TOPOGRAPHIC MAPS. 2/17/2005 2:03 PM

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "TOPOGRAPHIC MAPS. 2/17/2005 2:03 PM"

Transcription

1 New Page 2 of 3 2/17/2005 2:03 PM TOPOGRAPHIC MAPS Topographic maps are important tools for studying the earth surface, not only for geologists, but for engineers, foresters, land use planners, hikers,... virtually anyone who travels outdoors. Topographic maps summarize the three dimensional topography of the earth's surface on two dimensional pieces of paper (or computer screens). Because understanding the shape of the earth's surface is vital for studying the processes that shape the earth, the web pages below will introduce you to the basics of reading topographic maps and some of the geologic features that can be recognized on topographic maps. These web pages are designed to be an introduction to topographic maps for geology students. Additional information on topographic maps can be found at the USGS web site and the Topozone web site. Lets use area around Squaretop Mountain (shown below) to illustrates the power of topographic maps. Squaretop Mountain is located in the Wind River Mountains of Wyoming. The photo of Squaretop Mountain (taken looking south) shows some of the important topographic features of the mountain. From the photo we can see the top of Squaretop Mountain is capped by a relatively wide flat area (which gives the mountain its name). This area is not horizontal, but slopes down to the west (to the right in the photo). Surrounding this flat area are extremely steep slopes (cliffs). At the base of these cliffs the slope decreases (though it is still very steep). (Topographic maps on these web pages are provided by TopoZone, a web site that gives online access to topographic maps from throughout the United States. Click on the "Powered by

2 New Page 2 of 3 2/17/2005 2:03 PM TopoZone" icon to go to this site. A skilled reader (well not really even that skilled) of topographic maps could make the same observation from the map without even seeing the photo. The slightly sloping top, the cliffs, and the lesser slopes on this mountain are all evident on the topographic map. By the time you have gone through these web pages you should be able to read the topographic well enough to recognize topographic features of Squaretop Mountain. But if we can determine the same information from the photograph why do we need to worry about learning to read topographic maps? Well, first we may not always have a photograph, or we may be looking at areas where the topography will not show up well in a photograph. Topographic maps are much more widely available. Second the topographic map provides more information. From our map of Squaretop Mountain we can measure the size of the top part of the mountain (just under 1 km x 0.5 km). We can determine the elevation of the submit of Squaretop Mountain (11595 ft) and estimate its relief (height above the valley floor, ~3500 ft). We can also study the topography from parts of the mountain that can't be seen in the photograph. For example from the map we can see that the slopes that are not as steep on the south side of the mountain (the side that is behind the mountain in the photograph), information that might prove very useful if we were trying to climb a mountain. None of this information is available from the photograph. Instead it is the topographic map that provides us with the detailed information we often seek as geologist. Follow the links below learn how to read topographic maps. READING TOPOGRAPHIC MAPS INTERPRETING GEOLOGY FROM TOPOGRAPHIC MAPS I. What is a Topographic Map? X. Fluvial Features II. Contour Lines XI. Glacial Features: III. Determining Contour Intervals Alpine IV. Reading Elevations Continental V. Gradient XII. Structural Features VI. Map Scale

3 WHAT IS A TOPOGRAPHIC MAP 1 of 3 2/17/ :19 PM WHAT IS A TOPOGRAPHIC MAP? A topographic map is a map that shows topography and features found on the earth's surface. Like any map it uses symbols to represent these features. Lets look a section of a topographic map showing the area around Spruce Knob in West Virginia. Spruce Knob is the highest point in West Virginia and, weather permitting, an occasional stop on the Historical Geology (GY 115) field trip. This section of a topographic map illustrates many of the common symbols used on topo maps. The map is repeated below with many of these symbols labeled. Some of the more common and important topographic map symbols have been pointed out by the purple arrows. More details are given in the text below.

4 MAP SYMBOLS 2 of 3 2/17/ :19 PM First lets recognize that map symbols are color coded. Symbols in green indicate vegetation, symbols in blue represent water, brown is used for topographic symbols, man made features are shown in black or red. Lets look at the symbols labeled in the map above: Contour Lines Contour lines are lines that indicate elevation. These are the lines that show the topography on the map. They are discussed in more detail in the next section. Contour lines are shown in brown. Two types of contour lines are shown. Regular contour lines are the thinner brown lines, index contour lines are the thicker brown lines. The numbers written in brown along the contour lines indicate elevation of the line. For this map elevation is in feet above sea level. Forests and Clearings Forested areas are represented by areas shaded green; for Spruce Knob this means most of the area. Areas that are not forested are left unshaded (white). Note that not all topographic maps show forests. Also note that this information is not always up to date or accurate. I have struggled to walk across densely wooded areas in places that have been mapped as "clearings". Streams Streams and other water features are shown in blue. Roads and Trails Man made features are shown in black or red. Trails are represented as thin single dashed lines. Roads are represented as double lines or thicker red lines. A series of symbols are used roads to indicate road quality from double dashed lines for dirt roads to thick red lines for major highways. In the case of the Spruce Knob area we have two types of road, the thin double black lines and the thin dashed double lines. Buildings Like other man made features buildings are shown in black. Solid squares usually indicate buildings that would be inhabited by people (i.e. a house), hollow shapes usually indicate uninhabited buildings (for example, a barn) (Note this may not hold for maps in the future because it is not possible to determine what a building is used for from the aerial photos used to make the maps). Other man made features shown in black on our example include the lookout tower on at the summit of Spruce Knob and the radio tower. Though not seen on our map, larger buildings, like factories, are shown by larger shapes that outline shape of the building, and cities with closely spaced houses are shaded pink instead of showing individual houses.

5 WHAT IS A TOPOGRAPHIC MAP 3 of 3 2/17/ :19 PM Boundaries Even though these are not physical features you can see on the ground, boundaries are shown on topographic maps by black or red lines. Boundaries are usually represented by broken lines (combinations of dots and dashes of different sizes). Different patterns are used for different types of boundaries (i.e., state, county, city, etc). On our example the boundary that is shown marks the edge of a National Forest. Bench Marks Bench marks indicate places where the elevation has actually been surveyed. These locations are indicated on the map by a triangle if a marker has been placed in the ground, or an "x" if not marker was left behind. Near either symbol are the letters "BM" and a number which represents the elevation of that particular location. Bench marks are shown in black on topographic maps. There are many different type map symbols used on topographic maps. Some are very common, some very rare. For a more complete list of map symbols visit the USGS web site using the link below. Click here for more information on MAP SYMBOLS from the United States Geological Survey (USGS) Web Site Back to Topographic Map Page mcnaught

6 CONTOUR LINES 1 of 5 2/17/ :20 PM BASICS CONTOUR LINES Contour lines are lines drawn on a map connecting points of equal elevation. If you walk along a contour line you neither gain or lose elevation. Picture walking along a beach exactly where the water meets the land (ignoring tides and waves for this example). The water surface marks an elevation we call sea level, or zero. As you walk along the shore your elevation will remain the same, you will be following a contour line. If you stray from the shoreline and start walking into the ocean, the elevation of the ground (in this case the seafloor) is below sea level. If you stray the other direction and walk up the beach your elevation will be above sea level (see diagram at right). The contour line represented by the shoreline separates areas that have elevations above sea level from those that have elevations below sea level. We refer to contour lines in terms of their elevation above or below sea level. In this example the shoreline would be the zero contour line ( it could be 0 ft., 0 m, or something else depending on the units we were using for elevation). Contour lines are useful because they allow us to show the shape of the land surface (topography) on a map. The two diagrams below illustrate the same island. The diagram on the left is a view from the side (cross profile view) such as you would see from a ship offshore. The diagram at right is a view from above (map view) such as you would see from an airplane flying over the island. The shape of the island is shown by location shoreline on the map. Remember this shore line is a contour line. It separates areas that are above sea level from those that are below sea level. The shoreline itself is right at zero so we will call it the 0 ft. contour line (we could use m.,cm., in., or any other measurement for elevation). The shape of the island is more complicated than the outline of the shoreline shown on the map above. From the profile it is clear that the islands topography varies (that is some parts are higher than others). This is not obvious on map with just one contour line. But contour lines can have elevations other than sea level. We can picture this by pretending that we can change the depth of the ocean. The diagram below shows an island that is getting flooded as we raise the water level 10 ft above the original sea level.

