# Transfer function, Laplace transform, Low pass filter

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion, Laplac ranform, Low pa filr. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and L Simpl lag nwork (low pa filr). INTRODUTION Tranfr funcion ar ud o calcula h rpon () of a ym o a givn inpu ignal R(). Hr and for h im variabl. r( ) Inpu ignal Elcronic circui, mchanical ym, hrmal ym c( ) Oupu ignal Phyical ym Fig. Givn an inpu ignal, w would lik o know h ym rpon (). Th dynamic bhavior of a phyical ym ar ypically dcribd by diffrnial (and/or ingral) quaion: For a givn inpu ignal R(), h quaion nd o b olvd in ordr o find (). Alrnaivly, inad of rying o find h oluion in h im domain, ach imvariabl, a wll a h diffrnial quaion, can b ranformd o a diffrn variabl domain in which h oluion can b obain in a mor raighforward way; hn an invr ranform would ak plac h oluion ino h im domain Original problm r( ), diffrnial Eq. Difficul oluion Soluion of original problm c ( ) Tranform Problm in ranform pac R() Algbraic opraion Eair oluion Invr ranform Soluion in ranform pac () Fig. Solving h quaion in a diffrn domain and hn applying an invr ranform o obain h oluion in h im domain

2 On of ho ranform i h Laplac ranformaion. THE LAPLAE TRANSFORMATION L Th Laplac ranform F=F() of a funcion f = f ( ) i dfind by, f L F L ( f ) = F F() f ( ) - () Th variabl i a complx numbr, = a +j. f () F F() f a Tim domain Laplac domain Exampl f i h uni p funcion f Tim domain F() f ( ) - - = = Laplac domain ()

3 Exampl A ignal rpon from a ym (mpraur, for xampl) rpond, afr an xrnal; xciaion ha oppd, by dcaying xponnially. L find ou how uch dcay i characrizd by a Laplac ranformaion. f i a dcaying xponnial f ( ) A - f F() F() = f ( ) - A A - - () Tim domain Laplac domain Exampl. A w mniond in h inroducion, h ym rpon i govrnd by diffrnial df d f quaion. W would lik o know hn, how and ranform by a Laplac df d f ranformaion. For impliciy, and clariy, l u h noaion: = f and = f. If F = L ( f ) valua L (f ) L ( f ' ) f ' ( ) - f ( ) - o f ( ) - f ( ) f ( ) - f ( ) [ L ( f ) ] f ( ) F() Laplac ranformaion of (3) h drivaiv Typically, on procd puing h iniial condiion qual o zro. (Th iuaion wih iniial condiion diffrn han zro ar addd in a para implr procdur). Thu, L ( f ' ) F() Laplac ranformaion of h drivaiv (3) If F = L ( f ) valua L (f ) wih h iniial condiion qual o zro

4 L ( f ") f " ( ) - f ' ( ) f ( ) F() Laplac ranformaion of h (4) cond drivaiv Typically, on procd puing h iniial condiion qual o zro. (Th iuaion wih iniial condiion diffrn han zro ar addd in a para implr procdur). Thu, L ( f ") F() Laplac ranformaion of h cond drivaiv (4) wih h iniial condiion qual o zro Exampl. Somim h rpon ignal of a ym (h volag acro a capacior, for xampl) mu b givn in rm of h ingral of anohr quaniy (h ingral of h corrponding currn acro h capacior). I i convnin, hn, o obain h Laplac ranformaion of an indfini ingral g ( ) f ( u) ( If F = L ( f ) and g ) f ( u) du, valua L (g) L (g) g( ) - [ f ( u) du ] - du - - [ f ( u) du ] [ f ( ) ] [ - ] f ( ) - F() Laplac ranformaion of h (5) indfini ingral 3. TRANSFER FUNTIONS r( ) Inpu ignal Diffrnial Eq govrning h bhavior of h ym c( ) Oupu ignal Fig. 3 Schmaic of h ym rpon in h im domain In a impl ym, h oupu c() may b govrnd by a cond ordr diffrnial quaion a c + a c + a o c = r ()

