Lecture 4. Physics 1502: Lecture 34 Today s Agenda


 Lionel Weaver
 2 years ago
 Views:
Transcription
1 Physics 1502: Lecture 34 Today s Agenda Announcements: Midterm 2: graded soon Homework 09: Friday December 4 Optics Interference Diffraction» Introduction to diffraction» Diffraction from narrow slits» Intensity of singleslit and twoslits diffraction patterns» The diffraction grating Interference 1
2 A wave through two slits In Phase, i.e. Maxima when ΔP = d sinθ = nλ Out of Phase, i.e. Minima when ΔP = d sinθ = (n+1/2)λ d θ ΔP=d sinθ Screen A wave through two slits In Phase, i.e. Maxima when ΔP = d sinθ = nλ + Out of Phase, i.e. Minima when ΔP = d sinθ = (n+1/2)λ + 2
3 The Intensity What is the intensity at P? The only term with a t dependence is sin 2 ( ).That term averages to ½. If we had only had one slit, the intensity would have been, So we can rewrite the total intensity as, with We can rewrite intensity at point P in terms of distance y The Intensity Using this relation, we can rewrite expression for the intensity at point P as function of y Constructive interference occurs at where m=+/1, +/2 3
4 Phasor Addition of Waves Consider a sinusoidal wave whose electric field component is E 2 (t) E 1 (t) ωt+φ ωt Consider second sinusoidal wave The projection of sum of two phasors E P is equal to E P (t) E 2 (t) E 1 (t) E R φ/2 ωt φ Phasor Diagrams for Two Coherent Sources E R = ER 90 0 E R = E R =2 ER 4
5 SUMMARY 2 slits interference pattern (Young s experiment) How would pattern be changed if we add one or more slits? (assuming the same slit separation ) 3 slits, 4 slits, 5 slits, etc. Phasor: 1 vector represents 1 traveling wave single traveling wave 2 wave interference 5
6 Nslits Interference Patterns Φ=0 Φ=90 Φ=180 Φ=270 Φ=360 N=2 N=3 N=4 Change of Phase Due to Reflection S Lloyd s mirror P 2 The reflected ray (red) can be considered as an original from the image source at point I. Thus we can think of an arrangement S and I as a doubleslit source separated by the distance between points S and I. I L P 1 Mirror An interference pattern for this experimental setting is really observed.. but dark and bright fringes are reversed in order This mean that the sources S and I are different in phase by An electromagnetic wave undergoes a phase change by upon reflecting from the medium that has a higher index of refraction than that one in which the wave is traveling. 6
7 Change of Phase Due to Reflection n 1 n 2 n 1 n phase change no phase change n 1 <n 2 n 1 >n 2 Interference in Thin Films Air phase change 1 no phase change 2 A wave traveling from air toward film undergoes phase change upon reflection. The wavelength of light λ n in the medium with refraction index n is Film Air t The ray 1 is out of phase with ray 2 which is equivalent to a path difference λ n /2. The ray 2 also travels extra distance 2t. Constructive interference Destructive interference 7
8 Chapter 34 Act 1 Estimate minimum thickness of a soapbubble film (n=1.33) that results in constructive interference in the reflected light if the film is Illuminated by light with λ=600nm. A) 113nm B) 250nm C) 339nm Problem Consider the doubleslit arrangement shown in Figure below, where the slit separation is d and the slit to screen distance is L. A sheet of transparent plastic having an index of refraction n and thickness t is placed over the upper slit. As a result, the central maximum of the interference pattern moves upward a distance y. Find y where will the central maximum be now? 8
9 Phase difference for going though plastic sheet: Solution Corresponding path length difference: Angle of central max is approx: Thus the distance y is: gives Phase Change upon Reflection from a Surface/Interface Reflection from Optically Denser Medium (larger n) Reflection from Optically Lighter Medium (smaller n) 180 o Phase Change No Phase Change by analogy to reflection of traveling wave in mechanics 9
10 Lecture 4 constructive: 2t = (m +1/2) λn destructive: 2t = m λn Examples : constructive: 2t = m λn destructive: 2t = (m +1/2) λn Application Reducing Reflection in Optical Instruments 10
11 Diffraction Experimental Observations: (pattern produced by a single slit?) 11
12 How do we understand this pattern? First Destructive Interference: (a/2) sin Θ = ± λ/2 sin Θ = ± λ/a Second Destructive Interference: (a/4) sin Θ = ± λ/2 sin Θ = ± 2 λ/a m th Destructive Interference: sin Θ = ± m λ/a m=±1, ±2, See Huygen s Principle So we can calculate where the minima will be! sin Θ = ± m λ/a m=±1, ±2, So, when the slit becomes smaller the central maximum becomes? Why is the central maximum so much stronger than the others? 12