7 CONTOUR LINES The new island is obviously smaller than the original island. All of the land that was less than 10 ft. above the original sea level is now under water. Only land where the elevation was greater than 10 ft. above sea level remains out of the water. The new shoreline of the island is a contour line because all of the points along this line have the same elevation, but the elevation of this contour line is 10 ft above the elevation of the original shoreline. We repeat this processes in the two diagrams below. By raising water levels to 20 ft and 30 ft above the original see level we can find the location of the 20ft and 30 ft contour lines. Notice our islands gets smaller and smaller. Fortunately we do not really have to flood the world to make contour lines. Unlike shorelines, contour lines are imaginary. They just exist on maps. If we take each of the shorelines from the maps above and draw them on the same map we will get a topographic map (see map below). Taken all together the contour lines supply us with much information on the topography of the island. From the map (and the profile) we can see that this island has two "high" points. The highest point is above 30 ft elevation (inside the 30 ft contour line). The second high point is above 20 ft in elevation, but does not reach 30 ft. These high points are at the ends of a ridge that runs the length of the island where elevations are above 10 ft. Lower elevations, between the 10 ft contour and sea level surround this ridge. With practice we can picture topography by looking at the map even without the cross profile. That is the power of topographic maps. READING ELEVATIONS A common use for a topographic map is to determine the elevation at a specified locality. The map below is an enlargement of the map of the island from above. Each of the letters from A to E represent locations for which we wish to determine elevation. Use the map and determine (or estimate) the elevation of each of the 5 points. (Assume elevations are given in feet)

8 CONTOUR LINES 3 of 5 2/17/ :20 PM Point A = 0 ft Point A sits right on the 0 ft contour line. Since all points on this line have an elevation of 0 ft, the elevation of point A is zero. Point B = 10 ft. Point B sits right on the 10 ft contour line. Since all points on this line have an elevation of 10 ft, the elevation of point B is 10 ft. Point C ~ 15 ft. Point C does not sit directly on a contour line so we can not determine the elevation precisely. We do know that point C is between the 10ft and 20 ft contour lines so its elevation must be greater than 10 ft and less than 20 ft. Because point C is midway between these contour lines we can estimate the elevation is about 15 feet (Note this assumes that the slope is constant between the two contour lines, this may not be the case). Point D ~ 25 ft. We are even less sure of the elevation of point D than point C. Point D is inside the 20 ft. contour line indicating its elevation is above 20 ft. Its elevation has to be less than 30 ft. because there is no 30 ft. contour line shown. But how much less? There is no way to tell. The elevation could be 21 ft, or it could be 29 ft. There is now way to tell from the map. (An eight foot difference in elevation doesn't seem like much, but remember these numbers are just an example. If the contour lines were spaced at 100 ft intervals instead of 10 ft., the difference would be a more significant 80 ft.) Point E ~ 8 ft. Just as with point C above, we need to estimate the elevation of point E somewhere between the 0 ft and 10 ft contour lines it lies in between. Because this point is closer to the 10 ft line than the 0 ft. line we estimate an elevation closer to 10. In this case 8 ft. seems reasonable. Again this estimation makes the assumption of a constant slope between these two contour lines. CONTOUR INTERVAL and INDEX CONTOURS Contour Intervals Contour lines can be drawn for any elevation, but to simplify things only lines for certain elevations are drawn on a topographic map. These elevations a chosen to be evenly spaced vertically. This vertical spacing is referred to as the contour interval. For example the maps above used a 10 ft contour interval. Each the contour lines was a multiple of 10 ft.( i.e. 0, 10, 20, 30). Other common intervals seen on topographic maps are 20 ft (0, 20, 40, 60, etc), 40 ft (0, 40, 80, 120, etc),

9 CONTOUR LINES 4 of 5 2/17/ :20 PM 80 ft (0, 80, 160, 220, etc), and 100ft (0, 100, 200, 300, etc). The contour interval chosen for a map depends on the topography in the mapped area. In areas with high relief the contour interval is usually larger to prevent the map from having too many contour lines, which would makes the map difficult to read. The contour interval is constant for each map. It will be noted on the margin of the map. You can also determine the contour interval by looking at how many contour lines are between labeled contours. Index Contours Unlike the simple topographic map used above, real topographic maps have many contour lines. It is not possible to label the elevation of each contour line. To make the map easier to read every fifth contour line vertically is an index contour. Index contours are shown by darker brown lines on the map. These are the contour lines that are usually labeled. The example at right is a section of a topographic map. The brown lines are the contour lines. The thin lines are the normal contours, the thick brown lines are the index contours. Notice that elevations are only marked on the thick lines. Because we only have a piece of the topographic map we can not look at the margin to find the contour interval. But since we know the elevation of the two index contours we can calculate the interval ourselves. The difference in elevation between the two index contours ( ) is 100. We cross five lines as we go from the 700 line to the 800 line (note we don't include the line we start on but we do include the line we finish on). Therefore is we divide the elevation difference (100) by the number of lines (5) we will get the contour interval. In this case it is 20. We can check ourselves by counting up by 20 for each contour from the 700 line. We should reach 800 when we cross the 800 line. One piece of important information we can not determine from the contour lines on this map is the units of elevation. Is the elevation in feet, meters, or something else. There is a big difference between an elevation change of 100 ft. and 100 m ( 328 ft). The units of the contour lines can be found in the margin of the map. Most topographic maps in the United States use feet for elevation, but it is important to check because some do you meters. Once we know how to determine the elevation of the unmarked contour lines we should be able determine or at least estimate the elevation of any point on the map. Using the map below estimate the elevation of the points marked with letters

10 CONTOUR LINES 5 of 5 2/17/ :20 PM Point A = 700 An easy one. Just follow along the index contour from point A until you find a marked elevation. On real maps this may not be this easy. you may have to follow the index contour a long distance to find a label. Point B = 740 This contour line is not labeled. But we can see it is between the 700 and 800 contour line. From above we know the contour interval is 20 so if we count up two contour lines (40) from 700 we reach 740. Point C ~ 770 Point c is not directly on a contour line. But by counting up from 700 we can see it lies between the 760 and 780 contour lines. Because it is in the middle of the two we can estimate its elevation as 770. Point D = 820 Point D is outside the interval between the two measured contours. While it may seem obvious that it is 20 above the 800 contour, how do we know the slope hasn't changed and the elevation has started to back down? We can tell because if the slope stated back down we would need to repeat the 800 contour. Because the contour under point D is not an index contour it can not be the 800 contour, so must be 820. Back to Topographic Map Page mcnaught

11 DETERMINING CONTOUR INTERVAL 1 of 1 2/17/ :20 PM DETERMINING CONTOUR INTERVALS Most contour lines on topographic maps are not labeled with elevations. Instead the reader of the map needs to be able to figure out the elevation by using the labeled contour lines and the contour interval (see previous page for explanation). On most maps determining contour interval is easy, just look in the margin of the map and find where the contour interval is printed (i.e. Contour Interval 20 ft). For the maps on this web site, however, the contour interval is not listed because we only parts of topographic maps, not the whole map which would include the margin notes. However we usually don't need to be given the contour interval. We can calculated from the labeled contours on the map as is done below. This method works if we don't have any topographical complications, areas where the elevation is not consistently increasing or consistently decreasing.. With practice these areas can usually be easily recognized. Also this method does not tell the units for the contour interval. In the United States most topographic maps, but not all, use feet for elevation, however it is best to check the margin of the map to be sure. Back to Topographic Map Page mcnaught

12 READING ELEVATIONS 1 of 2 2/17/ :21 PM READING ELEVATIONS Lets go back to the Spruce Knob area and practice reading elevations. On the map below are 10 squares labeled A through J. Estimate the elevation for the point marked by each square (make sure to use the point under the square, not under the letter). Compare your answers to the answers below. Recall that we determined the contour interval on the previous page. Elevation is in feet ELEVATION of Points: A ft Point A sits right on a labeled index contour. Just follow along the contour line until you reach the label B ft Point B sits on a contour line, but it is not an index contour and its elevation is not labeled. first lets look for a nearby index contour. There is one to the south and east of point B. This contour is labeled as 4600 ft. Next we need to determine if point B is above or below this index contour. Notice that is we keep going to the southeast we find contour lines of lower elevations (i.e ft.). This means as we move away from 4600 ft. contour line toward point B we are going up hill. so point B is above 4600 ft. Count the contour lines from 4600 ft to point B, there are three. Each contour line is 40 ft. (from our previous discussion of the contour interval) so point B is 120 ft. above 4600 ft, that is it is 4720 ft. C ft Point C sits right on a labeled bench mark so its elevation is already written on the map. D ft. Point D is on an unlabeled contour line. From our discussion of point B above, you can see that point D is on the slope below Spruce Knob. Just above point D is an index contour. If we trace along this contour line we see its elevation is 4400 ft. Since point D is the next contour line down hill it is 40 ft lower. E 3800 ft. Point E is on an index contour. Follow along this contour line until you come to the 3800 label. F. ~4780 ft. Point E does not sit on a contour line so we can only estimate its elevation. The point is circled by several contour lines indicating it is a hill top (see the later discussion of depression contours to see why we know this is a hill). First lets figure out the elevation of the contour line that circles point F. Starting from the nearest index contour line (4600 ft) we count up by 40 for the four contour lines. This gives us 4760 ft (4600ft + 40 ft. x 4). Because point F is inside this contour line it must have an elevation above 4760 ft., but its elevation

