONAL REFRIGERANTS ABSTRACT 1. COMPARISON INVESTIGATION ON THE HEAT TRANSFER CHARACTERISTICS FOR SUPERCRITICAL CO FLUID AND CONVENTIONAL REFRIGERANTS JUNLAN YANG (a), YITAI MA (b), SHENGCHUN LIU (b), XIANYANG ZENG (b) (a) Department

More information

Dow Solvent Technologies for CO 2 Removal

Dow Solvent Technologies for CO 2 Removal Dow Oil & Gas Jan Lambrichts AIChE Netherlands / Belgium Section 21 January 2014 Novotel, Antwerp Dow Solvent Technologies for CO 2 Removal Who We Are Dow combines the power of science and technology to

More information

Commercial refrigeration has been in the environmental. Refrigerant. as a. Basics Considerations PART 1:

Commercial refrigeration has been in the environmental. Refrigerant. as a. Basics Considerations PART 1: PART 1: CO 2 Commercial refrigeration has been in the environmental spotlight for more than a decade, especially as leakage studies have revealed the true effects of hydrofluorocarbon (HFC) emissions.

More information

IAPWS Certified Research Need - ICRN

IAPWS Certified Research Need - ICRN IAPWS Certified Research Need - ICRN ICRN 23 Dew Point for Flue Gas of Power-Plant Exhaust The IAPWS Working Group Industrial Requirements and Solutions has examined the published work in the area of dew-point

More information

Valve Sizing. Te chnic al Bulletin. Flow Calculation Principles. Scope. Sizing Valves. Safe Product Selection. www.swagelok.com

Valve Sizing. Te chnic al Bulletin. Flow Calculation Principles. Scope. Sizing Valves. Safe Product Selection. www.swagelok.com www.swagelok.com Valve Sizing Te chnic al Bulletin Scope Valve size often is described by the nominal size of the end connections, but a more important measure is the flow that the valve can provide. And

More information

Energy Analysis and Comparison of Advanced Vapour Compression Heat Pump Arrangements

Energy Analysis and Comparison of Advanced Vapour Compression Heat Pump Arrangements Energy Analysis and Comparison of Advanced Vapour Compression Heat Pump Arrangements Stuart Self 1, Marc Rosen 1, and Bale Reddy 1 1 University of Ontario Institute of Technology, Oshawa, Ontario Abstract

More information