13 Phasor Description of Diffraction Let s define phase difference (β) between first and last ray (phasor) central max. 1st min. β = Σ (Δβ) = N Δβ (a/λ) sin Θ = 1: 1st min. Δβ / 2π = Δy sin (Θ) / λ 2nd max. β = N Δβ = N 2π Δy sin (Θ) / λ = 2π a sin (Θ) / λ Can we calculate the intensity anywhere on diffraction pattern? Yes, using Phasors! Let take some arbitrary point on the diffraction pattern This point can be defined by angle Θ or by phase difference between first and last ray (phasor) β The resultant electric field magnitude E R is given (from the figure) by : sin (β/2) = E R / 2R The arc length E o is given by : E o = R β E R = 2R sin (β/2) = 2 (E o / β) sin (β/2) = E o [ sin (β/2) / (β/2) ] So, the intensity anywhere on the pattern : I = I max [ sin (β/2) / (β/2) ] 2 β = 2π a sin (Θ) / λ 13
14 Other Examples Light from a small source passes by the edge of an opaque object and continues on to a screen. A diffraction pattern consisting of bright and dark fringes appears on the screen in the region above the edge of the object. What type of an object would create a diffraction pattern shown on the left, when positioned midway between screen and light source? A penny, Note the bright spot at the center. Fraunhofer Diffraction (or farfield) θ Lens Incoming wave Screen 14
15 Fresnel Diffraction (or nearfield) Lens P Incoming wave Screen (more complicated: not covered in this course) Resolution (singleslit aperture) Rayleigh s criterion: two images are just resolved WHEN: When central maximum of one image falls on the first minimum of another image sin Θ = λ / a Θ min ~ λ / a 15
16 Resolution (circular aperture) Diffraction patterns of two point sources for various angular separation of the sources Rayleigh s criterion for circular aperture: Θ min = 1.22 ( λ / a) EXAMPLE A ruby laser beam (λ = nm) is sent outwards from a 2.7 m diameter telescope to the moon, km away. What is the radius of the big red spot on the moon? a. 500 m b. 250 m Earth c. 120 m d. 1.0 km e. 2.7 km Θ min = 1.22 ( λ / a) Moon R / = 1.22 [ / 2.7 ] R = 120 m! 16
17 TwoSlit Interference Pattern with a Finite Slit Size Interference (interference fringes): I inter = I max [cos (πd sin Θ / λ)] 2 Diffraction ( envelope function): I diff = I max [ sin (β/2) / (β/2) ] 2 β = 2π a sin (Θ) / λ I tot = I inter. I diff smaller separation between slits =>? The combined effects of twoslit and singleslit interference. This is the pattern produced when 650nm light waves pass through two 3.0 mm slits that are 18 mm apart. smaller slit size =>? Animation Example The centers of two slits of width a are a distance d apart. Is it possible that the first minimum of the interference pattern occurs at the location of the first minimum of the diffraction pattern for light of wavelength λ? No! d a a 1st minimum interference: d sin Θ = λ /2 1st minimum diffraction: a sin Θ = λ The same place (same Θ) : λ /2d = λ /a a /d = 2 17
18 Application Xray Diffraction by crystals Can we determine the atomic structure of the crystals, like proteins, by analyzing Xray diffraction patters like one shown? Yes in principle: this is like the problem of determining the slit separation (d) and slit size (a) from the observed pattern, but much much more complicated! A Laue pattern of the enzyme Rubisco, produced with a wideband xray spectrum. This enzyme is present in plants and takes part in the process of photosynthesis. Determining the atomic structure of crystals With Xray Diffraction (basic principle) Crystals are made of regular arrays of atoms that effectively scatter Xray Scattering (or interference) of two Xrays from the crystal planes madeup of atoms Bragg s Law Crystalline structure of sodium chloride (NaCl). length of the cube edge is a = nm. 2 d sin Θ = m λ m = 1, 2,.. 18
Chapter 38: Diffraction (interference part 2)
Chapter 38: Diffraction (interference part 2) Diffraction is an interference effect like in Ch 37, but usually refers more specifically to bending of waves around obstacles (similar to refraction). Diffraction
More informationDiffraction. Today Singleslit diffraction Diffraction by a circular aperture Use of phasors in diffraction Doubleslit diffraction
Diffraction Today Singleslit diffraction Diffraction by a circular aperture Use of phasors in diffraction Doubleslit diffraction Diffraction by a single slit Single slit: Pattern on screen Bright and
More information6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?
Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 105 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A single slit forms a diffraction pattern, with the first minimum at an angle of 40 from
More informationChapter 30 Reflection and Refraction
Chapter 30 Reflection and Refraction Slide 301 Geometrical optics When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to Neglect
More informationReview: Double Slit Path Differences. Diffraction II. Single slit: Pattern on screen. Doubleslit interference fringes. Single Slit dark fringes
Diffraction II Today Singleslit diffraction review Multiple slit diffraction review Xray diffraction Diffraction intensities Review: Double Slit Path Differences For point P at angle triangle shows L
More informationRecap Lecture 34 Matthias Liepe, 2012
Recap Lecture 34 Matthias Liepe, 2012 Diffraction Diffraction limited resolution Double slit (again) N slits Diffraction gratings Examples Today: Pointillism Technique of painting in which small, distinct
More informationCh. 27. Interference and the Wave Nature of Light
Ch. 27. Interference and the Wave Nature of Light Up to now, we have been studying geometrical ti optics, where the wavelength of the light is much smaller than the size of our mirrors and lenses and the
More informationPREVIOUS 8 YEARS QUESTIONS (1 mark & 2 marks) 1 mark questions
230 PREVIOUS 8 YEARS QUESTIONS (1 mark & 2 marks) 1 mark questions 1. An object is held at the principal focus of a concave lens of focal length f. Where is the image formed? (AISSCE 2008) Ans: That is
More informationWave Optics. Interference of Light waves
Interference of Light waves A. Karle Physics 202 Dec. 4, 2007 Chapter 37 and Chapter 38.13 PART I 37.1 Introduction 37. 2 Double slit 37. 3 (maxima, minima, high level only) 37. 5 Phase change, 37. 6
More informationPHYS2020: General Physics II Course Lecture Notes Section XIII
PHYS2020: General Physics II Course Lecture Notes Section XIII Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and
More informationChapter 24. Wave Optics
Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena. Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric)
More informationphysics 112N interference and diffraction
physics 112N interference and diffraction the limits of ray optics shadow of the point of a pin physics 112N 2 the limits of ray optics physics 112N 3 the limits of ray optics physics 112N 4 this is how
More informationEM Waves Practice Problems
EM Waves Practice Problems PSI AP Physics B Name Multiple Choice 1. Which of the following theories can explain the bending of waves behind obstacles into shadow region? (A) Particle theory of light (B)
More informationPhysics 2111 Unit 29
Physics 2111 Unit 29 Physical Optics  Thin Film Interference  Two Slit Interference  Single Slit Interference  Resolution  Diffraction Gratings  XRay Diffraction Physical Optics, Unit 29  Slide
More informationVågrörelselära och optik
Vågrörelselära och optik Kapitel 36  Diffraktion 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1
More informationInterference & Diffraction
Purpose A singleslit diffraction pattern results when a light beam passes through a single narrow aperture, or slit, whose width is not too much larger than a wavelength. A doubleslit interference pattern
More informationWave Optics. b. the crest from one wave overlaps with the d. darkness cannot occur as the two waves are coherent.