13 READING ELEVATIONS 2 of 2 2/17/ :21 PM must be less than 4800 ft, otherwise there would be a 4800 contour line, which is not there. We don't really know the elevation, just that it is between 4760ft. and 4800ft. G ft. In order to determine the elevation of point G we first must recognize it is on the western slope of Spruce Knob. Looking at the index contours we see that point G is between 4400 ft and 4600 ft contours. (It is a good idea to check the elevations by counting by 40 for each of the contour lines between 4400 and If the numbers do not work out it may mean that the contour lines, and therefore the topography, are more complicated than a simple slope. That is not the case here.) Counting up two contour lines from 4400 ft. gives our elevation of 4080 ft. H. ~4100 ft. Point H is circled by a contour line indicating it is the top of a small hill. Its elevation is determined the same way we determine the elevation of Point F. Find the index contour below point F (4000 ft) and count up for the two contour lines (4080 ft). Point F is above this elevation but below 4120 ft because this contour line is not present. I ~3980 ft. Point I is also not on a contour line. It is also not on the top of a hill because a contour line does not encircle it. Instead it is in between to contour lines on the side of a hill. One of the contour lines is the 4000 ft index contour. The other contour is 3960 ft contour (40 ft lower, you can tell it is lower because you are moving toward the stream which is in the bottom of the valley). The elevation of point I is between 3960ft and 4000ft. since point I is midway between these two contours we can estimate its elevation as midway between 3960 and J ~ 3820 ft. The elevation of point J is found the same way as the elevation of point I. Back to Topographic Map Page mcnaught

14 Gradient 1 of 2 2/17/ :21 PM Gradient (Slope) Topographic maps are not just used for determining elevation, they can also be used to help visualize topography. The key is to study the pattern of the contour lines, not just the elevation they represent. One of the most basic topographic observation that can be made is the gradient (or slope) of the ground surface. High (or steep) gradients occur in areas where there is a large change in elevation over a short distance. Low (or gentle) gradients occur where there is little change in elevation over he same distance. Gradients are obviously relative. What would be considered steep in some areas (like Ohio) might be considered gentle in another (like Montana). however we can still compare gradients between different parts of a map. On a topographic map the amount of elevation change is related to the number of contour lines. Using the same contour interval the more contour lines over the same distance indicates a steeper slope. As a result areas of a map where the contour lines are close together indicate steeper slopes. Areas with widely spaced contour lines are gentle slopes. The map below examples of areas with steep and gentle gradient. Note the difference in contour line spacing between the two areas. Compare the slope of the west side of Spruce Knob with the slope of the east side. Which side is steeper?...

15 Gradient 2 of 2 2/17/ :21 PM...The east side. Notice the spacing between the contour lines. Contour lines on the east side of Spruce Knob are closer together than the contour lines on the west side indicating steeper slopes. Back to Topographic Map Page

16 Map Scale 1 of 3 2/17/ :19 PM Map Scale Topographic maps are drawn to scale. This means that distances on a map are proportional to distances on the ground. For example, if two cities 20 miles apart are shown 2 inches apart on a map, then any other locations that are two inches apart on the map are also 20 miles apart. This proportion, the map scale, is constant for the map so it holds for any points on the map. In our example the proportion between equivalent distances on the map and on the ground is expressed as a scale of 1 inch = 10 miles, that is 1 inch on the map is equal to 10 miles on the ground. Map scales can be expressed in three forms. We will look at all three. VERBAL SCALE The simplest form of map scale is a VERBAL SCALE. A verbal scale just states what distance on a map is equal to what distance on the ground, i.e. 1 inch = 10 miles from our example above. Though verbal scales are easy to understand, you usually will not find them printed on topographic maps. Instead our second type of scale is used. FRACTIONAL SCALE Fractional scales are written as fractions (1/62500) or as ratios (1:62500). Unlike verbal scales, fractional scales do not have units. Instead it is up to the map reader to provide his/her own units. Allowing the reader of the map to choose his/her own units provides more flexibility but it also requires a little more work. Basically the fractional scale needs to turned in to a verbal scale to make it useful. First lets look at what a fractional scale means. A fractional scale is just the ratio of map distance to the equivalent distance on the ground using the same units for both. It is very important to remember when we start changing a fractional scale to a verbal scale the both map and ground units start the same. The smaller number of the fractional scale is the distance on the map. The larger number in the scale is the distance on the ground. So if we take our example scale (1:62500) we can choose units we want to measure distance in. Lets chose inches. We can rewrite our fractional scale as a verbal scale: 1 inch on the map = inches on the ground. We can do the same thing used with any unit of length. Some examples of verbal scales produced using various units from a 1:62500 fractional scale are given in the table: UNITS inches feet cm VERBAL SCALE 1 inch on the map = inches on the ground. 1 foot on the map = feet on the ground 1 cm on the map = cm on the ground

17 Map Scale 2 of 3 2/17/ :19 PM m 1 m on the map = m on the ground Notice the pattern. The numbers are the same, only the units are changed. Note that the same units are used on both sides of each of the verbal scale. While these verbal scales are perfectly accurate, they are not very convenient. While we may want to measure distance on a map in inches, we rarely want to know the distance on the ground in inches. If someone asks you the distance from Cleveland to Columbus they do not want the answer in inches. Instead we need to convert our verbal scale into more useful units. Lets take our example (1 inch on the map = inches on the ground). Measuring map distance in inches is OK, but we need to come up with a better unit for measuring distance on the ground. Lets change inches into the equivalent in feet (I choose feet because I remember that there are 12 inches in 1 foot). If we multiple inches by the fraction (1 ft / 12 in) inches in the numerator and denominator cancel leaving an answer in feet. Remember, since 1 ft = 12 inches, multiplying by (1 ft / 12 in) is the same as multiplying by 1. The result of this multiplication gives: inches x (1 ft / 12 in)= ft So we can rewrite our verbal scale as 1 inch on the map = feet on the ground. This is also a perfectly valid verbal scale, but what if we wanted to know the distance in miles instead of feet. We just need to change feet into miles (we could change inches into miles but I never remember how may inches are in 1 mile). Knowing that there are 5280 feet in a mile: ft x (1 mi/5280 ft) = mi. So our verbal scale would be: 1 inch on the map = miles on the ground. For most practical purposes we can round this off to 1 inch on the map ~ 1mile on the ground, making this scale much easier to deal with. We can do the same type of conversions using metric units. One of the ways to express a fractional scale of 1:62500 as a verbal scale using metric units is 1 cm on the map = cm on the ground (see table above). As with inches, we really do not want ground distances in cm's. Instead we can convert them into more convent units. Lets convert our ground distance from cm's into meters. Recall that there are 100 cm in a meter. So: cm x (1m / 100cm) = 625 m. So we can write a verbal scale of 1 cm on the map = 625 m on the ground. What if we want our distance in kilometers (km). We just change 625 m into km by multiplying by (1km/1000m). The result is a verbal scale of 1 cm on the map = km on the ground. So for any fractional scale we can choose the same units to assign to both sides and then convert those units as we see fit to produce a verbal scale. Given all of the possible map scales and all of the possible combination of units that can be used it may seem that scales