5 Applying h Laplac ranform (3) and (4), on obain ( a + a + a o ) () = R () () a + a a o R() In a mor gnral ca, h diffrnial quaion may b of highr ordr (highr han ). Alo h inpu may b compod of drivaiv of a givn funcion r=r(). Thrfor h facor may bcom a mor laborad funcion of. a + a a Thu, for a ym in gnral, o () = G() R() (6) Noic, G=G() characriz h phyical ym. I i calld h ranfr funcion. I i mor ypical o wri, () G() (7) R() from which, for a givn R=R() h funcion =() can b obaind. R( ) Inpu ignal G() ( ) Oupu ignal Fig. 4 Schmaic of h ym rpon in h Laplac domain 3 Exampl. A ym i characrizd by h ranfr funcion G(). ( ) ( 6) Find ou how h ym rpond o a xponnially dcaying inpu r( ) -. Anwr: Th Laplac ranformaion of r giv, uing xprion (), R() = Th oupu ignal, in h Laplac domain, i hn givn by, () 3 ( ) ( 6) In a ypical procdur, whn poibl, () i r-wrin in h following form:

6 K K K3 (), wih K, K, K 3, o b rmind. 6 Noic, K ()( ).8 Thu, K ()( 6) 6 K ()( ) () Now, uing () w idnify h im dpndn funcion h individual Laplac ranform com from, c( ) Anwr. Rcapiulaing h proc, r( ) - Original problm r( ) Difficul oluion Sym Diffrnial Eq Ingral Eq. c( ) Soluion of original problm c ( ) - 6 Laplac Tranform Invr ranform Problm in Laplac pac R() R() = G() + algbraic opraion G() 3 ( ) ( 6) () Soluion in Laplac pac () Fig. 5 Schmaic rprnaion of h oluion procdur in h prviou xampl. In h prviou xampl, h ranfr funcion wa givn. In h nx cion w will figur ou h ranfr funcion for h ca of lcrical ym.

7 4. ELETRIAL SYSTEMS L analyz h hr baic lmn R, and L individually L I I () b h Laplac ranform of i= i (). i vc vl L vr R Fig. 6 Elmnary paiv circui lmn apacior v c () = q() = ( u ) uing (5) du i V c () = ( u ) i du I() V c () I() (8) Inducor v L () = d L i ( ) uing (3)' V L () I L () (9) Rior v R () = R i () V R () R () () I Tim domain Laplac domain Analyi of a impl lag nwork v in () R i q v ou () Fig. 7 Low pa filr in h im domain.

8 v in () = R i () + = R i () + On h ohr hand v ou () q() q() ( u ) uing (5) du i ( u ) uing (5) du i V in () R I() I() V ou () R I() () I() () From () and () V V ou in / R / Vou G() (3) V R in V in ( ) Inpu ignal G ( ) R V ou ( ) Oupu ignal Fig. 8 Low pa filr in h Laplac domain.

### Solutions 1.4-Page 40

Soluions.4-Pag 40 Problm Find gnral soluions (implici if ncssary, plici if convnin) of h diffrnial quaions. dy = d ( 4y) / Sparaing h variabls yilds: / / / y dy = 4 d y / dy = 4 / d Ingraing boh sids o

### First Order Linear Differential Equations

Firs Ordr Linar Diffrnial Equaions A firs ordr ordinary diffrnial quaion is linar if i can b wrin in h form y p() y g() whr p and g ar arbirary funcions of. This is calld h sandard or canonical form of

### Step Functions; and Laplace Transforms of Piecewise Continuous Functions

Sp Fnion; and Lapla Tranform of Piwi Conino Fnion Th prn objiv i o h Lapla ranform o olv diffrnial qaion wih piwi onino foring fnion ha i, foring fnion ha onain dioninii Bfor ha old b don, w nd o larn

### DIFFERENTIAL EQUATIONS with TI-89 ABDUL HASSEN and JAY SCHIFFMAN. A. Direction Fields and Graphs of Differential Equations

DIFFERENTIAL EQUATIONS wih TI-89 ABDUL HASSEN and JAY SCHIFFMAN W will assum ha h radr is familiar wih h calculaor s kyboard and h basic opraions. In paricular w hav assumd ha h radr knows h funcions of

### Digital MOS Integrated Circuits. Chapter 2 Gate Delay and RC Circuits. Practice: Inside the CMOS Inverter. Virtually Parallel Capacitors.

apr 2 Ga Dlay and ircuis Digial MOS Ingrad ircuis MIPS From ompuaion, you av sn a digial Ingrad ircuis ar buil wi MOS ransisors a work as swics Today w will sar our sudy of ir swicing spd 3 firs ordr 1