Wave Optics 1. Two beams of coherent light are shining on the same piece of white paper. With respect to the crests and troughs of such waves, darkness will occur on the paper where: a. the crest from
More informationInterference of Light Waves
Interference of Light Waves Conditions for interference Young s double slit experiment Intensity distribution of the interference pattern Phasor representation Reflection and change of phase Interference
More informationChapter 34 The Wave Nature of Light; Interference. Copyright 2009 Pearson Education, Inc.
Chapter 34 The Wave Nature of Light; Interference Units of Chapter 34 Waves versus Particles; Huygens Principle and Diffraction Huygens Principle and the Law of Refraction Interference Young s DoubleSlit
More informationPHY 171. Homework 5 solutions. (Due by beginning of class on Wednesday, February 8, 2012)
PHY 171 (Due by beginning of class on Wednesday, February 8, 2012) 1. Consider the figure below which shows four stacked transparent materials. In this figure, light is incident at an angle θ 1 40.1 on
More informationHuygens Principle. 7: Interference (Chapter 35) Huygens & Refraction. Diffraction & Interference. Phys130, A01 Dr.
7: Interference (Chapter 35) Phys130, A01 Dr. Robert MacDonald Huygens Principle Each point on a wave front serves as a source of new spherical wavelets. After a time t, the new position of the wave front
More informationLecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7th edition Giancoli
Lecture PowerPoints Chapter 24 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching
More informationExperiment #3: Interference and Diffraction
Experiment #3: Interference and Diffraction EYE HAZARD: never look directly into a laser! Starting with experiment #4, Please always bring a formatted highdensity PC diskette with you to the lab. Purpose:
More informationChapter 24 Wave Optics. Diffraction Grating Interference by Thin Films Polarization. sinθ=mλ/d or dsinθ=mλ
Chapter 24 Wave Optics Diffraction Grating Interference by Thin Films Polarization d Θ Θ Extra distance mλ sinθ=mλ/d or dsinθ=mλ m=0,1,2,3,... Constructive inference m=1/2,3/2,5/2,... Destructive inference
More informationPhysics 111 Fall 2007 Wave Optics Solutions
Physics 111 Fall 2007 Wave Optics Solutions 1. The pupil of a cat s eye narrows to a vertical slit of width 0.500 mm in daylight. What is the angular resolution for horizontally separated mice? Assume
More informationChapter 14. Interference and Diffraction
Chapter 14 Interference and Diffraction 14.1 Superposition of Waves... 1414.1.1 Interference Conditions for Light Sources... 144 14. Young s DoubleSlit Experiment... 144 Example 14.1: DoubleSlit Experiment...
More informationLecture 2: Interference
Lecture 2: Interference λ S 1 d S 2 Lecture 2, p.1 Today Interference of sound waves Twoslit interference Lecture 2, p.2 Review: Wave Summary ( ) ( ) The formula y x,t = Acos kx ωt describes a harmonic
More informationWave Phenomena. Constructive and Destructive Interference
Wave Phenomena INTERFERENCE PATTERN OF WATER WAVES DIFFRACTION OF LIGHT OFF A COMPACT DISC Constructive and Destructive Interference Constructive interference produces maxima, where crests meet crests
More informationDiffraction of light by a single slit, multiple slits and gratings
Institute for Nanostructure and Solid State Physics Laboratory Experiments in Physics for Engineering Students Hamburg University, Jungiusstraße 11 Diffraction of light by a single slit, multiple slits
More informationCH 35. Interference. A. Interference of light waves, applied in many branches of science.