18 Map Scale 3 of 3 2/17/ :19 PM on topographic maps a very complicated. In fact there are only a few scales commonly used, and each is chosen to allow at least one simple verbal scale. The most common fractional scales on United States topographic maps and equivalent verbal scales are given in the table below. FRACTIONAL SCALE SIMPLE VERBAL SCALE 1: in = ft 1: in ~ 1 mi 1: cm = 1 km 1: in ~ 2 mi 1: in ~ 4 mi After all this why would anyone in their write mind want to deal with fractional scales. Well, first as the table above shows its not that bad, and second, they allow us to get the most precise measurements off a topographic map. If we are not that concern about being precise we can use the third type of scale, discussed below. BAR SCALE A bar scale is just a line drawn on a map of known ground length. There are usually distances marks along the line. Bar scales allow for quick visual estimation of distance. If more precision is needed just lay the edge of a piece of paper between points on the map you want to know the distance between and mark the points. Shift the paper edge to the bar scale and use the scale like a ruler to measure the map distance. Bar scales are easy to use, but there is one caution. Look at the typical bar scale drawn below. Note that the left end of the bar is not zero. The total length of this bar is FIVE miles, not four miles. A common error with bar scales is to treat the left end of the line as zero and treat the whole bar as five miles long. Pay attention to where the zero point on the bar actually is when you measure with a bar scale. In addition to their ease of use, there is one other advantage of a bar scale. If a map is being enlarged or reduced, a bar scale will remain valid if it is enlarged and reduced by the same amount. Fractional and verbal scales will not be valid (unless they are adjusted for the enlargement or reduction, more fun calculations we will not worry about). This is a problem with the maps you are looking at on this web site. The actual scale of the map will vary depending on your computer monitor and its setting. For the maps on this site only bar scales are included since the size of the bar will also change with the size of the map. Back to Topographic Map Page mcnaught

19 Latitude and Longitude 1 of 3 2/17/ :18 PM Latitude and Longitude It is important when using topographic maps to have some way to express location. You may want to tell someone where you are (i.e. help we are sinking at this location), or where to go (meet me at this location), or even just what map to look at (look at the map showing this location). In each case you need to be able to express your location as precisely as possible. There are many systems for expressing location. We will start by looking at one you are already familiar with: latitude and longitude. Latitude and longitude lines form a grid on the earths surface. Latitude lines run east to west, longitude lines run north to south. Latitude lines run parallel to the equator and measure the distance north or south of the equator. Values for latitude range from 0 at the equator to 90 N or 90 S at the poles. Longitude lines run parallel to the Prime Meridian (arbitrarily set to run through Greenwich, England) and measure distance east and west of this line. Values of longitude range from zero degrees at the Prime Meridian to 180 E or 180 W. The basic unit of latitude and longitude is the degree ( ), but degrees are a large unit so we often have to deal with subdivisions of a degree. Sometimes we just use a decimal point, such as N. This format referred to as decimal degrees. Decimal degrees are often found as an option on Global Position Systems (GPS) or with online topographic maps, but decimal degrees are not used on printed maps. On these topographic maps the latitude and longitude units are expressed in degrees, minutes, and seconds. Each degree is subdivided into 60 minutes('). Each minute is divided into 60 seconds(''). Note the similarity to units of time which makes these relationships easy to remember. If we are interested in a general location we may just use degrees. For more precision we specify minutes, or even seconds. Note that we always need to specify the larger unit. You can't specify your latitude or longitude with just minutes or seconds. A coordinate such as 25' is meaningless unless the degrees are also given, such as 45 25'. North-south running lines of longitude, and east west running lines of latitude, combine to form a grid on the earth surface. This grid is used to define the boarders of topographic maps. Each rectangle in the grid (like the one shown in red) would represent topographic map covering a certain area, referred to as a quadrangle. Each quadrangle has a name based on a feature found within its boarder. For example the Alliance quadrangle contains the city of Alliance, Ohio.

20 Latitude and Longitude 2 of 3 2/17/ :18 PM The area covered by the quadrangle depends on the spacing of the latitude and longitude lines used in the grid. For maps of roughly the same size closer spaced lines produce maps that cover less area, but show more detail. Lines that are spaced further apart produce maps that cover much larger areas, but are not as detailed. Quadrangles are often referred to by the spacing of these lines. For example we distinguish 7½ minute quadrangles, that cover an area of 7½ minutes of latitude by 7½ minutes longitude, from 15 minute quadrangles, which cover an area of 15 minutes latitude by 15 minutes longitude. For standard topographic maps each type of quadrangle is associated with a specific map scale as shown in the table below. Quadrangle Type Coverage (Latitude x Longitude) Common Scale 7½ minute * 7½' by 7½' 1: minute 15' x 15' 1: minute 30' x 30' 1: minute 60' x 60' (or 1 x 1 ) 1: /2 degree by 1 degree * 30' x 60' (or ½ x 1 ) 1: degree by 2 degree * 1 x 2 1: * Maps commonly available in continental U.S. Other scales found on older maps, though 15' maps are still used for Alaska. Lets look at how we can determine location in terms of latitude and longitude from a topographic map. The diagram below is a very simplified version of a topographic map. While no features are shown on the map, the marking for latitude and longitude found in the margins of topographic maps are shown. First lets determine what the numbers on the map mean. The numbers on the left and right side of the map are latitude. (As always we are assuming that north is to the top of the screen). The numbers across the top and bottom of the map are longitude. Lets determine what type of quadrangle this map represents. Longitude on the left of the map is 118, longitude on the right side of the map is '. The difference between these two is 15'. Latitude of the top of the map is 40 30' and the latitude of the bottom of the map is 40 15'. The difference between these two is also 15'. This map, which covers an area that is 15' x 15' would be referred to as a 15 minute map (see table above). Notice that latitude and longitude is only fully written in the corners of the map. Along the edges of the map only the minutes are written. The map reader must

21 Latitude and Longitude 3 of 3 2/17/ :18 PM realize that 20' latitude on this map is actually 40 20', because 20' lies in between 40 15' and 40 30'. We can also use latitude and longitude to give the location of points on a map. Estimate the location of each of the red letters on the map in terms of latitude and longitude. The answers are below. POINT Latitude Longitude Explanation A 40 30' N 118 W B 40 25' N ' W Point A is in the upper left corner of map so its coordinates are the printed coordinates of this corner. The one thing that needs to be added are the direction notations of each coordinate. They are not printed on the map because it is assumed you can tell what hemisphere you are in. When you are asked for latitude and longitude you must add these letters. It is easy to tell where you are by which direction the numbers for latitude and longitude increase. Latitude increase going north on this map so we are in the northern hemisphere. Longitude increases going to the west, so this map is located west of the Prime Meridian. To determine the location of point B we need to read across to the side of the map (to determine latitude) and up to the top of the map to determine longitude. Point B lines up with labeled tick marks labeled 25' and 55', but we know these numbers are incomplete. looking at the corner of the map we see that the latitude is 40 25' N (north because of same argument for point A) and the longitude is ' W. C 40 20' N ' W Follow the same procedure as point B above. D 40 27' 30" N ' 30" W E 40 16' N ' 30" W Point D does not line up directly with tick marks. Instead we need to estimate its location. Point D looks like it is half way between the 25' and 30' marks for latitude and half way between the 45' and 50' marks for longitude. Half way for each of these is 27'30" and 47'30". Remember one half a minute is 30 seconds. Adding the remaining parts of the coordinates as we did above give us the answer. Solved the same as point D above. The only difference is in estimating the minutes for latitude. Point E seems to closer to 15' that to 30' so I have estimated it as 16'. This is only an estimate so the answer can vary, but it should be greater than 15' and less than 17' 30" BACK TO TOPOGRAPHIC MAP PAGE mcnaught

22 Streams and Stream Valleys 1 of 2 2/17/ :22 PM Streams and Stream Valleys Streams are obvious features on topographic maps. They are represented by blue lines. Stream valleys can be recognized by the pattern made by the contour lines around the stream. Since streams are found in local topographic lows, the contour lines double back on themselves forming a "V" shape pattern. Stream valleys often extend farther than the streams shown on the map by blue lines, as can be seen by the contour pattern. Look at the map at right of the Spruce Knob area. Where are the stream valleys? Scroll down to find out. The heavy blue lines on this map show the locations of stream valleys. Notice these lines are longer than the actual stream symbol on the map. The contour pattern has

23 Streams and Stream Valleys 2 of 2 2/17/ :22 PM been used to recognize the rest of the stream valley. The blue lines outlining the streams on the map above have arrows showing which way the stream is flowing. There are two ways to figure this out. First you can look at the elevation of the contour lines that cross the stream. Water will always flow down hill so the elevation of the contour lines will decrease in the direction water is flowing. The second way to tell is to look at the pattern of the contour lines. Because streams will sit in a valley the land on either side of them will be higher. As a result the contour lines form a "V" pattern like the one in the red circle on the map above. The point of the "V" points up stream. The open end of the "V" faces downstream. It is the presence of this "V" pattern that was used to recognize stream valleys where no stream was shown on the map. Notice that one stream has been marked with a broken blue line. There is no obvious "V" pattern to the contour lines in this valley, but instead there is a broad curve in the contours. There probably is not a single stream in this area, but water would flow down slope in this general area until it reached a better defined stream channel. Return to Topographic Map Page mcnaught