### s-domain Circuit Analysis

Domain ircui Analyi Operae direcly in he domain wih capacior, inducor and reior Key feaure lineariy i preered c decribed by ODE and heir Order equal number of plu number of Elemenbyelemen and ource ranformaion

### Chap 5. Continuous-Time Fourier Transform and Applications

77 Chap 5 Coninuous-im ourir ransform and Applicaions 5 Illusraiv Dfiniion of ourir ransform In his chapr, ill dvlop h basis for ourir analysis of non-priodic signals, hich is h only group of signals maningful

### Chapter 7. Response of First-Order RL and RC Circuits

Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural

### Circuit Types. () i( t) ( )

Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All

### RC (Resistor-Capacitor) Circuits. AP Physics C

(Rsisr-Capacir Circuis AP Physics C Circui Iniial Cndiins An circui is n whr yu hav a capacir and rsisr in h sam circui. Supps w hav h fllwing circui: Iniially, h capacir is UNCHARGED ( = 0 and h currn

### Transient Thermoelastic Behavior of Semi-infinite Cylinder by Using Marchi-Zgrablich and Fourier Transform Technique

Inrnaional Journal of Mahmaical Enginring and Scinc ISSN : 77-698 Volum 1 Issu 5 (May 01) hp://www.ijms.com/ hps://sis.googl.com/si/ijmsjournal/ Transin Thrmolasic Bhavior of Smi-infini Cylindr by Using

### Exotic Options Pricing under Stochastic Volatility

Exoic Opion Pricing undr Sochaic olailiy Nabil AHANI Prliminary draf April 9h Do no quo Conac informaion: Nabil ahani HEC Monréal Canada Rarch Chair in Rik Managmn 3 Chmin d la Cô-Sain-Cahrin Monral Qubc

### Differential Equations and Linear Superposition

Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y

### Numerical Algorithm for the Stochastic Present Value of Aggregate Claims in the Renewal Risk Model

Gn. Mah. Nos, Vol. 9, No. 2, Dcmbr, 23, pp. 4- ISSN 229-784; Copyrigh ICSRS Publicaion, 23 www.i-csrs.org Availabl fr onlin a hp://www.gman.in Numrical Algorihm for h Sochasic Prsn Valu of Aggrga Claims

### Voltage level shifting

rek Applicaion Noe Number 1 r. Maciej A. Noras Absrac A brief descripion of volage shifing circuis. 1 Inroducion In applicaions requiring a unipolar A volage signal, he signal may be delivered from a bi-polar

### Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4 Single-phase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,

### The Laplace Transform

Th Lplc Trnform Dfiniion nd propri of Lplc Trnform, picwi coninuou funcion, h Lplc Trnform mhod of olving iniil vlu problm Th mhod of Lplc rnform i ym h rli on lgbr rhr hn clculu-bd mhod o olv linr diffrnil

### ORDER INFORMATION TO pin 300 ~ 360mV AMC7150DLF 300 ~ 320mV AMC7150ADLF 320 ~ 340mV AMC7150BDLF 340 ~ 360mV AMC7150CDLF

www.addmek.com DESCRIPTI is a PWM power ED driver IC. The driving curren from few milliamps up o 1.5A. I allows high brighness power ED operaing a high efficiency from 4Vdc o 40Vdc. Up o 200KHz exernal

### Estimating Powers with Base Close to Unity and Large Exponents

Divulgacions Mamáicas Vol. 3 No. 2005), pp. 2 34 Esimaing Powrs wih Bas Clos o Uniy and Larg Exponns Esimacón d Poncias con Bas Crcana a la Unidad y Grands Exponns Vio Lampr Vio.Lampr@fgg.uni-lj.si) FGG,

### Question 3: How do you find the relative extrema of a function?

ustion 3: How do you find th rlativ trma of a function? Th stratgy for tracking th sign of th drivativ is usful for mor than dtrmining whr a function is incrasing or dcrasing. It is also usful for locating

### 11. Properties of alternating currents of LCR-electric circuits

WS. Properies of alernaing currens of L-elecric circuis. Inroducion So-called passive elecric componens, such as ohmic resisors (), capaciors () and inducors (L), are widely used in various areas of science

### Module 7: Discrete State Space Models Lecture Note 3

Modul 7: Discrt Stat Spac Modls Lctur Not 3 1 Charactristic Equation, ignvalus and ign vctors For a discrt stat spac modl, th charactristic quation is dfind as zi A 0 Th roots of th charactristic quation