CH 35 Interference [SHIVOK SP212] March 17, 2016 I. Optical Interference: A. Interference of light waves, applied in many branches of science. B. The blue of the top surface of a Morpho butterfly wing
More informationExperiment 1: Single Slit Diffraction
DIFFRACTION In this lab the phenomenon of diffraction will be explored. Diffraction is interference of a wave with itself. According to Huygen s Principle waves propagate such that each point reached by
More informationPhysics 1653 Final Exam  Review Questions
Chapter 22 Reflection & Refraction Physics 1653 Final Exam  Review Questions 1. The photon energy for light of wavelength 500 nm is approximately A) 1.77 ev B) 3.10 ev C) 6.20 ev D) 2.48 ev E) 5.46 ev
More informationUNIT 31: INTERFERENCE AND DIFFRACTION
Name St.No.  Date(YY/MM/DD) / / Section Group # UNIT 31: INTERFERENCE AND DIFFRACTION Interference of two circular waves, snapshots of absolute value of (real,scalar) wave field for different wave lengths
More informationDOUBLE SLIT INTERFERENCE
O81 DOUBLE SLIT INTERFERENCE PURPOSE The purpose of this experiment is to examine the diffraction and interference patterns formed by laser light passing through two slits and verify that the positions
More informationFor visible light, 700nm(red) > λ > 400 nm(indigo) See page 631 for wavelengths of colours
1 Light Section 20.5, Electromagnetic waves Light is an electromagnetic which travels at 3.00 10 8 m/s in a vacuum. It obeys the relationship: λf = c just like other traveling waves. For visible light,
More informationObjectives 450 CHAPTER 10 LIGHT AND OPTICAL SYSTEMS
Objectives Use wave properties to explain interference and diffraction of light. Explain how double slits, a diffraction grating, a single slit, and an aperture produce interference patterns. Use measurements
More informationExam 3S12PHYS April 2012
ame: Exam 3S12PHYS102 30 April 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following statements is true? a. Newton believed light
More informationChapter 22. Wave Optics. Chapter 22. Wave Optics. What was the first experiment to show that light is a wave? Chapter 22.
Chapter 22. Wave Optics Chapter 22. Wave Optics Light is an electromagnetic wave. The interference of light waves produces the colors reflected from a CD, the iridescence of bird feathers, and the technology
More informationDouble Slit Experiment. and diffrac5on gra5ngs
Double Slit Experiment and diffrac5on gra5ngs Diffraction Diffraction is normally taken to refer to various phenomena which occur when a wave encounters an obstacle. It is described as the apparent bending
More informationChapter Four: Interference
Chapter Four Interference CHAPTER OUTLINE 4.1 Superposition of Waves 4.2 Interference 4.2.1Theory of Interference 4.2.2Intensity Distribution 4.2.3Superposition of Incoherent Waves 4.2.4Superposition of
More informationChapter 35, example problems:
Chapter 35, example problems: (35.02) Two radio antennas A and B radiate in phase. B is 120 m to the right of A. Point Q along extension of line AB. 40 m to the right of B. Frequency and wavelength can
More informationConcepTest Superposition. If waves A and B are superposed (that is, their amplitudes are added) the resultant wave is
ConcepTest 24.1 Superposition If waves A and B are superposed (that is, their amplitudes are added) the resultant wave is 1) 2) 3) 4) ConcepTest 24.1 Superposition If waves A and B are superposed (that
More informationActivity 9.1 The Diffraction Grating
Group Number (number on Intro Optics Kit):. PHY385H1F Introductory Optics Practicals Day 9 Diffraction November 28, 2011 Facilitator Name:. RecordKeeper Name: Timekeeper:. Computer/Wikimaster:. NOTE:
More informationAP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,
More informationExperiment 11: Interference and Diffraction
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Experiment 11: Interference and Diffraction OBJECTIVES 1. To explore the diffraction of light through a variety of apertures 2. To learn
More informationTutorial 6: Solutions
Tutorial 6: Solutions 1. A stationary radiating system consists of a linear chain of parallel oscillators separated by a distance d. The phase of the oscillators varies linearly along the chain, Find the
More informationExperiment 13: Interference and Diffraction
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 OBJECTIVES Experiment 13: Interference and Diffraction 1. To explore the diffraction of light through a variety of apertures
More informationLight as a wave. VCE Physics.com. Light as a wave  1
Light as a wave Huygen s wave theory Newton s corpuscular theory Young s double slit experiment Double slit interference Diffraction Single slit interference The electromagnetic nature of light The electromagnetic
More informationChristian Huygen Light is a wave, not merely a ray As waves propagate each point on the wavefront produces new wavelets. Wave Nature of Light
Wave Nature of Light Christian Huygen Light is a wave, not merely a ray As waves propagate each point on the wavefront produces new wavelets Chapter 24 Wavelength Changes Wavelength of light changes in
More informationLecture 18: Multiple beam interference, Introduction to FabryPerot spectroscopy
Lecture 18: Multiple beam interference, Introduction to FabryPerot spectroscopy Lecture aims to explain: 1. Interference from a plane parallel plate: multiple beam interference. Experimental setup for
More informationPhysics 10. Lecture 29A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." Edith Wharton
Physics 10 Lecture 29A "There are two ways of spreading light: to be the candle or the mirror that reflects it." Edith Wharton Converging Lenses What if we wanted to use refraction to converge parallel
More information(Answers to oddnumbered Conceptual Questions can be found in the back of the book, beginning on page ANSxx.)