Chapter 2 Reading Topographic Maps and Making Calculations

Chapter 2 Reading Topographic Maps and Making Calculations Chapter 2 Reading Topographic Maps and Making Calculations In this chapter you will learn about: Reading the margins Interpreting contour lines Estimating slope Estimating aspect Estimating acreage Estimating

More information

Spring, 2016 Lab 2. GLY 4400, Spring 2016 Lab #2 TOPOGRAPHIC MAPS

Spring, 2016 Lab 2. GLY 4400, Spring 2016 Lab #2 TOPOGRAPHIC MAPS GLY 4400, Spring 2016 Lab #2 TOPOGRAPHIC MAPS Objectives: 1- To develop an understanding of map reading with an emphasis on topographic maps. 2- To become familiar with the concepts of scale, location

More information

TOPOGRAPHIC MAPS. RELIEF (brown) Hills, valleys, mountains, plains, etc. WATER. land boundaries, etc. CULTURAL

TOPOGRAPHIC MAPS. RELIEF (brown) Hills, valleys, mountains, plains, etc. WATER. land boundaries, etc. CULTURAL TOPOGRAPHIC MAPS MAP 2-D REPRESENTATION OF THE EARTH S SURFACE TOPOGRAPHIC MAP A graphic representation of the 3-D configuration of the earth s surface. This is it shows elevations (third dimension). It

More information

Introduction to Aerial Photographs and Topographic maps (Chapter 3)

Introduction to Aerial Photographs and Topographic maps (Chapter 3) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Introduction to Aerial Photographs and Topographic maps (Chapter 3) For this assignment you will require: a calculator and metric ruler. Objectives:

More information

ESS 110: Introduction to Geology Dr. Christopher Woltemade Topographic Maps Lab

ESS 110: Introduction to Geology Dr. Christopher Woltemade Topographic Maps Lab ESS 110: Introduction to Geology Dr. Christopher Woltemade Topographic Maps Lab Name: Section: Introduction Topography means "the shape of the land" and thus topographic maps illustrate the scale, width,

More information

Earth Systems Science Laboratory 5 Using and Interpreting Topographic Maps

Earth Systems Science Laboratory 5 Using and Interpreting Topographic Maps Earth Systems Science Laboratory 5 Using and Interpreting Topographic Maps This semester, you will be studying the valley of the Florida River, east of Durango. The Florida River is a source of water for

More information

BIOL 2406 Fall 2011 Topographic Maps

BIOL 2406 Fall 2011 Topographic Maps BIOL 2406 Fall 2011 Topographic Maps A topographic map is a two dimensional representation of a three dimensional land surface. Elevation or relief is shown through the use of contour lines that are continuous

More information

Topographic Maps. I. Introduction

Topographic Maps. I. Introduction Topographic Maps I. Introduction A. Topographic maps are essential tools in geologic and engineering studies because they show the configuration of Earth's surface in remarkable detail and permit one to

More information

Topographic Maps. What is the elevation of points A & B?

Topographic Maps. What is the elevation of points A & B? Topographic Maps Topographic Maps show the topography, or the surface features of the earth. -- Show natural features * ex.: rivers, hills, valleys, etc. -- Show constructed (man-made) features as well

More information

G302 Review of Maps / Topographic Maps

G302 Review of Maps / Topographic Maps G302 Review of Maps / Topographic Maps I. Introduction A. Map- a 2-d, scaled representation of the earth's surface, 1. Model of Earth's Surface 2. Basic functions: to represent horizontal distance, direction,

More information

MAPS AND TOPOGRAPHY. John J. Thomas

MAPS AND TOPOGRAPHY. John J. Thomas MAPS AND TOPOGRAPHY John J. Thomas Purpose An exercise to give the students experience reading and making topographic maps. The first exercise will be to orient the map and figure out the scale of the

More information

1. Model: A representation of a real object or event. Ex: Map Globe Graphs A. Models are useful because they allow an easier way to study objects or

1. Model: A representation of a real object or event. Ex: Map Globe Graphs A. Models are useful because they allow an easier way to study objects or 1. Model: A representation of a real object or event. Ex: Map Globe Graphs A. Models are useful because they allow an easier way to study objects or events. 2. The shape of the Earth A. The earth is round.

More information

EXTRA CREDIT PROJECT Page 1 Making a 3D Topo Map

EXTRA CREDIT PROJECT Page 1 Making a 3D Topo Map MAKING A THREE DIMENSIONAL TOPOGRAPHIC MAP A topographic map shows elevation. Each "circle" (these are never perfect circles - usually very squiggly) and sometimes only part of the circle, indicates how

More information

MAPS. Latitude. Longitude

MAPS. Latitude. Longitude MAP PICTIONARY MAPS Latitude Lines run east west Main latitude line is the equator (0 degrees). Lines are numbered 0 90 degrees, north and south of the equator. Both north and south poles are 90 degrees.

More information

NOTES Topo Maps.notebook. April 13, surface. Slope of the ground surface. Elevation Relief. Gradient. Topographic Maps.

NOTES Topo Maps.notebook. April 13, surface. Slope of the ground surface. Elevation Relief. Gradient. Topographic Maps. NOTES Topo Maps.notebook symbols to show the surface A map that uses features of an area as if you were looking down on it from above. Otego, NY Apr 12 8:41 AM Unadilla, NY accurate information, such as:

More information

+ ')' (+ Lynn Newman Copyright 2006 '(, $ & & ) & -. ' '2(3(2(3 2(3$(+

+ ')' (+ Lynn Newman Copyright 2006 '(, $ & & ) & -. ' '2(3(2(3 2(3$(+ !" #$%&'($& '$$%' ' $$')'(*' + ')' (+ Lynn Newman Copyright 2006 &' )$$($ '(, $ & & ) & & (*$) -. ' (/$ $ $/ 0 0( 1$'( '2(3(2(3 2(3$(+ 1 Now, let s look at the bottom of the map. Starting in the lower

More information

FORENSIC GEOLOGY TOPOGRAPHIC MAPS AND PROFILES

FORENSIC GEOLOGY TOPOGRAPHIC MAPS AND PROFILES NAME 89.215 - FORENSIC GEOLOGY TOPOGRAPHIC MAPS AND PROFILES I. Introduction A map is a miniature representation of a portion of the earth s surface as it appears from above. A forensic scientist uses

More information

Topographic Maps GEOSCI/ENVIRON 118 Laboratory

Topographic Maps GEOSCI/ENVIRON 118 Laboratory GEOSCI/ENVIRON 118, Laboratory 2 Topographic Maps, page 1 Topographic Maps GEOSCI/ENVIRON 118 Laboratory Name: Section: This laboratory will introduce you to the basic features of maps, including methods

More information

Lesson 6: Coming Up with a Monitoring Plan Watershed Mapping and Analysis

Lesson 6: Coming Up with a Monitoring Plan Watershed Mapping and Analysis Lesson 6: Coming Up with a Monitoring Plan Watershed Mapping and Analysis Time Frame: Two 50-minute class periods Grade Level: 8 th 12 th Grade Overview: Many environmental and human factors exist that

More information

What is a map? A Map is a two or three-dimensional model or representation of the Earth s surface. 2-Dimensional map

What is a map? A Map is a two or three-dimensional model or representation of the Earth s surface. 2-Dimensional map What is a map? A Map is a two or three-dimensional model or representation of the Earth s surface. 2-Dimensional map Types of Maps: (just a few that we may be using) Political Maps Shows borders of states,

More information

How to Read a Topographic Map. How to Read a Topographic Map

How to Read a Topographic Map. How to Read a Topographic Map How to Read a Topographic Map by Debra Ronca Howstuffwork.com Topographic maps allow you to see a 3-D landscape on a 2-D surface. How to Read a Topographic Map We're all familiar with maps. They're those

More information

Working with USGS Topographic Maps a Tutorial GEOG 310 Fall 2013

Working with USGS Topographic Maps a Tutorial GEOG 310 Fall 2013 Working with USGS Topographic Maps a Tutorial GEOG 310 Fall 2013 This tutorial uses examples from the southeast corner of the Durango West, Colorado 1:24,000 scale topographic map. The steps listed under

More information

Navigating my Hawai i Series: Topographic Maps

Navigating my Hawai i Series: Topographic Maps Ke ala o Kūlilikaua Grade Level 9-12 Concepts Topographic mapping Duration 45 Minutes Source Material NARS 4-H Club USGS Vocabulary Cartographer Contour Interval Contour Lines Topography Topographic Map

More information

Topographic Map Symbols

Topographic Map Symbols Topographic Map Symbols From the USGS http://egsc.usgs.gov/isb/pubs/booklets/symbols/ What is a Topographic Map? A map is a representation of the Earth, or part of it. The distinctive characteristic of

More information

Standard 1.h: Read and interpret topographic and geologic maps.