### 6.003 Homework #4 Solutions

6.3 Homewk #4 Soluion Problem. Laplace Tranfm Deermine he Laplace ranfm (including he region of convergence) of each of he following ignal: a. x () = e 2(3) u( 3) X = e 3 2 ROC: Re() > 2 X () = x ()e d

### EECE 301 Signals & Systems Prof. Mark Fowler

EECE 3 Signals & Sysms Prof. Mark Fowlr No S #4 C-T Signals: Fourir Transform (for Non-Priodic Signals) Rading Assignmn: Scion 3.4 & 3.5 of Kamn and Hck /27 Cours Flow Diagram Th arrows hr show concpual

### Chapter 8 Natural and Step Responses of RLC Circuits

haper 8 Naural an Sep Repone of R ircui 8.- The Naural Repone of a Parallel R ircui 8.3 The Sep Repone of a Parallel R ircui 8.4 The Naural an Sep Repone of a Serie R ircui Key poin Wha o he repone curve

### A SOFTWARE RELIABILITY MODEL FOR CLOUD-BASED SOFTWARE REJUVENATION USING DYNAMIC FAULT TREES

Inrnaional Journal of Sofwar Enginring and Knowldg Enginring World Scinific ublihing Company A SOTWARE RELIABILITY MODEL OR CLOUD-BASED SOTWARE REJUVENATION USING DYNAMIC AULT TREES JEAN RAME and AIING

RDIOCTIVITY DOE-HDBK-1019/1-93 omic and Nuclar Physics RDIOCTIVITY Th ra a which a sampl of radioaciv marial dcays is no consan. s individual aoms of h marial dcay, hr ar fwr of hos yps of aoms rmaining.

### An Analytical Model for the Break-Even Credit Default Swap Spread with No Counterparty Default Risk in Hull (2009): A Pedagogical Approach

An Analyical Modl fo h Bak-Evn Cdi Dfaul Swap Spad wih o Counpay Dfaul ik in Hull (9: A Pdagogical Appoach Pofo Hull in hi xbook [Hull, J. C. Opion, Fuu, & Oh Divaiv, Ediion 7, Paon, 9] illua h dminaion

### Section 7.4: Exponential Growth and Decay

1 Sction 7.4: Exponntial Growth and Dcay Practic HW from Stwart Txtbook (not to hand in) p. 532 # 1-17 odd In th nxt two ction, w xamin how population growth can b modld uing diffrntial quation. W tart

### 9. Capacitor and Resistor Circuits

ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren

### Derivations and Applications of Greek Letters Review and

Rvi //008 Chap 0 Divaion an Applicaion of Gk L Rviw an Ingaion By Hong-Yi Chn, Rug Univiy, USA Chng-Fw L, Rug Univiy, USA Wikang Shih, Rug Univiy, USA Abac In hi chap, w inouc h finiion of Gk l. W alo

### RC, RL and RLC circuits

Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

### Ch 2.1: Linear Equations; Method of Integrating Factors

Ch.: Linar Equaions; Mhod of Ingraing Facors A linar firs ordr ODE has h gnral form d d f whr f is linar in. Eampls includ quaions wih consan cofficins such as hos in Chapr a b or quaions wih variabl cofficins:

### Capacitors and inductors

Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear

### GENETIC ALGORITHMS IN SEASONAL DEMAND FORECASTING

forcasing, dmand, gnic algorihm Grzgorz Chodak*, Wiold Kwaśnicki* GENETIC ALGORITHMS IN SEASONAL DEMAND FORECASTING Th mhod of forcasing sasonal dmand applying gnic algorihm is prsnd. Spcific form of usd

### Handout 22. Electron Transport: The Boltzmann Equation

Hanu lcrn Transpr: Th Blzmann quain In his lcur yu will larn: Nn-quilibrium isribuin uncins Th Liuill quain Th Blzmann quain Rlaxain im apprximain Scaring byn h rlaxain im apprximain Luwig uar Blzmann

### Non-Homogeneous Systems, Euler s Method, and Exponential Matrix

Non-Homognous Systms, Eulr s Mthod, and Exponntial Matrix W carry on nonhomognous first-ordr linar systm of diffrntial quations. W will show how Eulr s mthod gnralizs to systms, giving us a numrical approach