[Problems] Walker, Physics, 3 rd Edition Chapter 28 Conceptual Questions (Answers to oddnumbered Conceptual Questions can be found in the back of the book, beginning on page ANSxx.) 1. When two light
More informationLecture 13: Fraunhofer diffraction by a periodic array of slits
Lecture 13: Fraunhofer diffraction by a periodic array of slits Lecture aims to explain: 1. Calculation of the diffraction pattern for light diffracted by many slits 2. Properties of diffraction pattern
More information10.3 The Diffraction Grating
diffraction grating a device with a large number of equally spaced parallel slits that produces interference patterns 10.3 The Diffraction Grating It is difficult to measure the wavelength of light accurately
More informationWORLD OF LIGHT LABORATORY LAB 4 Diffraction and Interference
WORLD OF LIGHT LABORATORY LAB 4 Diffraction and Interference INTRODUCTION: Diffraction and interference are quintessential wavelike properties that essentially all waves exhibit but other things do not.
More informationDiffraction of Laser Light
Diffraction of Laser Light No Prelab Introduction The laser is a unique light source because its light is coherent and monochromatic. Coherent light is made up of waves, which are all in phase. Monochromatic
More informationWave Optics. Wave motion (1)
Wave Optics In part 1 we saw how waves can appear to move in straight lines and so can explain the world of geometrical optics In part 2 we explore phenomena where the wave nature is obvious not hidden
More informationEP225 Note No. 7 Wave Interference and Di raction
EP5 Note No. 7 Wave Interference and Di raction 7.1 Superposition of Two Waves of Equal Wavelength When two waves of equal amplitude and wavelength, but with a phase di erence are superposed, E 0 sin(k!t)
More informationPhysics 9 Fall 2009 DIFFRACTION
Physics 9 Fall 2009 NAME: TA: SECTION NUMBER: LAB PARTNERS: DIFFRACTION 1 Introduction In these experiments we will review and apply the main ideas of the interference and diffraction of light. After reviewing
More informationRutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 )
1 of 14 2/22/2016 11:28 PM Signed in as Weida Wu, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics,
More informationCh 24 Wave Optics. concept questions #8, 11 problems #1, 3, 9, 15, 19, 31, 45, 48, 53
Ch 24 Wave Optics concept questions #8, 11 problems #1, 3, 9, 15, 19, 31, 45, 48, 53 Light is a wave so interference can occur. Interference effects for light are not easy to observe because of the short
More informationPRACTICE Q6Quiz 6, Ch15.1 &15.2 Interference & Diffraction
Name: Class: Date: ID: A PRACTICE Q6Quiz 6, Ch5. &5. Interference & Diffraction Multiple Choice Identify the choice that best completes the statement or answers the question.. The trough of the sine
More informationUniversity Physics (Prof. David Flory) Chapt_36 Monday, August 06, 2007
Name: Date: 1. In an experiment to measure the wavelength of light using a double slit, it is found that the fringes are too close together to easily count them. To spread out the fringe pattern, one could:
More informationINTERFERENCE. Physics 122 June 2, 2006
Physics 122 June 2, 2006 http://www.physics.sfsu.edu/~manuals/ph122/ I. Theory INTERFERENCE This laboratory will investigate the phenomenon of interference. The interference and diffraction of light waves
More informationPHYS2090 OPTICAL PHYSICS Laboratory Fresnel Zone Plate