Standard 1.h: Read and interpret topographic and geologic maps. Standard 1.h: Read and interpret topographic and geologic maps. Topographic contours indicating surface relief. Image taken from US Army training manual. In this lesson, you will learn about the ways to

More information

LAB E - INTRODUCTION TO GEOGRAPHIC TOOLS TOPOGRAPHIC MAPS

LAB E - INTRODUCTION TO GEOGRAPHIC TOOLS TOPOGRAPHIC MAPS LAB E - INTRODUCTION TO GEOGRAPHIC TOOLS TOPOGRAPHIC MAPS Introduction Topographic maps differ from the thematic and regional maps found in atlases in that they employ contour lines (isopleths), lines

More information

How are elevation and topography shown on a map? What are three types of information shown in geologic maps? What are two uses of soil maps?

How are elevation and topography shown on a map? What are three types of information shown in geologic maps? What are two uses of soil maps? CHAPTER 3 3 Types of Maps SECTION Models of the Earth KEY IDEAS As you read this section, keep these questions in mind: How are elevation and topography shown on a map? What are three types of information

More information

LAB 4: Topographic Maps & Google Earth

LAB 4: Topographic Maps & Google Earth Name School LAB 4: Topographic Maps & Google Earth Our earth is a very complex place to view as a flat map. Viewing the earth, as a globe is the best representation we can have it is both proportionate

More information

Topographic Maps Practice Questions and Answers Revised October 2007

Topographic Maps Practice Questions and Answers Revised October 2007 Topographic Maps Practice Questions and Answers Revised October 2007 1. In the illustration shown below what navigational features are represented by A, B, and C? Note that A is a critical city in defining

More information

OBJECTIVES MATERIALS BACKGROUND. Maps and Mapping. Key Terms. Common units and conversions. Introduction. Page 1 of 10

OBJECTIVES MATERIALS BACKGROUND. Maps and Mapping. Key Terms. Common units and conversions. Introduction. Page 1 of 10 OBJECTIVES This exercise involves understanding map scale and coordinate systems. You will learn to read geographic coordinates in latitude/longitude, the State Plane Coordinate System, and the Universal

More information

Reading Topographic Maps

Reading Topographic Maps Symbolization - Showing elevation on a map How cartographers you show 3 dimensions using just 2? Reading Topographic Maps Topo Map Symbols COLORS OF THE MAP BLACK: MAN-MADE FEATURES, SUCH AS BUILDINGS

More information

Topographic Maps. Review

Topographic Maps. Review Topographic Maps Review Topographic Maps Types of Topographic Maps 1:24,000-7.5 minute maps 1:50,000-15 minute maps 1:100,000 maps 30x60 minute maps 1:250,000 maps 1 o x 2 o degree maps 1:500,000 maps

More information

Objectives. Vocabulary. Compare and contrast latitude and longitude. Describe how time zones vary.

Objectives. Vocabulary. Compare and contrast latitude and longitude. Describe how time zones vary. Objectives Compare and contrast latitude and longitude. Describe how time zones vary. Vocabulary cartography equator latitude longitude prime meridian International Date Line Latitude and Longitude Latitude

More information

ACTIVITY 9.1 ANSWERS AND EXPLANATIONS

ACTIVITY 9.1 ANSWERS AND EXPLANATIONS ACTIVITY 9.1 ANSWERS AND EXPLANATIONS 9.1A. Latitude: 40 S Longitude: 20 W 9.1B. 1. north 24 east; azimuth of 24 2. south 24 west; azimuth of 204 9.1C. 1. center SW1/4, NE1/4, SE1/4, sec. 11, T1S, R2W

More information

MiSP Topographic Maps Worksheet #1a SLOPE AND TOPOGRAPHIC CONTOURS

MiSP Topographic Maps Worksheet #1a SLOPE AND TOPOGRAPHIC CONTOURS MiSP Topographic Maps Worksheet #1a Name Date Introduction: SLOPE AND TOPOGRAPHIC CONTOURS Topographic contours are shown by lines of different widths. Each contour is a line of equal elevation; therefore,

More information

Lab 1: Map Coordinate Systems and Map Reading

Lab 1: Map Coordinate Systems and Map Reading Lab 1: Map Coordinates Systems and Map Reading Table of Contents 1. Purpose:... 1 2. Specific learning objectives:... 1 3. Materials:... 1 4. References:... 2 5. Latitude and Longitude, UTM, State Plane...

More information

Lab 5: Topography and Topographic Maps

Lab 5: Topography and Topographic Maps SJSU Geol 4L Planet Earth Lab Lab 5 p. 1 of 8 Lab 5: Topography and Topographic Maps In this lab, you ll learn some of the tools available to help geologists recognize and interpret the topography of Earth

More information

MAPS, MAP READING, AND LAND NAVIGATION

MAPS, MAP READING, AND LAND NAVIGATION MAPS, MAP READING, AND LAND NAVIGATION LESSON 1: INTRODUCTION TO MAPS PURPOSE Knowing how to read and understand maps are valuable skills that can strengthen your awareness of the world around you. Your

More information

Types of Maps. physical map. political map. thematic map. contour map. 3-Part Cards with Definitions

Types of Maps. physical map. political map. thematic map. contour map. 3-Part Cards with Definitions Types of Maps 3-Part Cards with Definitions physical map political map contour map thematic map physical map political map A physical map shows an area's natural A political map shows boundaries of features

More information

Name: Class: Date: Topographic Maps

Name: Class: Date: Topographic Maps Name: Class: Date: Topographic Maps One of the best ways of studying a land region is with a topographic map. The United States Geological survey prints topographic maps of all parts of the United States.

More information

Models in earth science provide opportunities to investigate and obtain evidence on which to base scientific explanations.

Models in earth science provide opportunities to investigate and obtain evidence on which to base scientific explanations. Landforms Lesson 2 Fifth-Sixth Grade Models in earth science provide opportunities to investigate and obtain evidence on which to base scientific explanations. Continue establishing working word wall throughout

More information

TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE

TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE CHAPTER 1 The Structure of Earth 1 1-1 What is the study of Earth science? 2 1-2 What are the main parts of Earth? 3 1-3 What is the structure

More information

Geography Grade 12. SESSION FOUR: MAPWORK CALCULATIONS KEY CONCEPTS: In this session we will focus on the following aspects:

Geography Grade 12.  SESSION FOUR: MAPWORK CALCULATIONS KEY CONCEPTS: In this session we will focus on the following aspects: SESSION FOUR: MAPWORK CALCULATIONS KEY CONCEPTS: In this session we will focus on the following aspects: Calculations you need to know (when doing calculations it is important to show all the steps as

More information

Lesson 4 How to Read a Topographic Map

Lesson 4 How to Read a Topographic Map Lesson 4 How to Read a Topographic Map Key teaching points A topographic map is a representation of a three-dimensional surface on a flat piece of paper. The digital elevation model on the poster is helpful

More information

Topo Map Mania! Map, Compass, Scale, Legend, Bearing

Topo Map Mania! Map, Compass, Scale, Legend, Bearing Topo Map Mania! Unit Topic: Navigation Grade Level: 7 th grade (with suggestions to scale for grades 6 to 8) Lesson No. 5 of 10 Lesson Subject(s): Map, Compass Key Words: Lesson Abstract Map, Compass,

More information

STAAR Science Tutorial 34 TEK 8.9C: Topographic Maps & Erosional Landforms

STAAR Science Tutorial 34 TEK 8.9C: Topographic Maps & Erosional Landforms Name: Teacher: Pd. Date: STAAR Science Tutorial 34 TEK 8.9C: Topographic Maps & Erosional Landforms TEK 8.9C: Interpret topographic maps and satellite views to identify land and erosional features and

More information

LESSON 14: TOPOGRAPHIC MAPS. Key Concepts. X-planation. Topographic Map Skills. Coordinates (Grid Reference)

LESSON 14: TOPOGRAPHIC MAPS. Key Concepts. X-planation. Topographic Map Skills. Coordinates (Grid Reference) LESSON 14: TOPOGRAPHIC MAPS Key Concepts In this lesson we will focus on summarising what you need to know about: Locating exact position (degrees, minutes and seconds) Relative position, direction and

More information

Three Ways to be 3-D Understanding Topographic Maps

Three Ways to be 3-D Understanding Topographic Maps Three Ways to be 3-D Understanding Topographic Maps Over erview iew These three activities are designed to help students visualize how contour lines on a topographical map relate to three-dimensional landforms.