### PHYS245 Lab: RC circuits

PHYS245 Lab: C circuis Purpose: Undersand he charging and discharging ransien processes of a capacior Display he charging and discharging process using an oscilloscope Undersand he physical meaning of

### RC (Resistor-Capacitor) Circuits. AP Physics C

(Resisor-Capacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED

### Introduction to Measurement, Error Analysis, Propagation of Error, and Reporting Experimental Results

Inroducion o Masurmn, Error Analysis, Propagaion of Error, and Rporing Exprimnal Rsuls AJ Pinar, TD Drummr, D Caspary Dparmn of Chmical Enginring Michigan Tchnological Univrsiy Houghon, MI 4993 Spmbr,

### Basis risk. When speaking about forward or futures contracts, basis risk is the market

Basis risk Whn spaking about forward or futurs contracts, basis risk is th markt risk mismatch btwn a position in th spot asst and th corrsponding futurs contract. Mor broadly spaking, basis risk (also

### CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions

CPS 22 Thory of Computation REGULAR LANGUAGES Rgular xprssions Lik mathmatical xprssion (5+3) * 4. Rgular xprssion ar built using rgular oprations. (By th way, rgular xprssions show up in various languags:

### CHARGE AND DISCHARGE OF A CAPACITOR

REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:

### RC Circuit and Time Constant

ircui and Time onsan 8M Objec: Apparaus: To invesigae he volages across he resisor and capacior in a resisor-capacior circui ( circui) as he capacior charges and discharges. We also wish o deermine he

### CHAPTER 4c. ROOTS OF EQUATIONS

CHAPTER c. ROOTS OF EQUATIONS A. J. Clark School o Enginring Dpartmnt o Civil and Environmntal Enginring by Dr. Ibrahim A. Aakka Spring 00 ENCE 03 - Computation Mthod in Civil Enginring II Dpartmnt o Civil

### Poularikas, A. D., Seely, S. Laplace Transforms. The Transforms and Applications Handbook: Second Edition. Ed. Alexander D. Poularikas Boca Raton:

Poularika, A D, Seely, S Laplace Tranform The Tranform and Applicaion Handbook: Second Ediion Ed Alexander D Poularika Boca Raon: CRC Pre LLC, 5 Laplace Tranform Alexander D Poularika Univeriy of Alabama

### http://www.wwnorton.com/chemistry/tutorials/ch14.htm Repulsive Force

ctivation nrgis http://www.wwnorton.com/chmistry/tutorials/ch14.htm (back to collision thory...) Potntial and Kintic nrgy during a collision + + ngativly chargd lctron cloud Rpulsiv Forc ngativly chargd

### The Matrix Exponential

Th Matrix Exponntial (with xrciss) 92.222 - Linar Algbra II - Spring 2006 by D. Klain prliminary vrsion Corrctions and commnts ar wlcom! Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial

### Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.

Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given

### Many quantities are transduced in a displacement and then in an electric signal (pressure, temperature, acceleration). Prof. B.

Displacmn snsors Many quaniis ar ransducd in a displacmn and hn in an lcric signal (prssur, mpraur, acclraion). Poniomrs Poniomrs i p p i o i p A poniomr is basd on a sliding conac moving on a rsisor.

### New Basis Functions. Section 8. Complex Fourier Series

Nw Basis Functions Sction 8 Complx Fourir Sris Th complx Fourir sris is prsntd first with priod 2, thn with gnral priod. Th connction with th ral-valud Fourir sris is xplaind and formula ar givn for convrting

### Full-wave rectification, bulk capacitor calculations Chris Basso January 2009

ull-wave recificaion, bulk capacior calculaions Chris Basso January 9 This shor paper shows how o calculae he bulk capacior value based on ripple specificaions and evaluae he rms curren ha crosses i. oal

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67 - FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 2 TUTORIAL 1 - TRANSIENTS

EDEXEL NAIONAL ERIFIAE/DIPLOMA UNI 67 - FURHER ELERIAL PRINIPLE NQF LEEL 3 OUOME 2 UORIAL 1 - RANIEN Uni conen 2 Undersand he ransien behaviour of resisor-capacior (R) and resisor-inducor (RL) D circuis

### Switching Regulator IC series Capacitor Calculation for Buck converter IC

Swiching Regulaor IC series Capacior Calculaion for Buck converer IC No.14027ECY02 This applicaion noe explains he calculaion of exernal capacior value for buck converer IC circui. Buck converer IIN IDD