PHYS2090 OPTICAL PHYSICS Laboratory Fresnel Zone Plate References Hecht Optics, AddisonWesley Smith & King, Optics and Photonics: An Introduction, Wiley Higbie, Fresnel Zone Plate: Anomalous foci, American
More informationConditions for interference Young s double slit experiment Intensity distribution of the interference pattern Phasor representation Reflection and
Conditions for interference Young s double slit experiment Intensity distribution of the interference pattern Phasor representation Reflection and change of phase Interference in thin films If two waves
More informationDIFFRACTION OF LIGHT
Laboratory Exercise 4. DIFFRACTION OF LIGHT Diffraction Gratings. Determining the Wavelength of Laser Light Using a Diffraction Grating. Refraction. Observation of Atomic Spectra. Theoretical background:
More informationnot to be republished NCERT WAVE OPTICS Chapter Ten MCQ I
Chapter Ten WAVE OTICS MCQ I 10.1 Consider a light beam incident from air to a glass slab at Brewster s angle as shown in Fig. 10.1. A polaroid is placed in the path of the emergent ray at point and rotated
More informationDiffraction and Interference LBS 272L
Diffraction and Interference LBS 272L In this lab you ll be using a laser. Make sure NEVER to look directly into the laser beam. It can damage your eyes. Before this lab Read the LBS272 lecture material
More informationDiffraction and Young s Single Slit Experiment
Diffraction and Young s Single Slit Experiment Developers AB Overby Objectives Preparation Background The objectives of this experiment are to observe Fraunhofer, or farfield, diffraction through a single
More informationInterference and the wave nature of light
Interference and the wave nature of light Fig 27.2 Sound waves combining result in constructive and destructive interference, and Light waves (electromagnetic waves) do, too! The waves emitted by source
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two radio antennas are 120 m apart on a northsouth line. The two antennas radiate in
More informationHW2 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.
HW2 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 15.P.041 The wave function for a harmonic wave on a string
More informationOptical Interference and Diffraction Laboratory: a Practical Guide
Optical Interference and Diffraction Laboratory: a Practical Guide Authors: Amparo Pons, Universitat de València, Dept. of Optics, Spain amparo.ponsmarti@uv.es Juan C. Barreiro, Universitat de València,
More informationEXPERIMENT 4. Microwave Experiments. Introduction. Experimental Procedure. Part 1 : Double Slit
EXPERIMENT 4 Microwave Experiments Introduction Microwaves are electromagnetic radiation in the centimeter range of wavelengths. As such, they, like light, will exhibit typical wave properties like interference
More informationLaboratory 6: Diffraction and Interference
Laboratory 6: Diffraction and Interference Renjie Li ID: 804291044 Physics 4BL Lab 8 May 20th 2015 Partner: Christine Truong TA: Eddie S. 1 Introduction In this lab, we will be performing experiments that
More informationIntensity of Interference Patterns
Intensity of Interference Patterns Let consider the E fields coming from the double slits: r r 2 1 E field from S 2 has a phase lag due to the extra path difference, r 2  r 1. S 2 S 1 E () t E cos( t
More information2. Do Not use the laser without getting instructions from the demonstrator.