More information

Because Earth is so large, geographers divide it into regions to study. A region is an area with common features

Because Earth is so large, geographers divide it into regions to study. A region is an area with common features Exploring Regions of the United States Section 1 - Introduction Because Earth is so large, geographers divide it into regions to study. A region is an area with common features that set it apart from other

More information

Topo Bingo. Adapted from: US Geological Survey, Western Region, Menlo Park, CA: Learning Web Topo Bingo by Leslie C. Gordon.

Topo Bingo. Adapted from: US Geological Survey, Western Region, Menlo Park, CA: Learning Web Topo Bingo by Leslie C. Gordon. Topo Bingo Introduction to Topographic Maps Adapted from: US Geological Survey, Western Region, Menlo Park, CA: Learning Web Topo Bingo by Leslie C. Gordon. Grade Level: 3 rd to Adult Duration: One class

More information

Using Topographic Maps

Using Topographic Maps Using Topographic Maps Procedure This lab has three parts: (1) Making a contour map of Turtle Island, an imaginary island with known spot elevations, (2) constructing a topographic profile across Turtle

More information

Topographic Survey. Topographic Survey. Topographic Survey. Topographic Survey. CIVL 1101 Surveying - Introduction to Topographic Modeling 1/8

Topographic Survey. Topographic Survey. Topographic Survey. Topographic Survey. CIVL 1101 Surveying - Introduction to Topographic Modeling 1/8 IVL 1 Surveying - Introduction to Topographic Modeling 1/8 Introduction Topography - defined as the shape or configuration or relief or three dimensional quality of a surface Topography maps are very useful

More information

EASTERN SHORE GROUND SEARCH AND RESCUE. Map & Compass Course

EASTERN SHORE GROUND SEARCH AND RESCUE. Map & Compass Course EASTERN SHORE GROUND SEARCH AND RESCUE Map & Compass Course GSAR EXPECTATION Map and compass skills are not optional for searchers. All searchers MUST be able to use a map and compass easily and effectively.

More information

Lab 1: An Introduction to Topographic Maps

Lab 1: An Introduction to Topographic Maps Lab 1: An Introduction to Topographic Maps Learning Objectives: Understand how to read and interpret topographic maps and aerial photos Start thinking critically about landforms and the processes that

More information

Lab 1: Getting to Know the Earth s Surface through Maps

Lab 1: Getting to Know the Earth s Surface through Maps Lab 1: Getting to Know the Earth s Surface through Maps A big part of geoscience is the presentation of information about the characteristics of the Earth s surface; the elevation, the underlying geologic

More information

Lab 9: TOPOGRAPHIC MAPS. I. Production of Topographic maps in the US

Lab 9: TOPOGRAPHIC MAPS. I. Production of Topographic maps in the US Lab 9: Topographic Maps 151 Lab 9: TOPOGRAPHIC MAPS Topographic maps are rich sources of geographic information. Geologic maps are commonly constructed upon topographic base maps, and much geological mapping,

More information

ELEVATION AND CONTOUR MAPPING

ELEVATION AND CONTOUR MAPPING ELEVATION AND CONTOUR MAPPING GRADE: 4-8 TIME: 2-3 (45 minute) periods MATERIALS: Relief map, map of classroom, colored pencils, meter sticks, clay or play dough, freezer paper, cutting instrument*. THEMES:

More information

Page 1. Earth's Shape/Mapping Practice Questions. Name:

Page 1. Earth's Shape/Mapping Practice Questions. Name: Earth's Shape/Mapping Practice Questions 1002-1 - Page 1 Name: 1) How are latitude and longitude lines drawn on a globe of the Earth? A) Longitude lines are parallel and latitude lines meet at the Equator.

More information

Laboratory Manual for Physical Geology. Topographic Maps

Laboratory Manual for Physical Geology. Topographic Maps Laboratory Manual for Physical Geology Topographic Maps Overview... 2 Materials Needed... 2 Topographic Maps... 2 Map Symbols... 2 Map Scales... 3 Types of Scales... 3 Map Use... 5 Small Scale V. Large

More information

1 The Imaginary Lines

1 The Imaginary Lines 1 The Imaginary Lines The earth s surface is made up of large land masses known as continents, water bodies known as oceans and seas, and a large number of small islands. The geographers created the globe

More information

1.3 Representing Earth s Surface

1.3 Representing Earth s Surface 1.3 Representing Earth s Surface Key Concepts What lines on a globe are used to indicate location? What problems do mapmakers face when making maps? How do topographic maps differ from other maps? Vocabulary

More information

Map-Reading Lab Geography 1

Map-Reading Lab Geography 1 Map-Reading Lab Geography 1 You will use the Soquel and Mount Whitney USGS Quads for this activity. 1. What are the exact titles of the two maps? &. 2. What is the name of the type of projection used to

More information

Lesson 6 A Source of Fresh Water Wilderness Watersheds

Lesson 6 A Source of Fresh Water Wilderness Watersheds SCIENCE Lesson 6 A Source of Fresh Water Wilderness Watersheds Objectives: Students will: understand common U.S. Geological Survey map symbols including contour lines. choose a river and trace its tributaries

More information

Map reading made easy

Map reading made easy Map reading made easy 1. What is a map? A map is simply a drawing or picture (in 2-D) of a landscape or area of a country (in 3-D). It could be anything from a sketch map for a visitor to find your school

More information

Maps. Page 1. First Printed Map in Europe, 1472

Maps.  Page 1. First Printed Map in Europe, 1472 Maps A map is a representation of the Earth, or part of it. Humans have always needed to find their way from place to place and their most common way of doing this and providing information about their

More information

SECTION VII - NAUTICAL CHARTS and CHART NO. 1

SECTION VII - NAUTICAL CHARTS and CHART NO. 1 SECTION VII - NAUTICAL CHARTS and CHART NO. 1 INTRODUCTION: In conjunction with the ATON/CU Program, it is necessary for Auxiliary members to understand the general composition and purposes of NAUTICAL

More information

Maps Information from the Field Book for Canadian Scouting

Maps Information from the Field Book for Canadian Scouting Map and Compass Maps Information from the Field Book for Canadian Scouting A topographic map shows details of a portion of the earth s surface drawn to scale on paper. The features shown fall into four

More information

Maps and Globes. By Kennedy s Korner

Maps and Globes. By Kennedy s Korner Maps and Globes By Kennedy s Korner Table of Contents Words to Know What are Maps and Globes Map Key or Symbols Cardinal Directions Intermediate Directions Equator Prime Meridian Hemispheres Coordinate

More information

Maps A Primer for Content & Production of Topographic Base Maps For Design Presented by SurvBase, LLC

Maps A Primer for Content & Production of Topographic Base Maps For Design Presented by SurvBase, LLC Maps A Primer for Content & Production of Topographic Base Maps For Design Presented by Definition and Purpose of, Map: a representation of the whole or a part of an area. Maps serve a wide range of purposes.

More information

Part 1: Prologue & Earth s Dimensions Name: Answer Key

Part 1: Prologue & Earth s Dimensions Name: Answer Key Name: Answer Key Earth Science Date: Period: ANSWER KEY Page 1 Density Three different bars of soap are being investigated by a group of students. They measured the mass and volume of each bar and recorded

More information

Grade 6 Book 3. Map Work

Grade 6 Book 3. Map Work Grade 6 Book 3 Map Work 1 Map Work I am my best work a series of road maps, reports, recipes, doodles, and prayers... Audre Lord Book 3 - Map Work Grade 6 Term 1 (Social Science - Geography) Looking at

More information

Weekend Cabin Retreat Project Site Plans

Weekend Cabin Retreat Project Site Plans Weekend Cabin Retreat Project Site Plans Sacramento City College EDT 300/ENGR 306 EDT 300/ENGR 306 - Site Plans 1 Cabin Project Site Plan/Bubble Diagram - Assignment 1 =10-0 Floor Plan - Assignment 1/4

More information

Maps and Globes. By Kennedy s Korner

Maps and Globes. By Kennedy s Korner Maps and Globes By Kennedy s Korner Table of Contents Words to Know What are Maps and Globes Map Key or Symbols Cardinal Directions Intermediate Directions Equator Prime Meridian Hemispheres Coordinate

More information

Map reading made easy

Map reading made easy Map reading made easy What is a map? A map is simply a plan of the ground on paper. The plan is usually drawn as the land would be seen from directly above. A map will normally have the following features:

More information

FUNDAMENTALS OF LANDSCAPE TECHNOLOGY GSD Harvard University Graduate School of Design Department of Landscape Architecture Fall 2006