### ELECTRICAL CIRCUITS 7. NON-LINEAR COMPARATOR OSCILLATORS

87 ELETIAL IUITS 7. NON-LEA OMPAATO OSILLATOS Inroducion A linear oscillaor is a basic feedback conrol sysem ha has been made deliberaely unsable a he frequency of oscillaion. The linear oscillaor sysem

### HANDOUT E.19 - EXAMPLES ON FEEDBACK CONTROL SYSTEMS

MEEN 64 Parauram Lctur 9, Augut 5, HANDOUT E9 - EXAMPLES ON FEEDBAC CONTOL SSTEMS Exampl Conidr th ytm hown blow Th opn loop tranfr function i givn by Th clod loop tranfr function i Exampl Conidr th ytm

### 6.334 Power Electronics Spring 2007

MI OpenCourseWare hp://ocw.mi.edu 6.334 Power Elecronics Spring 2007 For informaion abou ciing hese maerials or our erms of Use, visi: hp://ocw.mi.edu/erms. Chaper 5 Inroducion o DC/DC Converers Analysis

Chaptr 9 Nuclar Radiation 9. Natural Radioactivity Radioactiv Isotops A radioactiv isotop has an unstabl nuclus. mits radiation to bcom mor stabl. can b on or mor of th isotops of an lmnt 2 Nuclar Radiation

### Sensorless State-Space Control of Elastic Two-Inertia Drive System Using a Minimum State Order Observer

Scinific Bullin of h Pru aior Univrsiy of irgu urs Vol. 6 (XXIII), 9 ISSN 1841-967 Snsorlss Sa-Spac Conrol of Elasic wo-inria Driv Sysm Using a inimum Sa Ordr Obsrvr V. Comnac, mbr IEEE, S. Coman, C. Boldior,

### State Machines: Brief Introduction to Sequencers Prof. Andrew J. Mason, Michigan State University

Inroducion ae Machines: Brief Inroducion o equencers Prof. Andrew J. Mason, Michigan ae Universiy A sae machine models behavior defined by a finie number of saes (unique configuraions), ransiions beween

### International Journal of Advanced Research in Computer Science and Software Engineering

Volum 3, Iu 5, May 203 ISSN: 2277 28X Inrnaional Journal of Advancd Rarch in Compur Scinc and Sofwar Enginring Rarch apr Availabl onlin a: www.ijarc.com rformanc Analyi of Cloud Compuing undr Non Homognou

### Newton's second law in action

Newon's second law in acion In many cases, he naure of he force acing on a body is known I migh depend on ime, posiion, velociy, or some combinaion of hese, bu is dependence is known from experimen In

### ENE 104 Electric Circuit Theory

Elecric Circui heory Lecure 0: AC Power Circui Analysis (ENE) Mon, 9 Mar 0 / (EE) Wed, 8 Mar 0 : Dejwoo KHAWPARSUH hp://websaff.ku.ac.h/~dejwoo.kha/ Objecives : Ch Page he insananeous power he average

### Working Paper Optimal management with potential regime shifts. CESifo working paper: Resource and Environment Economics, No. 3237

conor www.conor.u Dr Opn-Acc-Publikaionrvr dr ZBW Libniz-Informaionznrum Wirchaf Th Opn Acc Publicaion Srvr of h ZBW Libniz Informaion Cnr for Economic Polaky, Sphn; d Zuw, Aar; Wagnr, Florian Working

### Chapter 2: Principles of steady-state converter analysis

Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

### MTBF: Understanding Its Role in Reliability

Modul MTBF: Undrsanding Is Rol in Rliabiliy By David C. Wilson Foundr / CEO March 4, Wilson Consuling Srvics, LLC dav@wilsonconsulingsrvics.n www.wilsonconsulingsrvics.n Wilson Consuling Srvics, LLC Pag

### Lecture 15 Isolated DC-DC converters

ELEC440/940 Lecure 15 olae C-C converer Ofen, he oupu C volage fro a C-C converer u be iolae fro he inpu AC upply. C power upplie for appliance an equipen are goo exaple. i avanageou o have he iolaion

### Poisson Distribution. Poisson Distribution Example

Poisson Distribution Can b usd to valuat th probability of an isolatd vnt occurring a spcific numbr of tims in a givn tim intrval,.g. # of faults, # of lightning stroks tim intrval Rquirmnts: -Evnts must

### Solution of a differential equation of the second order by the method of NIGAM

Tire : Résoluion d'une équaion différenielle du second[...] Dae : 16/02/2011 Page : 1/6 Soluion of a differenial equaion of he second order by he mehod of NIGAM Summarized: We presen in his documen, a

### 4 Convolution. Recommended Problems. x2[n] 1 2[n]

4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discree-ime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.1-1.