EXPERIMENT 3 Diffraction Pattern Measurements using a Laser Laser Safety The Helium Neon lasers used in this experiment and are of low power (0.5 milliwatts) but the narrow beam of light is still of high
More informationINTERFERENCE and DIFFRACTION
Course and Section Date Names INTERFERENCE and DIFFRACTION Short description: In this experiment you will use interference effects to investigate the wave nature of light. In particular, you will measure
More informationDiffraction and the Wavelength of Light
Diffraction and the Wavelength of Light Goal: To use a diffraction grating to measure the wavelength of light from various sources and to determine the track spacing on a compact disc. Lab Preparation
More informationInterference and Diffraction of EM waves
Interference and Diffraction of EM waves Maxwell Equations in General Form Differential form Integral Form D v B E H 0 B t D J t L L DdS s s E dl H dl B ds s v J dv 0 t v s B ds D ds t Gauss s Law for
More informationInterference. Physics 102 Workshop #3. General Instructions
Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by
More information3.5.4.2 One example: Michelson interferometer
3.5.4.2 One example: Michelson interferometer mirror 1 mirror 2 light source 1 2 3 beam splitter 4 object (n object ) interference pattern we either observe fringes of same thickness (parallel light) or
More informationPart I: Measuring the Wavelength of Light
Physics S1ab Lab 10: Wave Optics Summer 2007 Introduction Preparation: Before coming to lab, read the lab handout and all course required reading in Giancoli through Chapter 25. Be sure to bring to lab:
More informationSection 1 Interference: Practice Problems
Section 1 Interference: Practice Problems 1. Violet light falls on two slits separated by 1.90 10 5 m. A firstorder bright band appears 13.2 mm from the central bright band on a screen 0.600 m from the
More informationChapter 37  Interference and Diffraction. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 37  Interference and Diffraction A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should
More informationLecture 12: Fraunhofer diffraction by a single slit
Lecture 12: Fraunhofer diffraction y a single slit Lecture aims to explain: 1. Diffraction prolem asics (reminder) 2. Calculation of the diffraction integral for a long slit 3. Diffraction pattern produced
More informationPhysics 126 Practice Exam #1 Chapters 25, 26, 27 Professor Siegel
Physics 126 Practice Exam #1 Chapters 25, 26, 27 Professor Siegel Name: Lab Day: 1. Which one of the following phrases most accurately describes the term wave front? A) the surface of a plane mirror B)
More informationPhysics 122 Class #10 Outline. Announcements Interference of light waves Double slit Diffraction Grating Single slit Interferometer
Physics 122 Class #10 Outline Announcements Interference of light waves Double slit Diffraction Grating Single slit Interferometer Reading Next Week ALL of Chapter 25 It is key to rest of course. Main
More informationExperiments with Diffraction
Experiments with iffraction Abbie Tippie (tippie@optics.rochester.edu) and Tammy Lee (talee@optics.rochester.edu) What is diffraction? When parallel waves of light are obstructed by a very small object
More informationTWO AND MULTIPLE SLIT INTERFERENCE
TWO AND MULTIPLE SLIT INTERFERENCE Double Slit and Diffraction Grating. THEORY: L P L+nλ Light d θ L 0 C nλ Wall Screen P Figure 1 If plane waves of light fall at normal incidence on an opaque wall containing
More informationCHAPTER 35. (a) 300 nm (b) δ = 135 o
CHAPTER 35 1* When destructive interference occurs, what happens to the energy in the light waves? The energy is distributed nonuniformly in space; in some regions the energy is below average (destructive
More informationPhysics 41 Chapter 38 HW Key
Physics 41 Chapter 38 HW Key 1. Helium neon laser light (63..8 nm) is sent through a 0.300mmwide single slit. What is the width of the central imum on a screen 1.00 m from the slit? 7 6.38 10 sin θ.11
More informationPhysics 116. Nov 28, Session 35 Review of Chapters R. J. Wilkes
Physics 116 Session 35 Review of Chapters 2830 Nov 28, 2011 R. J. Wilkes Email: ph116@u.washington.edu Announcements Exam 3 tomorrow: Material covered in class from Chapters 28, 29, 30 Usual exam rules
More informationPHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 12. Physical Optics: Diffraction, Interference, and Polarization of Light
PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 12 Physical Optics: Diffraction, Interference, and Polarization of Light Equipment: Supplies: Laser, photometer with optic probe, optical bench, and angular
More informationEXPERIMENT 9 Diffraction Gratings
EXPERIMENT 9 Diffraction Gratings 1. How a Diffraction Grating works? Diffraction gratings are optical components with a period modulation on its surface. Either the transmission (or the phase) changes
More informationPhysics 202 Spring 2010 Practice Questions for Chapters 3133
Physics 202 Spring 2010 Practice Questions for Chapters 3133 1. Mission Control sends a brief wakeup call to astronauts in a distant spaceship. Five seconds after the call is sent, Mission Control hears
More informationLAUE DIFFRACTION INTRODUCTION CHARACTERISTICS X RAYS BREMSSTRAHLUNG
LAUE DIFFRACTION INTRODUCTION Xrays are electromagnetic radiations that originate outside the nucleus. There are two major processes for Xray production which are quite different and which lead to different
More informationAnswer: b. Answer: a. Answer: d
Practice Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 105 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes
More information