FUNDAMENTALS OF LANDSCAPE TECHNOLOGY GSD Harvard University Graduate School of Design Department of Landscape Architecture Fall 2006 FUNDAMENTALS OF LANDSCAPE TECHNOLOGY GSD Harvard University Graduate School of Design Department of Landscape Architecture Fall 2006 6106/ M2 BASICS OF GRADING AND SURVEYING Laura Solano, Lecturer Name

More information

& GRAPHS AND LONGITUDE LINES

& GRAPHS AND LONGITUDE LINES GLOBES, MAPS & GRAPHS FIND PLACES ON GLOBES USING LATITUDE AND LONGITUDE LINES FIND PLACES ON MAPS USING A GRID SYSTEM NAME SEVERAL TYPES OF MAP PROJECTIONS AND EXPLAIN THEIR BENEFITS AND SHORTCOMINGS

More information

Maps- What, Why, How & Where? NOSB-Otter Bowl Diversity Program

Maps- What, Why, How & Where? NOSB-Otter Bowl Diversity Program Maps- What, Why, How & Where? NOSB-Otter Bowl Diversity Program What are maps used for? Maps are a visual representation of the surface of the earth and where things are They can show roads, mountain and

More information

Geography. 8 th Grade Social Studies

Geography. 8 th Grade Social Studies Geography 8 th Grade Social Studies The 5 Themes of Geography 1.1 1. Location- Where something is located. Absolute location: the absolute or specific location as in using coordinates of a map with latitude

More information

Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface

Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface Topographic maps represent the complex curves of earth s surface with contour lines that represent the intersection

More information

Or, I m lost. How do I find my way back to the trailhead?

Or, I m lost. How do I find my way back to the trailhead? Or, I m lost. How do I find my way back to the trailhead? Read topographic maps Understand geographic coordinate system (Lat, Lon) Plot Lat/Lon coordinates on maps Read Lat/Lon coordinates off maps See

More information

TOUR OF A TOPO Copyright GeoQuest Publications

TOUR OF A TOPO Copyright GeoQuest Publications Objective TOUR OF A TOPO Copyright GeoQuest Publications 1 The student will demonstrate how to use the information on a topographic map to 1) determine the name, location, and source of a quadrangle map,

More information

Organizing a class orienteering event

Organizing a class orienteering event Organizing a class orienteering event Orienteering is a wonderful teaching tool. It allows the teacher to illustrate many abstract ideas in concrete terms. The sport also appeals to students operating

More information

Maps and Cartography

Maps and Cartography Maps and Cartography Geospatial Resources & Map Collection Maps Tutorial: Topographic Maps Ball State University Libraries A destination for research, learning, and friends Topographic Maps: History The

More information

AMHERST COLLEGE Department of Geology GEOLOGY 41 - Environmental and Solid Earth Geophysics Lab 4: Surveying and the TOTAL Station

AMHERST COLLEGE Department of Geology GEOLOGY 41 - Environmental and Solid Earth Geophysics Lab 4: Surveying and the TOTAL Station AMHERST COLLEGE Department of Geology GEOLOGY 41 - Environmental and Solid Earth Geophysics Lab 4: Surveying and the TOTAL Station EQUIPMENT: warm clothes TOTAL Station tripod prisms (2) prism poles(2)

More information

Lab 3: Introduction to Maps & Basic Map Skills

Lab 3: Introduction to Maps & Basic Map Skills Lab 3: Introduction to Maps & Basic Map Skills Goals 1. Become familiar with different types of maps used in Oceanography 2. Become familiar with basic map reading skills latitude, longitude, and scale

More information

Year 5 (Entry into Year 6) 5 Hour Revision Course Geography

Year 5 (Entry into Year 6) 5 Hour Revision Course Geography Year 5 (Entry into Year 6) 5 Hour Revision Course Geography This page has intentionally been left blank. Activity 1 Oceans and Continents 1. Use the following to label the Continents and the Oceans shown

More information

peasy Map reading made easy Join the adventure with us... Get your OS Map Paper Weatherproof With you every step of the way

peasy Map reading made easy Join the adventure with us... Get your OS Map Paper Weatherproof With you every step of the way Your passport to town and country / Eich pasport i ddinas a chefn gwlad World Heritage Site: Blaenavon Industrial Landscape 1:50 000 scale 2 cm to 1 km 1¼ inches to 1 mile Graddfa 1:50 000 2 cm i 1 km

More information

Unit 6 Geometry: Constructing Triangles and Scale Drawings

Unit 6 Geometry: Constructing Triangles and Scale Drawings Unit 6 Geometry: Constructing Triangles and Scale Drawings Introduction In this unit, students will construct triangles from three measures of sides and/or angles, and will decide whether given conditions

More information

MSL 102, Lesson 02: Map Reading II. Map Reading II

MSL 102, Lesson 02: Map Reading II. Map Reading II Map Reading II 1 Objectives Apply map reading skills using aspects taken from marginal information on a military map Interpret different terrain features based on a map s changing topographic contour intervals

More information

The Basics of Navigation

The Basics of Navigation The Basics of Navigation Knowledge of map reading and the use of the compass is an indispensable skill of bushcraft. Without this skill, a walker is a passenger and mere follower on a trip. To become a

More information

Map Skills Pretest. 1. What does a cartographer do? a. makes graphs & charts b. designs greeting cards c. creates maps d. builds carts and wagons

Map Skills Pretest. 1. What does a cartographer do? a. makes graphs & charts b. designs greeting cards c. creates maps d. builds carts and wagons Map Skills Pretest 1. What does a cartographer do? a. makes graphs & charts b. designs greeting cards c. creates maps d. builds carts and wagons 2. What is the name of the 0 longitude line? a. Equator

More information

Searching Land Records thru the BLM General Land Office Records.

Searching Land Records thru the BLM General Land Office Records. Searching Land Records thru the BLM General Land Office Records. Land Records can be an exciting addition to your family history search. The United States Government transferred ownership of land to millions

More information

OBJECTIVES. Identify the means by which latitude and longitude were created and the science upon which they are based.

OBJECTIVES. Identify the means by which latitude and longitude were created and the science upon which they are based. Name: Key OBJECTIVES Correctly define: isolines, gradient, topographic map, contour interval, hachured lines, profile, latitude, longitude, hydrosphere, lithosphere, atmosphere, elevation, model EARTH

More information

MiSP Topographic Maps Worksheet #2

MiSP Topographic Maps Worksheet #2 MiSP Topographic Maps Worksheet #2 Name Date CONSTRUCTING AND STUDYING A CONTOUR MAP Introduction: You previously used the make believe Ellipse Island to study contour maps. That activity had ideal contour

More information

Lab 6: Terrain Representation

Lab 6: Terrain Representation Lab 6: Terrain Representation OBJECTIVES Representing the earth s relief on a two-dimensional sheet of paper can be challenging, although several techniques have been developed to solve this problem. In

More information

An Introduction to Reading Topographic Maps

An Introduction to Reading Topographic Maps An Introduction to Reading Topographic Maps Darlene C. Florence National Science Foundation Graduate STEM Fellow in K-12 Education Sugar Creek Watershed K-12 Education Program The Ohio State University-Ohio

More information

Lab 9 GMT Tutorial. To create a simple globe using GMT, use the following command (1 single line):

Lab 9 GMT Tutorial. To create a simple globe using GMT, use the following command (1 single line): -- GMT EXAMPLE 1 : CREATING A SIMPLE GLOBE -- To create a simple globe using GMT, use the following command (1 single line): pscoast -JA0/20/2.5i -R0/360/-90/90 -Bg30/g15:. Global Map : -Dl -G187/142/46

More information

Geographer s Toolkit. Geography of Canada

Geographer s Toolkit. Geography of Canada Geographer s Toolkit Geography of Canada Geographer s Toolkit 1. Parts of a Map Map Symbols Mapping Your Location 2. Types of Maps Grid Systems Topographic Map Study 3. Political Map of Canada 4. Drainage

More information

James S. Reichard Georgia Southern University. Student Name

James S. Reichard Georgia Southern University. Student Name 87 Exercise 9 Water Resources James S. Reichard Georgia Southern University Student Name Section In this lab you will: examine the geology of groundwater resources and the impact that pollution and human

More information

CHAPTER 1 BASICS OF SURVEYING

CHAPTER 1 BASICS OF SURVEYING CHAPTER 1 BASICS OF SURVEYING 1.1 SURVEYING DEFINED What is surveying? Surveying is the art of measuring distances, angles and positions on or near the surface of the earth. It is an art? Because only

More information