### Laboratory #3 Diode Basics and Applications (I)

Laboraory #3 iode asics and pplicaions (I) I. Objecives 1. Undersand he basic properies of diodes. 2. Undersand he basic properies and operaional principles of some dioderecifier circuis. II. omponens

### Switched Mode Converters (1 Quadrant)

(1 Quadran) Philippe Barrade Laboraoire d Elecronique Indusrielle, LEI STI ISE Ecole Polyechnique Fédérale de Lausanne, EPFL Ch-1015 Lausanne Tél: +41 21 693 2651 Fax: +41 21 693 2600 Philippe.barrade@epfl.ch

### Rapid Estimation of Water Flooding Performance and Optimization in EOR by Using Capacitance Resistive Model

Iranian Journal of Chmical Enginring Vol. 9, No. 4 (Auumn), 22, IAChE Rapid Esimaion of War Flooding Prformanc and Opimizaion in EOR by Using Capacianc Rsisiv Modl A.R. Basami, M. Dlshad 2, P. Pourafshary

### Principles of Humidity Dalton s law

Principls of Humidity Dalton s law Air is a mixtur of diffrnt gass. Th main gas componnts ar: Gas componnt volum [%] wight [%] Nitrogn N 2 78,03 75,47 Oxygn O 2 20,99 23,20 Argon Ar 0,93 1,28 Carbon dioxid

### Example 1: A High-Pass Filter with zero initial condition. X(s)

EE G No: Chapr 6 Ircor: Chg Bildig Sy wih aplac Trafor Exapl : A High-Pa Filr wih zro iiial codiio Ip x F Ω Op y X / H X For ay ip X, w ca cop HX. W call hi op rpo h Zro-Sa Rpo. I aohr word, H dcrib h

### Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur

Module Single-phase AC Circuis Version EE, Kharagpur Lesson Generaion of Sinusoidal Volage Wavefor (AC) and Soe Fundaenal Conceps Version EE, Kharagpur n his lesson, firsly, how a sinusoidal wavefor (ac)

### Topic: Applications of Network Flow Date: 9/14/2007

CS787: Advanced Algorihm Scribe: Daniel Wong and Priyananda Shenoy Lecurer: Shuchi Chawla Topic: Applicaion of Nework Flow Dae: 9/4/2007 5. Inroducion and Recap In he la lecure, we analyzed he problem

### Understanding Sequential Circuit Timing

ENGIN112: Inroducion o Elecrical and Compuer Engineering Fall 2003 Prof. Russell Tessier Undersanding Sequenial Circui Timing Perhaps he wo mos disinguishing characerisics of a compuer are is processor

### www.akcp.com Virtual Sensors

www.akcp.cm Irduci: Virual Ssrs Virual ssrs ca b a vry pwrful l i yur mirig sysm. O h scuriyprb yu ca hav up 80 f hs virual ssrs ad hy allw fr a muliud f applicais. Igrai wih MODBUS wrks wih h scuriyprb

### Term Structure of Interest Rates: The Theories

Handou 03 Econ 333 Abdul Munasb Trm Srucur of Inrs Ras: Th Thors Trm Srucur Facs Lookng a Fgur, w obsrv wo rm srucur facs Fac : Inrs ras for dffrn maurs nd o mov oghr ovr m Fac : Ylds on shor-rm bond mor

### Wave Propagation in Viscous Fluid

Char Wav Proagaion in Viscous Fluid This char summarizs wih h drivaion of h mahmaical form of h acousic wav roagaion in h fluid. Bfor w driv h final form of h wav roagaion quaion in viscous fluid, w firs

### Brown University PHYS 0060 INDUCTANCE

Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide INTODUCTION INDUCTANCE Anyone who has ever grabbed an auomobile spark-plug wire a he wrong place, wih he engine running, has an appreciaion

### Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1

Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

### 14.3 Area Between Curves

14. Ara Btwn Curvs Qustion 1: How is th ara btwn two functions calculatd? Qustion : What ar consumrs and producrs surplus? Earlir in this chaptr, w usd dfinit intgrals to find th ara undr a function and

### Signal Processing and Linear Systems I

Sanford Universiy Summer 214-215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 14-15, Gibbons

### INTEGRATED SKILLS TEACHER S NOTES

TEACHER S NOTES INTEGRATED SKILLS TEACHER S NOTES LEVEL: Inrmdia + AGE: Tnagrs / Aduls TIME NEEDED: 90 minus + projc LANGUAGE FOCUS: Passiv; undrsand vocabulary in conx; opic words vrbs and nouns LEAD-IN

### Astable multivibrator using the 555 IC.(10)

Visi hp://elecronicsclub.cjb.ne for more resources THE 555 IC TIMER The 555 IC TIMER.(2) Monosable mulivibraor using he 555 IC imer...() Design Example 1 wih Mulisim 2001 ools and graphs..(8) Lile descripion

### Using RCtime to Measure Resistance

Basic Express Applicaion Noe Using RCime o Measure Resisance Inroducion One common use for I/O pins is o measure he analog value of a variable resisance. Alhough a buil-in ADC (Analog o Digial Converer)

### Digital Data Transmission. Information Representation. Digital Data System. Components of Digital Communication. Performance Metrics

Digial Daa ramio C 457-Sprig 3 4/18-4/3 alog v. Digial alog igal Valu var coiuouly Digial igal Valu limid o a fii Biary igal Ha a mo valu Ud o rpr i valu Bi im dd o d 1 i Daa ra R1/ pr cod x x x 1 1 1

### II. Equipment. Magnetic compass, magnetic dip compass, Helmholtz coils, HP 6212 A power supply, Keithley model 169 multimeter

Magntic fild of th arth I. Objctiv: Masur th magntic fild of th arth II. Equipmnt. Magntic compass, magntic dip compass, Hlmholtz s, HP 6212 A powr supply, Kithly modl 169 multimtr III Introduction. IIIa.

### Basic Circuit Elements - Prof J R Lucas

Basic Circui Elemens - Prof J ucas An elecrical circui is an inerconnecion of elecrical circui elemens. These circui elemens can be caegorized ino wo ypes, namely acive elemens and passive elemens. Some

### Clocked R S, D, J K and T Flip Flop

C22: Digial i Design Clocked, D, J K and T Flip Flop Dr. A. ahu Dep of Comp. c. & Engg. Indian Insiue of Technology Guwahai Ouline Design a new building block, a flip flop, ha sores one bi Lach Vs Flip

### Meßverfahren der EMV Bestimmung eines Nahfelds nach Betrag und Phase durch Messungen im Zeitbereich

Meßverfahren der MV Besimmung eines Nahfelds nach Berag und Phase durch Messungen im Zeibereich Thiemo Sadler Jan Luiken er Haseborg Deparmen of Measuremen / MC Technical Universiy of Hamburg-Harburg Conen

### Part II Converter Dynamics and Control

Par II onverer Dynamics and onrol 7. A equivalen circui modeling 8. onverer ransfer funcions 9. onroller design 1. Inpu filer design 11. A and D equivalen circui modeling of he disconinuous conducion mode

### Pulse-Width Modulation Inverters

SECTION 3.6 INVERTERS 189 Pulse-Widh Modulaion Inverers Pulse-widh modulaion is he process of modifying he widh of he pulses in a pulse rain in direc proporion o a small conrol signal; he greaer he conrol

### DIFFERENTIAL EQUATIONS with TI-89 ABDUL HASSEN and JAY SCHIFFMAN. A. Direction Fields and Graphs of Differential Equations

DIFFERENTIAL EQUATIONS wih TI-89 ABDUL HASSEN and JAY SCHIFFMAN We will assume ha he reader is familiar wih he calculaor s keyboard and he basic operaions. In paricular we have assumed ha he reader knows

### Standard errors for regression coefficients; Multicollinearity

Standard rror for rgrion cofficint; Multicollinarit Standard rror. Rcall that b k i a point timat of β k. Bcau of ampling variabilit, thi timat ma b too high or too low. bk, th tandard rror of b k, giv

### Chapter 10. Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chapr 10 Chmical Bonding II: Molcular Gomry and Hybridizaion of Aomic Orbials This is h scond chapr on chmical bonding. Chapr 9 inroducd h concps of ionic and covaln bonding and h us of Lwis srucurs. This